Having Type B H. Influenzae in C.S.F., Even If They

Total Page:16

File Type:pdf, Size:1020Kb

Having Type B H. Influenzae in C.S.F., Even If They 666 BRITISH MEDICAL JOURNAL 22 JUNE 1974 and transient swelling of face, body, and mothers were confirmed as having Interaction of Nalidixic Acid and Warfarin limbs (1); hypopyon of left eye (1); acute gonorrhoea. One disturbing feature is that SIR,-It has been demonstrated in vitro that monarticular arthritis (1); and sulphonamide the conjunctivitis developed between the Br Med J: first published as 10.1136/bmj.2.5920.666-c on 22 June 1974. Downloaded from crystalluria (1). sixth and ninth days after delivery. With the nalidixic acid can disolace warfarin from Of the 12 meningococcal isolates obtained now common practice of early discharge binding sites on plasma proteins.' This does so far only one has shown sulphonamide after delivery in most obstetric units it is not appear to be significant clinically.2 Dr. resistance employing standard disc diffusion easy to miss the diagnosis unless the district J. C. Petrie and his colleagues (4 May, p. methods. Three of the four most recent midwife and general practitioner are alert to 262) in their interesting study of the aware- strains have been found to be groupo I the possibility of a gonococcal cause. ness of selected drug interactions go so far meningococci, the fourth belonging to group In a recent circular the Royal College of as to call the nalidixic acid-warfarin inter- C. The minimum inhibitory concentration Obstetricians and Gynaecologists recomn- action "theoretical." The following case of the group B strains to sodium sulpha- mends trainees in obstetrics and gynae- suggests that nalidixic acid given to patients diazine was 16 Mg/ml, and in two of them cology to consider a post in venereology as stabilized on warfarin can produce poten- it was 0 4 ,ug/ml to benzylpenicillin. Follow- part of the elective year. This would bi tially dangerous excess anticoagulation and up studies on six patients (including four beneficial in developing an insight into the should be avoided. infants less than 1 year of age) 4-10 weeks problems of gonorrhoea detection and A 55-year-old woman was knocked down by a after discharge showed no evidence of car in March 1972 fracturing her pelvis and left control.-I am, etc., femur. This was followed by a left ileofemoral residual damage.-We are, etc., R. A. SPARKS venous thrombosis, venous gangrene of the toes, St. David's and Llandough Hospitals, and acute renal failure requiring peritoneal dialysis L. M. DE SILVA Cardiff over a period of several weeks. Her anticoagulation Public Health Laboratory, with warfarin was maintained after discharge and Middlesbrough 1 Chief Medical Officer, Department of Health and was well controlled with a prothrombin ratio Social Security, British 7ournal of Venereal around 2-0 on 11 mg/day. The ratio was satisfactory B. M. MUHAMMAD Diseases, 1974, 50, 73. on 20 December. She then developed Escherichia 2 Rees, D. A., and Hamlett, J. D., fournal of coli urinary infection and was given nalidixic acid K. DEVADAS Obstetrics and Gynaecology of the British 500 mg four times daily by her family doctor on Middlesbrough General Hospital, Commonwealth, 1972, 79, 344. 8 January 1973. She was readmitted to hospital on Middlesbrough 3 Hughes, W. M., and Davies, J. M., British Medical Y7ornal, 1971, 4, 424. 14 January with a purpuric rash on her abdomen 4 Silverston, P I., Snodgrass, C. A., and Wigfield, and bruises on her left leg and back, which came A. S., British fournal of Venereal Diseases, on a few days after starting nalidixic acid. Her 1974, 50, 53. prothrombin time was 45 seconds (control 13). The Gonorrhoea in Obstetrics and Gynaecology 5 Thayer, J. D., and Martin, J. E., jun., Public platelet count was normal. Both drugs were Health Reports, 1966, 81, 559. discontinued. She was later discharged well with a SIR,-Gonorrhoea is still on the increase, prothrombin time of 22 seconds on 10 mg of with 18,341 postpubertal female cases in warfarin daily. -I 1972.1 From the low incidence reported influenzae in am, etc., from antenatal screening (the highest figure Haemophilus Meningitis B. I. HOFFBRAND only Adults Whittington Hospital, obtained by British investigators being London N.19 0-6%2) and the screening of gynaecological SIR,-So far as I know, the interesting re- patients3 it is easy to conclude that port by Dr. Susannah J. Eykyn and others 1 Sellers, E. M., and Koch-Weser, J., Clinical Pharmacology and Therapeutics, 1970, 11, 524. gonorrhoea is not a problem in obstetrics (1 June, p. 463) is unprecedented in that half 2 Smith, S. E., and Rawlins, M. D., Variability in and gynaecology in Britain, but caution is of their cases of haemophilus meningitis Human Drug Response. London, Butterworths, required, especially in gynaecological occurred in adults. Could this distribution 1973. patients. Many units still erroneously rely be related to the location of St. Thomas's on a high vaginal swab for diagnosis, which Hospital? The population of that area, parti- may or may not be placed in Stuart's trans- cularly during the working day, must con- Antibacterial Preparations in the B.N.F. port medium before plating is possible. The tain an exceptionally large preponderance of http://www.bmj.com/ most effective means of diagnosis is to take adults. SIR,-The section of the new edition of the samples from the cervix and urethra and Dr. Eykyn and her colleagues comment British National Formulary' dealing with plate them at the bedside on to prewarmed several times on the difficulty of identifying "Drugs Acting on Infections: Antilbacterial selective gonococcal medium,5 the cultures H. influenzae in the Gram-stained deposit of Preparations" contains a number of state- being immediately placed in an incubator cerebrospinal fluid. I should like once again ments whtich might be challenged. Some of with a carbon dioxide-enriched atmosphere. to draw attention to the value of a good these are listed below. At the same time Gram-stained smears are typing serum for H. influenzae type b in this (1) Carbenicillin. It is advised that for made from further samples. situation. Typing is not mentioned in Dr. systemic infections this be given by con- In the 6! months between November Eykyn's paper, but as your leading artidle tinuous intravenous infusion. The data sheet on 29 September 2021 by guest. Protected copyright. 1973 and mid-May 1974 10 cases of (p. 462) pointed out capsulated strains of issued by the makers advises that carbeni- gonococcal salpingitis and one of gonococcail type b are responsible for the great majority cillin be given intravenously either by bolus cervicitis have been found by this active of cases of haemophilus meningitis. The injection or rapid infusion on the grounds approach in gynaecological patients. In six practical relevance of this is that a capsule- that infusion over longer periods may result of these the Gram film gave immnediate swelling test with a good type b antiserum in sutbtherapeutic concentrations. Whatever warning of the positive culture to come. I,t (such as that made by Hyland Laboratories) the relative therapeutic merits of inter- can be argued that it is immaterial to makes possible the firm identification of mittent versus continuous administration, indentify the causative organism as anti- type b H. influenzae in C.S.F., even if they one is left with the other potential draw- biotics would ibe given anyway once a are few in numribers, within minutes of the back of continuous infusion of the penicillins diagnosis of salpingitis has been reached. arrival of the specimen in the laboratory.' -that is, their possible inactivation by other T,his is fallacious as it fails to identify the Your leading article was a joy to read and components of the intravenous solution or cases in which sexual contacts should be I am sorry to have to point out any fault incompatibility with other additives, notably investigated by the venereology department. in it; indeed, the fault lies not in the article gentamicin in the case of carbenicillin. This No cases of Bartholin's abscess due to but in its title. It dealt not with "Haemo- is not mentioned by the B.N.F. gonococcal infection were found during the philus influenzae infections" but with one (2) Ampicillin. Amoxycillin and its better same period. Most patients had already re- group of such infections, making no refer- absorption by the oral route should have ceived antibiotics from their general practi- ence, for example, to the activities of non- been mentioned in a volume published in tioner so this is not surprising. It should be capsulated strains in the bronchi, which 1973. stressed that patients with a Bartholin's account for the great majority of IH. (3) Gentamicin. This is said usually to abscess should -be admitted for surgical influenzae infections in Britain.-I am, etc., have "a slightly wider margin of safety" than drainage and not treated first with anti- kanamycin. In fact the margin between biotics as they are ineffective and also con- D. C. TURK therapeutically active and toxic serum levels Department of Bacteriology, is greater with kanamycin.2 For some reason fuse the bacteriological diagnosis. Radcliffe Infirmary, Despite the screening of "at risk" ante- Oxford the intravenous use of gentamicin is vetoed, natal patients, three cases of gonococcal though this mode of administration must be 1 Turk, D. C., and May, J. R., Haemophilus widespread for serious systemic infections, ophthalmia neonatorum were found between influenzae. Its Clinical Importance, pp. 35 and September 1972 and September 1973. The 120. London, English Universities Press, 1967. notably with Pseudomonas aeruginosa. BRITISH MEDICAL JOURNAL 22 JUNE 1974 667 (4) Tetracyclines. It is recommended The bacterial contamination of the hos- the infection; after the acute stage parasitized that, given parenterally, "the total dose pital environment by patients with infectee red cells may be extremely few and very exceed 1 g in 24 hours (less dermatological lesions can be truly pro- difficult to find.
Recommended publications
  • Supplementary Appendix
    Supplementary appendix Sipilä PN, Heikkilä N, Lindbohm JV, Hakulinen C, Vahtera J, Elovainio M, Suominen S, Väänänen A, Koskinen A, Nyberg ST, Pentti J, Strandberg TE, Kivimäki M. Hospital-treated infectious diseases and the risk of incident dementia: multicohort study with replication in the UK Biobank CONTENTS eFigure 1. Selection of participants in the study............................................................................... 2 eMethods 1. Study cohorts and data collection ................................................................................ 3 The Finnish Public Sector study (FPS)......................................................................................... 3 The Health and Social Support study (HeSSup) ........................................................................... 4 The Still Working study (STW) ................................................................................................... 5 The UK Biobank ......................................................................................................................... 5 eMethods 2. Proportionality of hazards ........................................................................................... 7 eFigure 2. Visualisation of hazard ratios over time using exponentiated scaled Schoenfeld residuals ....................................................................................................................................................... 8 eFigure 3. Dementia follow-up .....................................................................................................
    [Show full text]
  • Philippine Clinical Practice Guidelines on the Diagnosis And
    Pediatric Infectious Diseases Society of the Philippines Journal Vol 16 No.2 pp 2-42 Jul-Dec 2015 PIDSP and CNSP Bacterial Meningitis TWG, Acute Bacterial Meningitis CPG 2015 PHILIPPINE CLINICAL PRACTICE GUIDELINES ON THE DIAGNOSIS AND MANAGEMENT OF ACUTE BACTERIAL MENINGITIS IN INFANTS AND CHILDREN Copyright 2015 A joint project of the Pediatric Infectious Disease Society of the Philippines (PIDSP) and Child Neurology Society of the Philippines (CNSP) 2 Pediatric Infectious Diseases Society of the Philippines Journal Vol 16 No.2 pp.2-42 Jul-Dec 2015 PIDSP and CNSP Bacterial Meningitis TWG, Acute Bacterial Meningitis CPG 2015 TABLE OF CONTENTS Page I. Introduction A. History of the guideline 5 B. Target users of the guideline 5 C. Forming the guideline 5 D. PIDSP/CNSP Steering Committee 6 E. Criteria for Assessment of Strength of Evidence and Recommendation 6 II. Recommendations A. Diagnosis of Acute Bacterial Meningitis 1. What are the signs and symptoms to suspect acute bacterial meningitis? 7 2. What is the definitive test for bacterial meningitis? 8 3. How do we differentiate acute bacterial meningitis from other CNS infections? 9 4. What are the contraindications to lumbar puncture? 9 5. What are the ancillary tests in the diagnosis of bacterial m eningitis? What is the value of each diagnostic test? a. Complete blo od count (CBC) 10 b. Blood culture 11 c. C-reactive protein (CRP) 11 d. Polymerase chain reaction (PCR) 13 e. Latex Agglutination Test (LAT) 13 f. Procalcitonin 14 6. What is the role of imaging tests in the diagnosis of bacterial meningitis? 15 B.
    [Show full text]
  • General Medical Microbiology and Infectious Disease BMS 6301
    General Medical David L. Balkwill, Ph.D., Course Microbiology Director and Infectious Disease [email protected] BMS 6301 (850) 644-9219 2004 – 2005 Course Syllabus x Click here for the schedule Description: This course provides learning opportunities in the basic principles of medical microbiology and infectious disease. It covers mechanisms of infectious disease transmission, principles of aseptic practice, and the role of the human body’s normal microflora. The biology of bacterial, viral, fungal, and parasitic pathogens and the diseases they cause are covered. Relevant clinical examples are provided. The course provides the conceptual basis for understanding pathogenic microorganisms and the mechanisms by which they cause disease in the human body. It also provides opportunities to develop informatics and diagnostic skills, including the use and interpretation of laboratory tests in the diagnosis of infectious diseases. Format: Combination of 1-hour lecture/case-based class sessions and 2-hour case-based discussion/demo lab sessions with small groups (see topical syllabus, below). Course Director: David L. Balkwill, Ph.D. Office: Room 526 Office Hours: Open – students are welcome to stop by anytime. Phone: 644-9219 [email protected] Other Instructors: Lecture: Myra Hurt, Ph.D. Small Group Facilitation: Curtis Altmann, Ph.D., Susanne Cappendijk, Ph.D., Trent Clarke, Ph.D., Edward Klatt, M.D., Graham Patrick, Ph.D., and Yanchang Wang, Ph.D. Required Text: Medical Microbiology, 4th Ed. (2002) Murray, Rosenthal, Kobayashi, and Pfaller, Mosby-Year Book, ISBN: 0323012132. Recommended Texts: Mechanisms of Microbial Disease, 3rd Ed. (1998) Schaechter, Engelberg, Eisenstein, and Medoff, Lippincott, ISBN: 0683076051.
    [Show full text]
  • February 1, 2008 May 1, 2010 ABSCESS Staphyloccus Aureus
    Winnipeg Regional Health Authority Infection Prevention & Control Manual Clinical Presentation, Type of Infective Material Route of Incubation Period of Duration of Comments Microorganism, Infectious Precautions Transmission Communicability Precautions Disease ABSCESS Minor: Pus Direct & indirect Variable Duration of drainage Duration of Minor: Drainage is contained by Staphyloccus aureus Routine contact drainage dressing. Group A Streptococcus Major: Drainage not contained by Major: Other bacteria dressing. Contact ACQUIRED IMMUNE DEFICIENCY Routine Blood, body fluids Mucosal or Weeks to From onset of For life Follow the WRHA Post Exposure SYNDROME containing visible percutaneous years infection Blood & Body Fluid Post Exposure AIDS, ARC, or HIV blood, CSF, pleural exposure to Protocol Management Policy. Report an exposure to infective Antibody Positive, peritoneal, infective pericardial, amniotic material material e.g., needle-stick or blood Suspected Human fluids, semen, & Breastmilk spill/splash immediately to the Immunodeficiency vaginal secretions ingestion Occupational Health Department. Virus (HIV) Infection Refer to Specific Disease Protocol: AIDS/HIV. ACTINOMYCOSIS Routine Not person to Normal flora: infection usually Actinomyces species person secondary to trauma. ADENOVIRUS Routine Eye drainage Direct & indirect 2-14 days Until symptoms Duration of Different strains can be responsible for Conjunctivitis Children <6 yrs: contact cease illness respiratory and gastrointestinal disease. Contact Minimize exposure of immunocompromised
    [Show full text]
  • Author Section
    AUTHOR SECTION patients with new onset of fever, demographic, clinical, and laborato- Mycoplasma spp. Overall, the spectrum of antibacterial activity indi- ry variables were obtained during the 2 days after inclusion, while cates a potential role for this combination in the treatment of diffi- microbiological results for a follow-up period of 7 days were collect- cult-to-treat Gram-positive infections, including those caused by ed. Patients were followed up for survival or death, up to a maximum multidrug-resistant organisms. Since this activity extends to Gram- of 28 days after inclusion. MEASUREMENTS AND RESULTS: Of negative respiratory bacteria, quinupristin/dalfopristin may also find all patients, 95% had SIRS, 44% had sepsis with a microbiologically a role in the treatment of atypical, as well as typical, pneumonia. confirmed infection, and 9% died. A model with a set of variables all significantly (p<0.01) contributing to the prediction of mortality was Boubaker A. et al. [Investigation of the urinary tract in children in nuclear med- derived.The set included the presence of hospital-acquired fever, the icine]. Rev Med Suisse Romande. 2000; 120(3) : 251-7.p Abstract: peak respiratory rate, the nadir score on the Glasgow coma scale, and The early detection of urologic abnormalities by antenatal sonogra- the nadir albumin plasma level within the first 2 days after inclusion. phy has resulted in the investigation of many infants and neonates for This set of variables predicted mortality for febrile patients with suspicion of either obstructive uropathy or reflux nephropathy. microbiologically confirmed infection even better.The predictive val- Nuclear medicine techniques allow to assess renal parenchyma ues for mortality of SIRS and sepsis were less than that of our set of integrity, to detect pyelonephritic scars and to measure absolute and variables.
    [Show full text]
  • Meningitis Protocol
    Winnipeg Regional Health Authority Acute Care Infection Prevention & Control Manual MENINGITIS PROTOCOL Meningitis is an inflammation of the meninges, the thin lining that surrounds the brain and spinal cord. It can be caused by many bacteria and viruses. Viral infections are the most common cause of meningitis; bacterial infections are the second most common cause. Other rarer causes of meningitis include fungi, parasites, and non-infectious causes, including those related to drugs. Severity of illness and treatment for meningitis differ depending on the cause. It is therefore important to know the specific cause of meningitis: bacterial meningitis is usually more severe than viral, fungal, or parasitic meningitis. Implement Droplet Precautions for all suspect meningitis types until a type has been confirmed/diagnosis determined. Not all cases of meningitis require Additional Precautions. Pediatric: • Implement Droplet/Contact Precautions until etiology determined. • If confirmed as bacterial in origin, implement Droplet Precautions. • If confirmed as viral in origin, implement Contact Precautions for children who are incontinent or unable to comply with hygiene practice. Adult: implement Droplet Precautions until Neisseria meningitidis ruled out. Type of Type of Meningitis Duration of Precautions Precautions Etiology unknown – adult Droplet Until etiology is determined Etiology unknown – pediatric Droplet/Contact Haemophilus influenzae Routine Practices Ongoing type B – adult Haemophilus influenzae Until 24 hours after Droplet type
    [Show full text]
  • Reportable Disease Desk Reference
    Page 1 REPORTABLE DISEASE DESK REFERENCE Division of Epidemiology and Health Planning Department for Public Health Commonwealth of Kentucky April, 2006 Page 2 FOREWORD In the United States, requirements for reporting diseases are mandated by state laws or regulations, and the list of reportable diseases in each state varies. The Kentucky Disease Surveillance Administrative Regulations 902 KAR 2:020 require reporting of Communicable Diseases to the local health departments and the Kentucky Department for Public Health. Additionally, state health departments report cases of selected diseases to the Centers for Disease Control and Prevention (CDC) National Notifiable Disease Surveillance System (NNDSS), on a weekly basis. These data are published weekly in the Morbidity Mortality Weekly Report (MMWR). An updated final report is published annually in the Summary of Notifiable Diseases. With the 2006 version of the desk reference, we have tried to adhere as closely as possible to the case definitions developed by the CDC and the Council of State and Territorial Epidemiologists (CSTE) published in “Case Definitions for Public Health Surveillance”, MMWR 1997; 46:RR-10 and available on the CDC’s Epidemiology Program Office website, http://www.cdc.gov/epo/dphsi/casedef/index.htm. As uniform case definitions are adopted by the states, the incidence of reported diseases in different geographic areas may be more meaningfully compared at the local, state, and national levels. KYEPHRS AND THE DISEASE SURVEILLANCE MODULE The Kentucky Electronic Public Health Record System (KY-EPHRS) provides the backbone of an integrated electronic health record, including disease surveillance. The Disease Surveillance is one of several modules that make up KY-EPHRS.
    [Show full text]
  • Haemophilus Influenzae Type B (Hib) Meningitis in the Pre-Vaccine Era: a Global Review of Incidence, Age Distributions, and Case-Fatality Rates
    WHO/V&B/02.18 ORIGINAL: ENGLISH Vaccines and Biologicals Haemophilus influenzae type b (Hib) meningitis in the pre-vaccine era: a global review of incidence, age distributions, and case-fatality rates World Health Organization WHO WHO/V&B/02.18 ORIGINAL: ENGLISH Vaccines and Biologicals Haemophilus influenzae type b (Hib) meningitis in the pre-vaccine era: a global review of incidence, age distributions, and case-fatality rates John V. Bennett, Professor, Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA Alexander E. Platonov, Head, Laboratory of Meningococcal Infection and Bacterial Meningitis, Central Institute of Epidemiology, Moscow, Russian Federation Mary P. E. Slack, Head, WHO Collaborating Centre on Haemophilus influenzae, Public Health Laboratory Service Haemophilus Reference Unit, Oxford, United Kingdom Peter Mala, Anthony H. Burton and Susan E. Robertson, Department of Vaccines and Biologicals, World Health Organization, Geneva, Switzerland World Health Organization WHO The Department of Vaccines and Biologicals thanks the donors whose unspecified financial support has made the production of this document possible. This document was produced by the Vaccine Assessment and Monitoring team of the Department of Vaccines and Biologicals Ordering code: WHO/V&B/02.18 Printed: October 2002 This document is available on the Internet at: www.who.int/vaccines-documents/ Copies may be requested from: World Health Organization Department of Vaccines and Biologicals CH-1211 Geneva 27, Switzerland • Fax: + 41 22 791 4227 • Email: [email protected] • © World Health Organization 2002 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]).
    [Show full text]
  • Meningitis, Encephalitis and Neonatal Sepsis 1 GBD 2017 1 WHO
    The global burden of meningitis in children: Challenges with interpreting global health estimates Supplementary Appendix Contents Mortality modelling methods – Meningitis, encephalitis and neonatal sepsis 1 GBD 2017 1 WHO-MCEE 2000-2017 3 Pathogen specific meningitis mortality and incidence modelling methods 4 GBD 2017 4 MCEE/JHSPH 5 Tables and Figures Table S1: ICD10 codes mapped to meningitis, encephalitis and neonatal sepsis according to model 7 Table S2: Definitions of IHME’s GBD 2017 data quality star rating 12 Table S3: Location level covariates according to model 13 Table S4: Covariates used in WHO-MCEE’s multinomial logistic regression by age group, model and cause 14 Table S5: MCEE Final cause of death list 15 Table S6: MCEE modelled cause of death categories according to age 16 Figure S1: Quality of underlying cause of death data and modelling methods used to generate death estimates according to model. 17 Mortality modelling methods – Meningitis, encephalitis and neonatal sepsis This section provides a brief overview on how the different models derive meningitis, encephalitis and neonatal sepsis mortality estimates. However, full methodology is provided by the modellers elsewhere. Both GBD 2017 and MCEE 2000-2017 models used cause of death data from vital registration (VR) systems, sample registration systems (SR) and verbal autopsy (VA) studies to assign causes of death ensuring that the total number of deaths matches other estimates for the age-specific all-cause mortality. This involves the generation of data where data are The global burden of meningitis in children: Challenges with interpreting global health estimates Supplementary Appendix incomplete or completely missing.
    [Show full text]
  • Bacterial Meningitis Some Aspects of Diagnosis and Treatment GARRY HAMBLETON and PAMELA A
    Arch Dis Child: first published as 10.1136/adc.50.9.674 on 1 September 1975. Downloaded from Review article Archives of Disease in Childhood, 1975, 50, 674. Bacterial meningitis Some aspects of diagnosis and treatment GARRY HAMBLETON and PAMELA A. DAVIES From the Department of Paediatrics and Neonatal Medicine, Hammersmith Hospital, London Antimicrobial therapy has made few more drama- the male sex (Washburn, Medearis, and Childs, tic conquests than that of bacterial meningitis, 1965), congenital anomalies of or injury to the which it has transformed from the almost univer- central nervous system, and primary infection else- sally fatal illness of 30 years ago into one with a where, especially that adjacent to the meninges, are relatively low mortality. Yet the disease, which has other well established predisposing factors. Chil- its greatest impact in early childhood, poses a dren who have impaired defence mechanisms for a continuing threat and must be regarded as one of variety of reasons are a tiny minority but are never- the most challenging of medical emergencies. In the less being kept alive in increasing numbers for the United Kingdom and Eire in 1973, at least 109 much longer now, and are consequently in jeopardy. children under 15 years of age were reported to For instance, an association between pneumococcal have died from it (Public Health Laboratory Service, infection and sickle cell disease, a condition which 1974;) andinthe United States more thana quarter of may be associated with a defect in the properdin copyright. survivors from Haemophilus influenzae meningitis system (Johnston, Newman, and Struth, 1973) is alonehave beenfound tohave significantneurological well known, and Smith et al.
    [Show full text]
  • Meningococcal Disease: Always Consider in a Patient with Flu-Like Illness
    Meningococcal disease: Always consider in a patient with flu-like illness Patients with meningococcal disease can initially year (19.8 per 100 000 population), followed by children aged present with non-specific influenza-like symptoms. between one and four years (5.6 per 100 000 population).4 More specific signs and symptoms may develop There was a secondary peak in notification rate in young adults 4 as the illness progresses. Symptoms can rapidly aged 15–19 years (4.8 per 100 000 population). Among ethnic groups, the highest rate of meningococcal disease in 2012 progress from mild to life-threatening, therefore was in Māori (4.5 per 100 000 population), followed by Pacific suspected meningococcal disease is a medical peoples (3.7 per 100 000 population).4 This compares to a rate emergency. of 1.5 per 100 000 population in people of European or other ethnicity.4 Meningococcal disease is the term used to describe the two different types of illness caused by the bacterium Neisseria meningitidis: meningococcal meningitis and Identifying meningococcal disease in a patient with a meningococcal septicaemia.1 Meningococcal meningitis “flu-like” illness occurs when N. meningitidis multiplies on the meninges The first stage of meningococcal disease (prodromal stage) and in the cerebro-spinal fluid. Meningococcal septicaemia is associated with non-specific symptoms, which may persist occurs when N. meningitidis multiplies to pathogenic levels throughout the illness. These symptoms include acute fever, in the bloodstream.2 Septicaemia can occur in conjunction vomiting, nausea, lethargy, irritability, refusing food or drink, with meningitis, and is more likely to be fatal than meningitis headache, muscle and joint pain and respiratory symptoms.5 without septicaemia.3 Cough, particularly dry cough, is more indicative of influenza than meningococcal disease.6 There are at least 13 serotypes of N.
    [Show full text]
  • House Bill 420
    HOUSE BILL 420 Unofficial Copy 2001 Regular Session J1 1lr0076 ____________________________________________________________________________________ By: Chairman, Environmental Matters Committee (Departmental - Health and Mental Hygiene) Introduced and read first time: February 1, 2001 Assigned to: Environmental Matters _____________________________________________________________________________________ Committee Report: Favorable House action: Adopted Read second time: March 7, 2001 _____________________________________________________________________________________ CHAPTER_______ 1 AN ACT concerning 2 Reporting of Communicable Diseases 3 FOR the purpose of adding certain diseases to a list of diseases that are reportable by 4 a director of a medical laboratory to a certain health officer within a specified 5 period of time; modifying the existing designations of diseases on the list; 6 defining invasive disease; providing an exemption for a report of noncholera 7 vibriosis under certain circumstances; and generally relating to the reporting of 8 certain diseases by medical laboratories. 9 BY repealing and reenacting, with amendments, 10 Article - Health - General 11 Section 18-205 12 Annotated Code of Maryland 13 (2000 Replacement Volume) 14 (As enacted by Chapter 419 of the Acts of the General Assembly of 2000) 15 SECTION 1. BE IT ENACTED BY THE GENERAL ASSEMBLY OF 16 MARYLAND, That the Laws of Maryland read as follows: 17 Article - Health - General 18 18-205. 19 (A) IN THIS SECTION, "INVASIVE DISEASE" MEANS A DISEASE IN WHICH AN 20 ORGANISM IS DETECTED IN A SPECIMEN TAKEN FROM A NORMALLY STERILE BODY 21 SITE. 2 HOUSE BILL 420 1 [(a) (1)] (B) The director of a medical laboratory shall submit a report to the 2 health officer for the county where the laboratory is located within 48 hours after an 3 examination of a specimen from a human body shows evidence of any of the following: 4 [(i) Gonorrhea.
    [Show full text]