Neurologic Complications of Common Variable Immunodeficiency

Total Page:16

File Type:pdf, Size:1020Kb

Neurologic Complications of Common Variable Immunodeficiency UCSF UC San Francisco Previously Published Works Title Neurologic Complications of Common Variable Immunodeficiency. Permalink https://escholarship.org/uc/item/9s0593dp Journal Journal of clinical immunology, 36(8) ISSN 0271-9142 Authors Nguyen, Jenna Thuc-Uyen Green, Ari Wilson, Michael R et al. Publication Date 2016-11-01 DOI 10.1007/s10875-016-0336-8 Peer reviewed eScholarship.org Powered by the California Digital Library University of California J Clin Immunol DOI 10.1007/s10875-016-0336-8 ORIGINAL ARTICLE Neurologic Complications of Common Variable Immunodeficiency Jenna Thuc-Uyen Nguyen1 & Ari Green 2,3 & Michael R. Wilson2 & Joseph L. DeRisi4,5 & Katherine Gundling1 Received: 20 July 2016 /Accepted: 15 September 2016 # Springer Science+Business Media New York 2016 Abstract Common variable immunodeficiency is a rare dis- Introduction order of immunity associated with a myriad of clinical mani- festations including recurrent infections, autoimmunity, and Common variable immunodeficiency (CVID) is a rare disor- malignancy. Though rare, neurologic complications have been der of immunity characterized by hypogammaglobulinemia, described in a small number of case reports and case series of impaired specific antibody responses, and variable T lympho- CVID patients. In this article, we present a patient with CVID cyte dysfunction. It can occur in both children and adults but is who suffered significant neurologic morbidity and categorize most commonly diagnosed in early adulthood. Although the reported range of neurologic complications associated CVID is commonly associated with recurrent infections, other with CVID. Our case highlights the complex nature of neuro- systemic conditions, such as autoimmunity, inflammatory dis- logic manifestations in CVID patients, and our review of the orders, and malignancy, have been well described [1]. current database suggests that infection and inflammatory Neurologic dysfunction in CVID is less frequently report- neurologic disorders are the cause of most neurologic ed, and the relationship to underlying immune dysfunction is presentations. not well understood. Current knowledge is based mostly upon case reports or small case series. In this article, we present a patient with CVID who suffered significant neurologic mor- Keywords Common variable immunodeficiency . bidity, we categorize the reported range of neurologic compli- Neurologic disease . Autoimmune cations associated with CVID, and we highlight some of the diagnostic and treatment challenges faced by clinicians who care for these complex patients. Electronic supplementary material The online version of this article (doi:10.1007/s10875-016-0336-8) contains supplementary material, Case which is available to authorized users. A 40-year-old woman with CVID developed neurologic and * Jenna Thuc-Uyen Nguyen ophthalmologic symptoms in 2009. Her complex history in- [email protected] cludes a diagnosis of CVID in 2007, with lymphocytic inter- stitial pneumonia (LIP), for which she was treated with my- 1 Division of Allergy and Immunology, University of California, San cophenolate mofetil (MM) with good benefit. Subsequently, Francisco, 400 Parnassus Ave, San Francisco, CA 94143, USA she developed lymphocytic colitis, and after attempting mul- 2 Department of Neurology, University of California, San tiple therapies without success, she was begun on Francisco, CA, USA adalimumab, which was associated with excellent improve- 3 Department of Ophthalmology, University of California, San ment of her diarrhea. MM was discontinued for a brief time Francisco, CA, USA during this treatment but restarted after decompensation of her 4 Department of Biochemistry and Biophysics, University of LIP, which again stabilized. California, San Francisco, CA, USA In August of 2009, she experienced subacute onset of blur- 5 Howard Hughes Medical Institute, Chevy Chase, MD, USA ry vision in her left eye that was associated with several weeks JClinImmunol of retro-orbital pain. She was given a 3-day course of methyl- There was a modest lymphocytic infiltration with predomi- prednisolone for presumed optic neuritis with improvement in nantly T cells (CD3+) and scant CD20+ cells. There were no her vision after 3 weeks from a visual acuity of 20/400 to 20/ granulomas identified and no tissue necrosis or viropathic 25. She was left with a mild residual left cecocentral scotoma changes seen (Table 2). Extensive infectious work-up, includ- that has been unchanged since that time with surveillance ing research-based metagenomic deep sequencing (MDS) of monitoring by her neuro-ophthalmologist. Several months lat- her CSF and brain tissue for the identification of potential er, she developed multifocal choroidopathy, which was pathogens revealed no specific etiology (Fig. 2). suspected to be inflammatory in origin. Subsequent retinal In October of 2014, the patient experienced a syncopal evaluations over the intervening years showed no progression. episode while running on a treadmill, which was followed In July of 2013, she presented with 6 weeks of episodic by postictal confusion. A repeat MRI demonstrated persis- visual distortion and headaches. On fundoscopic exam, she tence of the cerebellar lesions as well as new ill-defined areas had persistent multifocal choroidopathy, left optic disc pallor, of leptomeningeal enhancement, proximate to the right angu- and nerve atrophy consistent with her prior ophthalmologic lar gyrus, which was thought to serve as the seizure focus history. Cerebrospinal fluid (CSF) analysis demonstrated lym- (Fig. 2d). She was started on levetiracetam without any sei- phocytic pleocytosis with 34 WBCs, mildly elevated protein, zure recurrence. Repeat CSF analysis continued to demon- and greater than five oligoclonal bands. VDRL, VZV PCR, strate signs of inflammation (Table 1). and Lyme IgM/IgG were all negative (Table 1). MRI of her Given concern for infection in the setting of immunosup- brain, cervical, and thoracic spine were unrevealing. pression, or possible atypical demyelination, adalimumab was Peripapillary optical coherence tomography showed mild ret- discontinued. At this time, she continued to have left arm inal nerve fiber layer loss (87 μ OS versus 93 μ OD) with dysmetria along with new subtle imbalances brought out by modest but more significant loss of macular volume sugges- complex tasks (at baseline the patient was a high level endur- tive of some permanent ganglion cell loss. The precise etiolo- ance athlete). Neuropsychiatric testing demonstrated relative- gy of her inflammatory CSF and neurologic symptoms ly focal impairment in word retrieval. Understanding the small remained unclear. risk that her condition might be infectious in nature, she was In February of 2014, she developed new weakness of her given 3 days of methylprednisolone and experienced rapid left hand, along with tremor and poor coordination. She was improvement in balance, fine motor movement, short-term found to have left-sided dysmetria and an unchanged ophthal- memory, and word finding. MRI obtained shortly thereafter mologic exam. Brain MRI demonstrated two enhancing le- demonstrated interval decrease in the prominence of sions with mild mass effect in the left cerebellum (Fig. 1a). leptomeningeal enhancement about the bilateral superior cer- Repeat lumbar puncture (LP) showed similar CSF parameters ebellar hemispheres and right angular gyrus (Fig. 1e). A brain except for the presence of low numbers of neutrophils MRI obtained 2 months later, however, demonstrated an (Table 1). Histological analysis with two brain biopsies expansile lesion with increased T2 signal abnormality and showed modest astrogliosis (confirmed via glial fibrillary acid gadolinium enhancement involving the medial aspect of the protein immunohistochemistry) with superimposed nonspe- right posteroinferior cerebellar lobe (Fig. 1f). cific inflammation including otherwise normal architecture. Based upon her CSF results, lack of evidence for infection, Specifically, there was no evidence for myelin injury or loss. and good response to corticosteroids, rituximab was added to Table 1 Serial CSF analysis CSF studies 7/29/13 2/25/14 3/4/14 Reference ranges WBC 34 30 4 0–5/cc Poly 2 % % Lymph 74 % 78 % 86 % % RBC 5 4 none /cc Glucose 41 40 47 40–70 mg/dl Blood glucose 75 77 85 mg/dl Protein 66 51 42 15–50 IgG 3.7 2.9 3 0.3–4.3 Micro VZV PCR, VDRL, Lyme Ab negative VDRL NR IgG index 0.5 0.5 0.5 0.3–0.6 OCB >5 >5 >5 Cytology Mature lymphocytes and monocytes J Clin Immunol Fig. 1 Serial MRI brain images. a 2/2014 Two new enhancing lesions with mild mass effect in the left cerebellum on T1 post- gadolinium imaging (white arrows). b 4/2014 Near-complete resolution of left superior cerebellar hemispheric lesion. Unchanged left inferior cerebellar lesion (white arrow). c 5/2014 Increased conspicuity of leptomeningeal enhancement along the dorsal left paramedian cerebellum. Stable ill-defined enhancement (c1) and FLAIR hyperintensity associated with the inferior left cerebellar lesion (c2). d 10/2014 New ill-defined areas of enhancement principally confined to the leptomeninges and proximate right angular gyrus (arrow). e 11/2014 Interval decreased contrast enhancement about a left dorsal lateral cerebellar intraparenchymal lesion (not pictured), bilateral superior cerebellar hemisphere sulci (not pictured), and sulcus proximate to the right angular gyrus (arrow). f 1/2015 Edematous lesion with increased signal abnormality and enhancement involving the medial aspect of the right posterioinferior
Recommended publications
  • IDF Patient & Family Handbook
    Immune Deficiency Foundation Patient & Family Handbook for Primary Immunodeficiency Diseases This book contains general medical information which cannot be applied safely to any individual case. Medical knowledge and practice can change rapidly. Therefore, this book should not be used as a substitute for professional medical advice. FIFTH EDITION COPYRIGHT 1987, 1993, 2001, 2007, 2013 IMMUNE DEFICIENCY FOUNDATION Copyright 2013 by Immune Deficiency Foundation, USA. REPRINT 2015 Readers may redistribute this article to other individuals for non-commercial use, provided that the text, html codes, and this notice remain intact and unaltered in any way. The Immune Deficiency Foundation Patient & Family Handbook may not be resold, reprinted or redistributed for compensation of any kind without prior written permission from the Immune Deficiency Foundation. If you have any questions about permission, please contact: Immune Deficiency Foundation, 110 West Road, Suite 300, Towson, MD 21204, USA; or by telephone at 800-296-4433. Immune Deficiency Foundation Patient & Family Handbook for Primary Immunodeficency Diseases 5th Edition This publication has been made possible through a generous grant from Baxalta Incorporated Immune Deficiency Foundation 110 West Road, Suite 300 Towson, MD 21204 800-296-4433 www.primaryimmune.org [email protected] EDITORS R. Michael Blaese, MD, Executive Editor Francisco A. Bonilla, MD, PhD Immune Deficiency Foundation Boston Children’s Hospital Towson, MD Boston, MA E. Richard Stiehm, MD M. Elizabeth Younger, CPNP, PhD University of California Los Angeles Johns Hopkins Los Angeles, CA Baltimore, MD CONTRIBUTORS Mark Ballow, MD Joseph Bellanti, MD R. Michael Blaese, MD William Blouin, MSN, ARNP, CPNP State University of New York Georgetown University Hospital Immune Deficiency Foundation Miami Children’s Hospital Buffalo, NY Washington, DC Towson, MD Miami, FL Francisco A.
    [Show full text]
  • WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure
    Journal of Clinical Immunology (2019) 39:532–556 https://doi.org/10.1007/s10875-019-00665-w CME REVIEW WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure Lauren E. Heusinkveld1,2 & Shamik Majumdar1 & Ji-Liang Gao1 & David H. McDermott1 & Philip M. Murphy1 Received: 22 April 2019 /Accepted: 26 June 2019 /Published online: 16 July 2019 # This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019 Abstract WHIM syndrome is a rare combined primary immunodeficiency disease named by acronym for the diagnostic tetrad of warts, hypogammaglobulinemia, infections, and myelokathexis. Myelokathexis is a unique form of non-cyclic severe congenital neutropenia caused by accumulation of mature and degenerating neutrophils in the bone marrow; monocytopenia and lympho- penia, especially B lymphopenia, also commonly occur. WHIM syndrome is usually caused by autosomal dominant mutations in the G protein-coupled chemokine receptor CXCR4 that impair desensitization, resulting in enhanced and prolonged G protein- and β-arrestin-dependent responses. Accordingly, CXCR4 antagonists have shown promise as mechanism-based treatments in phase 1 clinical trials. This review is based on analysis of all 105 published cases of WHIM syndrome and covers current concepts, recent advances, unresolved enigmas and controversies, and promising future research directions. Keywords Chemokine . CXCL12 . CXCR4 . CXCR2 . myelokathexis . human papillomavirus . plerixafor Historical Background [M:E] ratio with a “shift to the right”); and (3) numerous dysmorphic bone marrow neutrophils having cytoplasmic Myelokathexis was first described as a new type of severe hypervacuolation and hyperlobulated pyknotic nuclear lobes congenital neutropenia in 1964 by Krill and colleagues from connected by long thin strands (Fig.
    [Show full text]
  • Repercussions of Inborn Errors of Immunity on Growth☆ Jornal De Pediatria, Vol
    Jornal de Pediatria ISSN: 0021-7557 ISSN: 1678-4782 Sociedade Brasileira de Pediatria Goudouris, Ekaterini Simões; Segundo, Gesmar Rodrigues Silva; Poli, Cecilia Repercussions of inborn errors of immunity on growth☆ Jornal de Pediatria, vol. 95, no. 1, Suppl., 2019, pp. S49-S58 Sociedade Brasileira de Pediatria DOI: https://doi.org/10.1016/j.jped.2018.11.006 Available in: https://www.redalyc.org/articulo.oa?id=399759353007 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative J Pediatr (Rio J). 2019;95(S1):S49---S58 www.jped.com.br REVIEW ARTICLE ଝ Repercussions of inborn errors of immunity on growth a,b,∗ c,d e Ekaterini Simões Goudouris , Gesmar Rodrigues Silva Segundo , Cecilia Poli a Universidade Federal do Rio de Janeiro (UFRJ), Faculdade de Medicina, Departamento de Pediatria, Rio de Janeiro, RJ, Brazil b Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Puericultura e Pediatria Martagão Gesteira (IPPMG), Curso de Especializac¸ão em Alergia e Imunologia Clínica, Rio de Janeiro, RJ, Brazil c Universidade Federal de Uberlândia (UFU), Faculdade de Medicina, Departamento de Pediatria, Uberlândia, MG, Brazil d Universidade Federal de Uberlândia (UFU), Hospital das Clínicas, Programa de Residência Médica em Alergia e Imunologia Pediátrica, Uberlândia, MG, Brazil e Universidad del Desarrollo,
    [Show full text]
  • Practice Parameter for the Diagnosis and Management of Primary Immunodeficiency
    Practice parameter Practice parameter for the diagnosis and management of primary immunodeficiency Francisco A. Bonilla, MD, PhD, David A. Khan, MD, Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD, David I. Bernstein, MD, Joann Blessing-Moore, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Chief Editor: Francisco A. Bonilla, MD, PhD Co-Editor: David A. Khan, MD Members of the Joint Task Force on Practice Parameters: David I. Bernstein, MD, Joann Blessing-Moore, MD, David Khan, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Primary Immunodeficiency Workgroup: Chairman: Francisco A. Bonilla, MD, PhD Members: Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD GlaxoSmithKline, Merck, and Aerocrine; has received payment for lectures from Genentech/ These parameters were developed by the Joint Task Force on Practice Parameters, representing Novartis, GlaxoSmithKline, and Merck; and has received research support from Genentech/ the American Academy of Allergy, Asthma & Immunology; the American College of Novartis and Merck.
    [Show full text]
  • A Curated Gene List for Reporting Results of Newborn Genomic Sequencing
    © American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE A curated gene list for reporting results of newborn genomic sequencing Ozge Ceyhan-Birsoy, PhD1,2,3, Kalotina Machini, PhD1,2,3, Matthew S. Lebo, PhD1,2,3, Tim W. Yu, MD3,4,5, Pankaj B. Agrawal, MD, MMSC3,4,6, Richard B. Parad, MD, MPH3,7, Ingrid A. Holm, MD, MPH3,4, Amy McGuire, PhD8, Robert C. Green, MD, MPH3,9,10, Alan H. Beggs, PhD3,4, Heidi L. Rehm, PhD1,2,3,10; for the BabySeq Project Purpose: Genomic sequencing (GS) for newborns may enable detec- of newborn GS (nGS), and used our curated list for the first 15 new- tion of conditions for which early knowledge can improve health out- borns sequenced in this project. comes. One of the major challenges hindering its broader application Results: Here, we present our curated list for 1,514 gene–disease is the time it takes to assess the clinical relevance of detected variants associations. Overall, 954 genes met our criteria for return in nGS. and the genes they impact so that disease risk is reported appropri- This reference list eliminated manual assessment for 41% of rare vari- ately. ants identified in 15 newborns. Methods: To facilitate rapid interpretation of GS results in new- Conclusion: Our list provides a resource that can assist in guiding borns, we curated a catalog of genes with putative pediatric relevance the interpretive scope of clinical GS for newborns and potentially for their validity based on the ClinGen clinical validity classification other populations. framework criteria, age of onset, penetrance, and mode of inheri- tance through systematic evaluation of published evidence.
    [Show full text]
  • Supplementary Appendix
    Supplementary appendix Sipilä PN, Heikkilä N, Lindbohm JV, Hakulinen C, Vahtera J, Elovainio M, Suominen S, Väänänen A, Koskinen A, Nyberg ST, Pentti J, Strandberg TE, Kivimäki M. Hospital-treated infectious diseases and the risk of incident dementia: multicohort study with replication in the UK Biobank CONTENTS eFigure 1. Selection of participants in the study............................................................................... 2 eMethods 1. Study cohorts and data collection ................................................................................ 3 The Finnish Public Sector study (FPS)......................................................................................... 3 The Health and Social Support study (HeSSup) ........................................................................... 4 The Still Working study (STW) ................................................................................................... 5 The UK Biobank ......................................................................................................................... 5 eMethods 2. Proportionality of hazards ........................................................................................... 7 eFigure 2. Visualisation of hazard ratios over time using exponentiated scaled Schoenfeld residuals ....................................................................................................................................................... 8 eFigure 3. Dementia follow-up .....................................................................................................
    [Show full text]
  • Case Report Osteopetrosis Complicated by Schizophrenia Results from Mutations on Chromosome 16
    Int J Clin Exp Med 2016;9(9):18673-18677 www.ijcem.com /ISSN:1940-5901/IJCEM0016860 Case Report Osteopetrosis complicated by schizophrenia results from mutations on Chromosome 16 Yuwei Zhang, Decai Chen, Fang Zhang, Qingguo Lv, Lizhi Tang, Nanwei Tong Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China Received September 25, 2015; Accepted December 8, 2015; Epub September 15, 2016; Published September 30, 2016 Abstract: Objective: To investigate the genetic pathogenesis and diagnosis of osteopetrosis, and its relationship with schizophrenia. Methods: Conducting extensive review of literature related to osteopetrosis patients with schizophre- nia, summing common disease genes and diagnosis of osteopetrosis in association with schizophrenia. Results and Conclusion: Osteopetrosis is a rare inherited metabolic bone disease, with 12 kinds of common disease genes. In particular, mutations at 16p13.3 are closely related to schizophrenia. In recent years, molecular studies have identified three genes on chromosome 16 closely associated with schizophrenia, located at 16p13.3, 16p11.2, 16p13.11. Thus osteopetrosis and schizophrenia may not be two independent diseases, and understanding their relationship may help to identify schizophrenia at an earlier stage in osteopetrosis patients with mutations of chro- mosome 16. Conversely, patients with a family history of schizophrenia may be at increased risk for developing osteopetrosis. Keywords: Osteopetrosis, schizophrenia, pathogenic gene, diagnosis Introduction the possibility of such an association in the present case study of a patient diagnosed with Osteopetrosis is an extremely rare hereditary both disorders and possessing common identi- metabolic bone disease characterized by a fied genetic mutations. In this study, the patient decrease in number or functionality of osteo- was given a written informed consent.
    [Show full text]
  • Patient & Family Handbook
    Immune Deficiency Foundation Patient & Family Handbook For Primary Immunodeficiency Diseases This book contains general medical information which cannot be applied safely to any individual case. Medical knowledge and practice can change rapidly. Therefore, this book should not be used as a substitute for professional medical advice. SIXTH EDITION COPYRIGHT 1987, 1993, 2001, 2007, 2013, 2019 IMMUNE DEFICIENCY FOUNDATION Copyright 2019 by Immune Deficiency Foundation, USA. Readers may redistribute this article to other individuals for non-commercial use, provided that the text, html codes, and this notice remain intact and unaltered in any way. The Immune Deficiency Foundation Patient & Family Handbook may not be resold, reprinted or redistributed for compensation of any kind without prior written permission from the Immune Deficiency Foundation. If you have any questions about permission, please contact: Immune Deficiency Foundation, 110 West Road, Suite 300, Towson, MD 21204, USA; or by telephone at 800-296-4433. Immune Deficiency Foundation Patient & Family Handbook For Primary Immunodeficiency Diseases 6th Edition The development of this publication was supported by Shire, now Takeda. 110 West Road, Suite 300 Towson, MD 21204 800.296.4433 www.primaryimmune.org [email protected] Editors Mark Ballow, MD Jennifer Heimall, MD Elena Perez, MD, PhD M. Elizabeth Younger, Executive Editor Children’s Hospital of Philadelphia Allergy Associates of the CRNP, PhD University of South Florida Palm Beaches Johns Hopkins University Jennifer Leiding,
    [Show full text]
  • Philippine Clinical Practice Guidelines on the Diagnosis And
    Pediatric Infectious Diseases Society of the Philippines Journal Vol 16 No.2 pp 2-42 Jul-Dec 2015 PIDSP and CNSP Bacterial Meningitis TWG, Acute Bacterial Meningitis CPG 2015 PHILIPPINE CLINICAL PRACTICE GUIDELINES ON THE DIAGNOSIS AND MANAGEMENT OF ACUTE BACTERIAL MENINGITIS IN INFANTS AND CHILDREN Copyright 2015 A joint project of the Pediatric Infectious Disease Society of the Philippines (PIDSP) and Child Neurology Society of the Philippines (CNSP) 2 Pediatric Infectious Diseases Society of the Philippines Journal Vol 16 No.2 pp.2-42 Jul-Dec 2015 PIDSP and CNSP Bacterial Meningitis TWG, Acute Bacterial Meningitis CPG 2015 TABLE OF CONTENTS Page I. Introduction A. History of the guideline 5 B. Target users of the guideline 5 C. Forming the guideline 5 D. PIDSP/CNSP Steering Committee 6 E. Criteria for Assessment of Strength of Evidence and Recommendation 6 II. Recommendations A. Diagnosis of Acute Bacterial Meningitis 1. What are the signs and symptoms to suspect acute bacterial meningitis? 7 2. What is the definitive test for bacterial meningitis? 8 3. How do we differentiate acute bacterial meningitis from other CNS infections? 9 4. What are the contraindications to lumbar puncture? 9 5. What are the ancillary tests in the diagnosis of bacterial m eningitis? What is the value of each diagnostic test? a. Complete blo od count (CBC) 10 b. Blood culture 11 c. C-reactive protein (CRP) 11 d. Polymerase chain reaction (PCR) 13 e. Latex Agglutination Test (LAT) 13 f. Procalcitonin 14 6. What is the role of imaging tests in the diagnosis of bacterial meningitis? 15 B.
    [Show full text]
  • Curriculum Vitae
    Arthur S. Aylsworth, M.D. CURRICULUM VITAE Personal Information Name Arthur Selden Aylsworth Home Address 714A Greenwood Road, Chapel Hill, NC 27514 Home Phone (919) 942-7817 Office Address CB# 7487 - UNC Campus The University of North Carolina at Chapel Hill (UNC-CH) Chapel Hill, NC 27599-7487 Office Phone - 919 966-4202; Fax - 919-966-3025 Email [email protected] Education 1982-1983 Visiting Associate Research Professor, Department of Medicine, Duke University, Durham, NC 1970-1971 Research Fellow, Florida Heart Association 1969-1971 Post-Doctoral Fellow, Department of Pediatrics and the Institutional Division of Genetics, Endocrinology, and Metabolism, University of Florida College of Medicine, Gainesville, FL 1967-1969 Intern and Resident in Pediatrics, University of Florida College of Medicine, Shands Teaching Hospital, Gainesville, FL 1967 M.D., University of Pennsylvania School of Medicine, Philadelphia, PA 1963 B. Engineering Physics, Cornell University College of Engineering, Ithaca, NY Professional Experience - Employment History 2001 - Research Professor, Dept. of Genetics, UNC-CH 2001 - Member, UNC-CH Center for Genome Science 1995 - 2004 Chief, Division of Genetics and Metabolism, Dept. of Pediatrics, UNC-CH 1991-95 Acting Div. Chief, Pediatric Genetics and Metabolism, UNC-CH 1993 - Professor, Dept. of Pediatrics, Div. of Genetics and Metabolism, UNC-CH 1980 - 1993 Associate Prof., Dept. of Pediatrics, Div. Genetics and Metabolism, UNC-CH. 1975 - 1980 Assistant Prof., Dept. of Pediatrics, Div. Genetics and Metabolism, UNC-CH. 1980 - 2001 Research Scientist, the Neuroscience Center at UNC-CH (formerly Brain and Development Research Center, formerly Biological Sciences Research Center) 1977 - 1995 Director, Genetic Counseling Program, UNC-CH (Acting Director, 1976 - 1977) 1974 - Member, UNC Craniofacial Center (formerly the Oral-Facial and Communicative Disorders Program), UNC-CH 1974 - Medical Staff, University of North Carolina Hospitals, Chapel Hill 1973 - 1975 Instructor, Dept.
    [Show full text]
  • Ectodermal Dysplasia with Classical Clinical Presentation: a Rare Case Report
    IP Journal of Diagnostic Pathology and Oncology 2020;5(4):441–445 Content available at: https://www.ipinnovative.com/open-access-journals IP Journal of Diagnostic Pathology and Oncology Journal homepage: https://www.ipinnovative.com/journals/JDPO Case Report Ectodermal dysplasia with classical clinical presentation: A rare case report Nitesh Mohan1,*, P. K. Rathore2 1Dept. of Pathology, Rohilkhand Medical College & Hospital, Bareilly, Uttar Pradesh, India 2Dept. of Dermatology, Rohilkhand Medical College & Hospital, Bareilly, Uttar Pradesh, India ARTICLEINFO ABSTRACT Article history: Background: Ectodermal dysplasia is a syndrome consisting of heterogeneous group of hereditary Received 01-12-2020 malformations which have similar findings and are inherited genetically. These disorders affect the Accepted 10-12-2020 ectodermal derived tissues (hair, nails, teeth, skin and sweat glands) and lead to development of two or Available online 18-12-2020 more tissue anomalies with heterogeneous characteristics. Case History: We report a rare case of 16 year old male presenting to us with complaints of decreased sweating, itching all over skin when exposed to sun, hypodonti, madarosis and sparse scalp hair. Thorough Keywords: examination revealed classical syndromic anamolies. Skin biopsy revealed dyskeratosis and acantholysis Ectodermal dysplasia with reduced skin adenaxae. Hereditary disorders Conclusion: Ectodermal dysplasia is a heterogeneous group of hereditary malformations and irregularities Anamolies which have similar findings. Ectodermal dysplasia not only creates tissue malformations but, the quality of life of patients is also affected. © This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • General Medical Microbiology and Infectious Disease BMS 6301
    General Medical David L. Balkwill, Ph.D., Course Microbiology Director and Infectious Disease [email protected] BMS 6301 (850) 644-9219 2004 – 2005 Course Syllabus x Click here for the schedule Description: This course provides learning opportunities in the basic principles of medical microbiology and infectious disease. It covers mechanisms of infectious disease transmission, principles of aseptic practice, and the role of the human body’s normal microflora. The biology of bacterial, viral, fungal, and parasitic pathogens and the diseases they cause are covered. Relevant clinical examples are provided. The course provides the conceptual basis for understanding pathogenic microorganisms and the mechanisms by which they cause disease in the human body. It also provides opportunities to develop informatics and diagnostic skills, including the use and interpretation of laboratory tests in the diagnosis of infectious diseases. Format: Combination of 1-hour lecture/case-based class sessions and 2-hour case-based discussion/demo lab sessions with small groups (see topical syllabus, below). Course Director: David L. Balkwill, Ph.D. Office: Room 526 Office Hours: Open – students are welcome to stop by anytime. Phone: 644-9219 [email protected] Other Instructors: Lecture: Myra Hurt, Ph.D. Small Group Facilitation: Curtis Altmann, Ph.D., Susanne Cappendijk, Ph.D., Trent Clarke, Ph.D., Edward Klatt, M.D., Graham Patrick, Ph.D., and Yanchang Wang, Ph.D. Required Text: Medical Microbiology, 4th Ed. (2002) Murray, Rosenthal, Kobayashi, and Pfaller, Mosby-Year Book, ISBN: 0323012132. Recommended Texts: Mechanisms of Microbial Disease, 3rd Ed. (1998) Schaechter, Engelberg, Eisenstein, and Medoff, Lippincott, ISBN: 0683076051.
    [Show full text]