Beryllium, Lithium and Magnesium and Their Alloys, with Reference to the Possibility of Their Manufacture in India

Total Page:16

File Type:pdf, Size:1020Kb

Beryllium, Lithium and Magnesium and Their Alloys, with Reference to the Possibility of Their Manufacture in India BERYLLIUM, LITHIUM AND MAGNESIUM AND THEIR ALLOYS, WITH REFERENCE TO THE POSSIBILITY OF THEIR MANUFACTURE IN INDIA K. K. DAR Mining Geologist , Atomic Energy Commission, Bombay Abstract some of them may in course of time become possible. India is well placed as regards its The paper deals with the possibility of the manu- facture of light metals beryllium, lithium and sources of aluminium and magnesium and magnesium and their alloys in India. The Indian recent surveys have shown that our beryl- occurrences of the source materials of these metals lium resources are also fairly adequate. are reviewed along with the part these metals play The position of lithium minerals is, however, in world peace-time and war-time industries. The not so good and we have to await the results results of over-production of magnesium in the United States as an incentive for finding new of further work in this direction. applications for the metal are drawn attention to. The writer has already drawn attention to It is pointed out that while Indian magnesite the future of aluminium industry in India'. reserves are good, and those of beryl are proving In the present paper he has attempted to to be fairly good, the position with regard to the assess the position of the other three im- reserves of lithium minerals is not so good, but may improve with future investigations, The main portant light metals, beryllium, lithium and metallurgical aspects of the problem have been magnesium. The importance of a material briefly correlated with the new hydro-electricity is best judged by a consideration of its use- projects now under development. fulness, the manner in which it can be ob- Since the author believes that the importance of a tained, and the problems connected with its material is best judged by its utilitarian aspects, he has laid stress rather on the uses of these metals applications. Attention has, therefore, been and their alloys, etc., with the object of drawing the concentrated on these and similar aspects of attention of the Indian geologist and metallurgist the light metal industry in India; the object to the subject.. is to draw the attention of the Indian geologist and the metallurgist to these Introductory Remarks problems rather than to solve them. The sources from which the data for the present S OME light metals have acquired a thesis are derived unreservedly have been unique position in the metallurgical and acknowledged at the end of the paper. engineering industries today on account of their several useful properties. Amongst these aluminium, beryllium, lithium and Beryllium magnesium appear to be the most important. Our Five Year Plan incorporates aluminium Beryl, a silicate of beryllium and alumi- and magnesium in the mineral development nium, 3BeO.Al203.6SiO3, occurs as an ac- schemes and beryllium and lithium have not cessory mineral in acid igneous rocks, granites been mentioned. and pegmatites, and sometimes in metamor- While the general position of non-ferrous phic rocks such as schists and crystalline metal resources of the country is far from limestones. Economically workable beryl satisfactory, recent investigations have tend- occurrences, however, are confined largely ed to show that the domestic utilization of to pegmatites. 174 DAR - BERYLLIUM, LITHIUM AND MAGNESIUM AND THEIR ALLOYS 175 Theoretically, beryl contains 5 per cent The author and his colleagues have also beryllium metal of which usually not more located beryl occurrences recently in some than 3 per cent can be recovered. Krishnan2 parts of Gujerat and in Bombay State. states that beryllium produced by the In Bihar, beryl-bearing pegmatites are German process is only 60 per cent of the known in Gaya, Hazaribagh and Monghyr metal content of the original ore. Amongst districts. the several beryllium minerals known, the Several sources of beryl, particularly those following contain high amounts of the ele- of Nellore, are known in South India. ment, although they are commonly not met Other beryl occurrences are reported from with in appreciable quantities3. the Sutlej and Chandra valleys in north- western Himalayas. TABLE 1 - SOME HIGH - BERYLLIUM Large prospective tracts await investiga- MINERALS tion in Hyderabad, Madhya Pradesh, Orissa MINERAL THEORE- CHEMICAL FORMULA and Assam. TICAL The Indian beryl has an average analysis of % Be 11-13 per cent BeO, and our resources of the Euklase 6-2 2Be O. A1a02.2 SiO2. H 20 mineral appear to be sufficient for a domestic Chrysoberyl 7-0 BeO. A120a beryllium industry. It will be useful to recall Phenakite 16-2 2BeO.Si0% in this connection that the French beryllium Bertrandite 15-2 4BeO.2SiO2.H20 Beryllonite 7-0 BeO.NaPO3 refinery in 1946 was drawing upon the meagre Herderit 5.0 Be(F, OH)PO2.CaO 500-ton beryl stock in Germany following Hambergite 19-1 4BeO.B2O3.H30 the prohibition of beryllium manufacture in Bromellite 36-0 BeO that country by the Allied Occupation Authorities in February 19464. With the India has -not been the largest beryl pro- embargo on Indian beryl, supply of this rare ducer, Brazil making the largest contri- mineral for the domestic beryllium industry bution to world production of the mineral. is assured. This small production is, however, not due Importance of Beryllium and Its Products in to the paucity of the mineral in the country Modern Industry - The importance of beryl- or to the general poorness of the pegmatites, lium in modern industry can be assessed from but rather to the importance of the rare DeMille's5 statement that war demands minerals not having been recognized till very accounted for 99 per cent of the available recent years and the difficulties of working beryllium, and it is expected to find wider them consequent upon their sporadic and industrial application in peace-time. The uncertain occurrence. importance of a material can only be judged Indian Beryl Occurrences -Workable oc- by the variety of uses to which it, or its pro- currences of beryl so far found in India are ducts, can be put. From some of these out- confined to the pegmatites intruding rocks lined below, it will be observed that this of the Dharwarian age. Rajasthan, Bihar metal can serve many useful national and South India are potential areas for beryl requirements. production- At present the biggest beryl If metallic beryllium could be produced in producer in India is Rajasthan, but there is larger quantities, its use in the metal industry reason to believe that production of this would now rapidly increase. It is slightly mineral will considerably increase in the near heavier than magnesium and considerably future in Bihar and in South India. lighter than aluminium ( density : Mg, 1-75; In Rajasthan, important sources of beryl Be, 1-85; Al, 2-7)_ Other valuable pro- are in Mewar, Jaipur, Tonk, Kishangarh, perties are its strength, resistance to heat parts of jodhpur, Dungarpur and Banswara. and corrosion, and unexcelled resilience, ine' with water is evaporates to _yiela crystal- the volume 01 inc leL: C11L WCLl-LLLLLG c. uL.^.uL, 176 SYMPOSI UM ON NON-FERROUS METAL INDUSTRY IN INDIA which are imparted in greater or lesser Cu-Be alloys are now available in standard measure to its alloys. commercial forms which include plates, Metallic beryllium is used as a deoxidizer sheets, wires, tools, leaf, helical, contact, and desulphurizer in steel-making, in the and Bourbon springs, valve guides for casting of copper, and in limited amounts in engines, pumps, liquid meters, gears, plastic the manufacture of 'windows' for X-ray moulds, die-casting dies and welding elec- tubes, for the production of neutrons for the trodes. Other uses of Be-Cu alloys are in splitting of uranium atoms, and for slowing the setting of industrial diamonds, hubs of down the high-speed fission neutrons emit- adjustable steel aircraft propellers, switch ted from uranium to control the chain re- blades and jaws for electrical range switches, action involved in the explosion of an atom etc., camera parts, appliance plug clips, fuse bomb. clips, optical alloys, vibrator arms, petrol Due to its high fusion point and high and oil pump parts, relays, brush holders, vapour pressure at a temperature not much thermostatic controls, etc. above the fusion point, beryllium can be hot- Other useful copper alloys are those con- worked. Extreme lightness causes it to taining 0.4-0.5 per cent Be and 2-3 per 178 SYMPOSIUM ON NON-FERROUS METAL INDUSTRY IN INDIA Lithium Ores -The chief sources of lithium lead to further discoveries of source minerals are spodumene (LiA1Si2Og ), 3-8-5.6 per cent of lithium. It is also possible that further Li; amblygonite [Li( A1F) PO4 ] ; and lithia exploration and prospecting at depth in mica, lepidolite (Li, K, Na)2A12(&iO3)3(F, OH)2. Bastar may reveal greater reserves of lepido- Amblygonite contains about 9 per cent and lite than are available now in the scattered lepidolite about 4 per cent Li2O on the boulders on the surface. The present lepi- average. Other occasionally mined sources dolite deposits are about 180 miles from the are triphylite, (Li, Na)3PO4± (Fe, Mn)3 (P04)2, railhead at Dhamtari, but the distance from 1.6-3.7 per cent Li; petalite, LiAl( Si2O5 )2, the Vizianagaram-Raipur chord is consider- 2-7-3.7 per cent Li; lithiophilite and zinnzval- ably less. dite. Application of Lithium - Lithium re- The chief lithia-producing countries in sembles the other alkali metals in its pro- order of importance are the U.S.A. (which perties, is the lightest element which retains supplied 50 per cent of the pre-war world its form at ordinary temperature, and enters output of ores ), South-west Africa and into numerous chemical combinations.
Recommended publications
  • Geochemical Alteration of Pyrochlore Group Minerals: Pyrochlore Subgroup
    American Mineralogist, Volume 80, pages 732-743, 1995 Geochemical alteration of pyrochlore group minerals: Pyrochlore subgroup GREGORY R. LUMPKIN Advanced Materials Program, Australian Nuclear Science and Technology Organization, Menai 2234, New South Wales, Australia RODNEY C. EWING Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A. ABSTRACT Primary alteration of uranpyrochlore from granitic pegmatites is characterized by the substitutions ADYD-+ ACaYO, ANaYF -+ ACaYO, and ANaYOI-I --+ ACaYO. Alteration oc- curred at ""450-650 °C and 2-4 kbar with fluid-phase compositions characterized by relatively low aNa+,high aeaH, and high pH. In contrast, primary alteration of pyrochlore from nepheline syenites and carbonatites follows a different tre:nd represented by the sub- stitutions ANaYF -+ ADYD and ACaYO -+ ADYD. In carbonatites, primary alteration of pyrochlore probably took place during and after replacement of diopside + forsterite + calcite by tremolite + dolomite :t ankerite at ""300-550 °C and 0-2 kbar under conditions of relatively low aHF, low aNa+,low aeaH, low pH, and elevated activities of Fe and Sr. Microscopic observations suggest that some altered pyrochlor1es are transitional between primary and secondary alteration. Alteration paths for these specimens scatter around the trend ANaYF -+ ADYD. Alteration probably occurred at 200-350 °C in the presence of a fluid phase similar in composition to the fluid present during primary alteration but with elevated activities of Ba and REEs. Mineral reactions in the system Na-Ca-Fe-Nb-O-H indicate that replacement of pyrochlore by fersmite and columbite occurred at similar conditions with fluid conpositions having relatively low aNa+,moderate aeaH, and mod- erate to high aFeH.Secondary alteration « 150 °C) is charactlerized by the substitutions ANaYF -+ ADYD,ACaYO -+ ADYD,and ACaXO -+ ADXDtogether with moderate to extreme hydration (10-15 wt% H20 or 2-3 molecules per formula unit).
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Presentation Materials
    Annual General Meeting 25 November 2016 Creative Resources Leadership Overview § Lepidico is a well funded ASX-listed lithium exploration and development company with an experienced management team § Lepidico’s strategic objective is to become a sustainable lithium producer with a portfolio of assets and pipeline of projects § Lepidico’s exploration initiatives largely focus on hard rock minerals that prior to L-Max® were not traditional sources of lithium § Lepidico is differentiated by having successfully produced lithium carbonate and a suite of by-products from non-traditional hard rock lithium bearing minerals using its patented L-Max® process technology § Lepidico provides exposure to a portfolio of lithium exploration assets through its wholly owned properties, JV’s and IP licence agreements in Asia, Australia, Canada, Europe and South America § At 30 September 2016 Lepidico had A$3.0M in cash and no debt 2 New sources of lithium § Micas and phosphates have been largely overlooked as a source of lithium as no commercially viable process was available to extract the lithium and process through to lithium chemicals prior to L-Max® § Lithium bearing micas Lepidolite and Zinnwaldite contain up to 5% Li2O and like spodumene, are hosted in pegmatites § Lepidolite and Zinnwaldite often occur with tin and tantalum bearing minerals as well as with spodumene § Lithium phosphates such as Amblygonite contain up to 10% Li2O Lepidolite (light purple) Zinnwaldite (dArk grey) Ambygonite/MontebrAsite K(Li,Al,Rb)3(Al,Si)4O10(F,OH)2 KLiFeAl(AlSi3)O10(OH,F)2
    [Show full text]
  • Reductions and Reducing Agents
    REDUCTIONS AND REDUCING AGENTS 1 Reductions and Reducing Agents • Basic definition of reduction: Addition of hydrogen or removal of oxygen • Addition of electrons 9:45 AM 2 Reducible Functional Groups 9:45 AM 3 Categories of Common Reducing Agents 9:45 AM 4 Relative Reactivity of Nucleophiles at the Reducible Functional Groups In the absence of any secondary interactions, the carbonyl compounds exhibit the following order of reactivity at the carbonyl This order may however be reversed in the presence of unique secondary interactions inherent in the molecule; interactions that may 9:45 AM be activated by some property of the reacting partner 5 Common Reducing Agents (Borohydrides) Reduction of Amides to Amines 9:45 AM 6 Common Reducing Agents (Borohydrides) Reduction of Carboxylic Acids to Primary Alcohols O 3 R CO2H + BH3 R O B + 3 H 3 2 Acyloxyborane 9:45 AM 7 Common Reducing Agents (Sodium Borohydride) The reductions with NaBH4 are commonly carried out in EtOH (Serving as a protic solvent) Note that nucleophilic attack occurs from the least hindered face of the 8 carbonyl Common Reducing Agents (Lithium Borohydride) The reductions with LiBH4 are commonly carried out in THF or ether Note that nucleophilic attack occurs from the least hindered face of the 9:45 AM 9 carbonyl. Common Reducing Agents (Borohydrides) The Influence of Metal Cations on Reactivity As a result of the differences in reactivity between sodium borohydride and lithium borohydride, chemoselectivity of reduction can be achieved by a judicious choice of reducing agent. 9:45 AM 10 Common Reducing Agents (Sodium Cyanoborohydride) 9:45 AM 11 Common Reducing Agents (Reductive Amination with Sodium Cyanoborohydride) 9:45 AM 12 Lithium Aluminium Hydride Lithium aluminiumhydride reacts the same way as lithium borohydride.
    [Show full text]
  • SAFETY DATA SHEET Revision Date 15.09.2021 According to Regulation (EC) No
    Version 6.6 SAFETY DATA SHEET Revision Date 15.09.2021 according to Regulation (EC) No. 1907/2006 Print Date 24.09.2021 GENERIC EU MSDS - NO COUNTRY SPECIFIC DATA - NO OEL DATA SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1 Product identifiers Product name : Lithium borohydride Product Number : 222356 Brand : Aldrich REACH No. : A registration number is not available for this substance as the substance or its uses are exempted from registration, the annual tonnage does not require a registration or the registration is envisaged for a later registration deadline. CAS-No. : 16949-15-8 1.2 Relevant identified uses of the substance or mixture and uses advised against Identified uses : Laboratory chemicals, Manufacture of substances 1.3 Details of the supplier of the safety data sheet Company : Sigma-Aldrich Inc. 3050 SPRUCE ST ST. LOUIS MO 63103 UNITED STATES Telephone : +1 314 771-5765 Fax : +1 800 325-5052 1.4 Emergency telephone Emergency Phone # : 800-424-9300 CHEMTREC (USA) +1-703- 527-3887 CHEMTREC (International) 24 Hours/day; 7 Days/week SECTION 2: Hazards identification 2.1 Classification of the substance or mixture Classification according to Regulation (EC) No 1272/2008 Substances and mixtures which in contact with water emit flammable gases (Category 1), H260 Acute toxicity, Oral (Category 3), H301 Skin corrosion (Sub-category 1B), H314 For the full text of the H-Statements mentioned in this Section, see Section 16. Aldrich- 222356 Page 1 of 8 The life science business of Merck operates as MilliporeSigma in the US and Canada 2.2 Label elements Labelling according Regulation (EC) No 1272/2008 Pictogram Signal word Danger Hazard statement(s) H260 In contact with water releases flammable gases which may ignite spontaneously.
    [Show full text]
  • Lithium 2017
    2017 Minerals Yearbook LITHIUM [ADVANCE RELEASE] U.S. Department of the Interior September 2020 U.S. Geological Survey Lithium By Brian W. Jaskula Domestic survey data and tables were prepared by Annie Hwang, statistical assistant. In the United States, one lithium brine operation with an cobalt oxide and 2,160 kg of lithium-nickel-cobalt-aluminum associated lithium carbonate plant operated in Silver Peak, oxide (Defense Logistics Agency Strategic Materials, 2017). At NV. Domestic and imported lithium carbonate, lithium yearend 2017, the NDS held 540 kg of lithium-cobalt oxide and chloride, and lithium hydroxide were consumed directly 1,620 kg of lithium-nickel-cobalt-aluminum oxide. in industrial applications and used as raw materials for downstream lithium compounds. In 2017, lithium consumption Production in the United States was estimated to be equivalent to The U.S. Geological Survey (USGS) collected domestic 3,000 metric tons (t) of elemental lithium (table 1) [16,000 t production data for lithium from a voluntary canvass of the of lithium carbonate equivalent (LCE)], primarily owing to only U.S. lithium carbonate producer, Rockwood Lithium Inc. demand for lithium-based battery, ceramic and glass, grease, (a subsidiary of Albemarle Corp. of Charlotte, NC). Production pharmaceutical, and polymer products. In 2017, the gross weight and stock data collected from Rockwood Lithium were withheld of lithium compounds imported into the United States increased from publication to avoid disclosing company proprietary data. by 7% and the gross weight of exports increased by 29% from The company’s 6,000-metric-ton-per-year (t/yr) Silver Peak those in 2016.
    [Show full text]
  • A Review of Lithium Occurrences in Africa
    A Review of Lithium occurrences in Africa Paul Nex, Kathryn Goodenough, Richard Shaw and Judith Kinnaird Lithium occurrences and exploration activity in Africa are dominated by pegmatite occurrences . Greenbushes, Australia No known brine resources as yet, Mineral Formula although Spodumene LiAl(SiO3)2 Botswana is Petalite LiAlSi4O10 being Eucryptite LiAlSiO4 investigated: Amblygonite (Li,Na)AlPO (F,OH) (by Lithium 4 Consolidated Mineral Lepidolite K(Li,Al)3(Al,Si,Rb)4O10(F,OH) Exploration Ltd-ASX) Pegmatites:typically granitic, enriched in incompatible elements, occurrences correlate with times of collisional orogeny and supercontinent assembly. Pegmatite classification needs reworking, however two types of interest - LCT: Lithium-caesium-tantalum NYF: Niobium-yttrium-fluorine Rubicon (Namibia) Bikita (Zimbabwe) Two dominant genetic models: 1. Products of the fractionation of a parental granite. 2. Products of low volume partial melting of metasediments during post-collisional orogenic collapse associated with decompression Nigeria: Pegmatites are ~probably younger than 560 Ma. Contenders for parental granites are 640-600 Ma Recent research in Norway (Muller et al 2017, or 60-580 Ma “thousands of pegmatites without parental granites”), NW Scotland, Nigeria and Namibia suggests that the low volume partial melting model for the genesis of granitic pegmatites is more prevalent than previously appreciated. In Namibia, potential parental granites are ~25 Ma older than the pegmatites and are deformed while the pegmatites are undeformed Most
    [Show full text]
  • ~Ui&£R5itt! of J\Rij!Oua
    Minerals and metals of increasing interest, rare and radioactive minerals Authors Moore, R.T. Rights Arizona Geological Survey. All rights reserved. Download date 06/10/2021 17:57:35 Link to Item http://hdl.handle.net/10150/629904 Vol. XXIV, No.4 October, 1953 ~ui&£r5itt! of J\rij!oua ~ul1etiu ARIZONA BUREAU OF MINES MINERALS AND METALS OF INCREASING INTEREST RARE AND RADIOACTIVE MINERALS By RICHARD T. MOORE ARIZONA BUREAU OF MINES MINERAL TECHNOLOGY SERIES No. 47 BULLETIN No. 163 THIRTY CENTS (Free to Residents of Arizona) PUBLISHED BY ~tti£ll~r5itt! of ~rh!Omt TUCSON, ARIZONA TABLE OF CONTENTS INTRODUCTION 5 Acknowledgments 5 General Features 5 BERYLLIUM 7 General Features 7 Beryllium Minerals 7 Beryl 7 Phenacite 8 Gadolinite 8 Helvite 8 Occurrence 8 Prices and Possible Buyers ,........................................ 8 LITHIUM 9 General Features 9 Lithium Minerals 9 Amblygonite 9 Spodumene 10 Lepidolite 10 Triphylite 10 Zinnwaldite 10 Occurrence 10 Prices and Possible Buyers 10 CESIUM AND RUBIDIUM 11 General Features 11 Cesium and Rubidium Minerals 11 Pollucite ..................•.........................................................................., 11 Occurrence 12 Prices and Producers 12 TITANIUM 12 General Features 12 Titanium Minerals 13 Rutile 13 Ilmenite 13 Sphene 13 Occurrence 13 Prices and Buyers 14 GALLIUM, GERMANIUM, INDIUM, AND THALLIUM 14 General Features 14 Gallium, Germanium, Indium and Thallium Minerals 15 Germanite 15 Lorandite 15 Hutchinsonite : 15 Vrbaite 15 Occurrence 15 Prices and Producers ~ 16 RHENIUM 16
    [Show full text]
  • Materials Chemistry Materials Chemistry
    Materials Chemistry Materials Chemistry by Bradley D. Fahlman Central Michigan University, Mount Pleasant, MI, USA A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-1-4020-6119-6 (HB) ISBN 978-1-4020-6120-2 (e-book) Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. www.springer.com Printed on acid-free paper First published 2007 Reprinted 2008 All Rights Reserved © 2008 Springer Science + Business Media B.V. No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. TABLE OF CONTENTS Preface ............................................................ ix Chapter 1. WHAT IS MATERIALS CHEMISTRY? .................... 1 1.1 HISTORICAL PERSPECTIVES . ............................ 2 1.2 CONSIDERATIONS IN THE DESIGN OF NEW MATERIALS . 5 1.3 DESIGN OF NEW MATERIALS THROUGH A “CRITICAL THINKING”APPROACH................................... 6 Chapter 2. SOLID-STATE CHEMISTRY ............................ 13 2.1 AMORPHOUS VS.CRYSTALLINESOLIDS.................. 13 2.2 TYPES OF BONDING IN SOLIDS . ..................... 14 2.2.1 IonicSolids......................................... 14 2.2.2 Metallic Solids . ................................ 16 2.2.3 Molecular Solids. ................................ 19 2.2.4 CovalentNetworkSolids.............................. 21 2.3 THECRYSTALLINESTATE................................ 21 2.3.1 Crystal Growth Techniques . ..................... 23 2.3.2 TheUnitCell ....................................... 25 2.3.3 CrystalLattices...................................... 28 2.3.4 CrystalImperfections................................. 41 2.3.5 Phase-Transformation Diagrams. ..................... 47 2.3.6 Crystal Symmetry and Space Groups .
    [Show full text]
  • A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits
    Exploration and Mining Geology, Vol. 14, Nos. 1-4, pp. 1-30, 2005 © 2006 Canadian Institute of Mining, Metallurgy and Petroleum. All rights reserved. Printed in Canada. 0964-1823/00 $17.00 + .00 A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits JULIE B. SELWAY, FREDERICK W. BREAKS Precambrian Geoscience Section, Ontario Geological Survey 933 Ramsey Lake Road, Sudbury, ON P3E 6B5 ANDREW G. TINDLE Department of Earch Sciences, Open University Milton Keynes, Buckinghamshire, UK MK7 6AA (Received February 16, 2004; accepted September 20, 2004) Abstract — Rare-element pegmatites may host several economic commodities, such as tantalum (Ta- oxide minerals), tin (cassiterite), lithium (ceramic-grade spodumene and petalite), and cesium (pollucite). Key geological features that are common to pegmatites in the Superior province of Ontario and Manitoba, Canada, and in other large tantalum deposits worldwide, can be used in exploration. An exploration project for rare-element pegmatites should begin with an examination of a regional geology map. Rare-element pegmatites occur along large regional-scale faults in greenschist and amphibolite facies metamorphic terranes. They are typically hosted by mafic metavolcanic or metasedimentary rocks, and are located near peraluminous granite plutons (A/CNK > 1.0). Once a peraluminous granite pluton has been identified, then the next step is to determine if the pluton is barren or fertile. Fertile granites have elevated rare element contents, Mg/Li ratio < 10, and Nb/Ta ratio < 8. They commonly contain blocky K-feldspar and green muscovite. Key fractionation indicators can be plotted on a map of the fertile granite pluton to determine the fractionation direction: presence of tourmaline, beryl, and ferrocolumbite; Mn content in garnet; Rb content in bulk K-feldspar; and Mg/Li and Nb/Ta ratios in bulk granite samples.
    [Show full text]
  • Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: a Review
    resources Review Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review Laurence Kavanagh * , Jerome Keohane, Guiomar Garcia Cabellos, Andrew Lloyd and John Cleary EnviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny, Road, Co., R93-V960 Carlow, Ireland; [email protected] (J.K.); [email protected] (G.G.C.); [email protected] (A.L.); [email protected] (J.C.) * Correspondence: [email protected] Received: 28 July 2018; Accepted: 11 September 2018; Published: 17 September 2018 Abstract: Lithium is a key component in green energy storage technologies and is rapidly becoming a metal of crucial importance to the European Union. The different industrial uses of lithium are discussed in this review along with a compilation of the locations of the main geological sources of lithium. An emphasis is placed on lithium’s use in lithium ion batteries and their use in the electric vehicle industry. The electric vehicle market is driving new demand for lithium resources. The expected scale-up in this sector will put pressure on current lithium supplies. The European Union has a burgeoning demand for lithium and is the second largest consumer of lithium resources. Currently, only 1–2% of worldwide lithium is produced in the European Union (Portugal). There are several lithium mineralisations scattered across Europe, the majority of which are currently undergoing mining feasibility studies. The increasing cost of lithium is driving a new global mining boom and should see many of Europe’s mineralisation’s becoming economic. The information given in this paper is a source of contextual information that can be used to support the European Union’s drive towards a low carbon economy and to develop the field of research.
    [Show full text]
  • Cation Ordering and Pseudosymmetry in Layer Silicates'
    I A merican M ineralogist, Volume60. pages175-187, 1975 Cation Ordering and Pseudosymmetryin Layer Silicates' S. W. BerI-nv Departmentof Geologyand Geophysics,Uniuersity of Wisconsin-Madison Madison, Wisconsin5 3706 Abstract The particular sequenceof sheetsand layers present in the structure of a layer silicate createsan ideal symmetry that is usually basedon the assumptionsof trioctahedralcompositions, no significantdistor- tion, and no cation ordering.Ordering oftetrahedral cations,asjudged by mean l-O bond lengths,has been found within the constraints of the ideal spacegroup for specimensof muscovite-3I, phengile-2M2, la-4 Cr-chlorite, and vermiculite of the 2-layer s type. Many ideal spacegroups do not allow ordering of tetrahedralcations because all tetrahedramust be equivalentby symmetry.This includesthe common lM micasand chlorites.Ordering oftetrahedral cations within subgroupsymmetries has not beensought very often, but has been reported for anandite-2Or, llb-2prochlorite, and Ia-2 donbassite. Ordering ofoctahedral cations within the ideal spacegroups is more common and has been found for muscovite-37, lepidolite-2M", clintonite-lM, fluoropolylithionite-lM,la-4 Cr-chlorite, lb-odd ripidolite, and vermiculite. Ordering in subgroup symmetries has been reported l-oranandite-2or, IIb-2 prochlorite, and llb-4 corundophilite. Ordering in local out-of-step domains has been documented by study of diffuse non-Bragg scattering for the octahedral catlons in polylithionite according to a two-dimensional pattern and for the interlayer cations in vermiculite over a three-cellsuperlattice. All dioctahedral layer silicates have ordered vacant octahedral sites, and the locations of the vacancies change the symmetry from that of the ideal spacegroup in kaolinite, dickite, nacrite, and la-2 donbassite Four new structural determinations are reported for margarite-2M,, amesile-2Hr,cronstedtite-2H", and a two-layercookeite.
    [Show full text]