Biofilm Formation and EPS Analysis of the Thermoacidophilic Archaeon

Total Page:16

File Type:pdf, Size:1020Kb

Biofilm Formation and EPS Analysis of the Thermoacidophilic Archaeon Biofilm formation and EPS analysis of the thermoacidophilic Archaeon Sulfolobus acidocaldarius Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften – Dr. rer. nat. – vorgelegt von Silke Jachlewski geboren in Willich Biofilm Centre – Molekulare Enzymtechnologie und Biochemie der Universität Duisburg-Essen 2013 Die vorliegende Arbeit wurde im Zeitraum von Oktober 2010 bis September 2013 im Arbeitskreis von Prof. Dr. Bettina Siebers am Biofilm Centre der Universität Duisburg-Essen durchgeführt. Tag der Disputation: 20.11.2013 Gutachter: Prof. Dr. Bettina Siebers Prof. Dr. Hans-Curt Flemming Vorsitzender: Prof. Dr. Matthias Epple Table of Contents TABLE OF CONTENTS TABLE OF CONTENTS ................................................................................................................ I LIST OF TABLES...................................................................................................................... V LIST OF FIGURES .................................................................................................................... VI ABSTRACT.......................................................................................................................... VIII 1. INTRODUCTION ............................................................................................................ 1 1.1 Archaea – The third domain of life ................................................................................... 1 1.1.1 The Crenarchaeon Sulfolobus acidocaldarius ........................................................ 2 1.2 Bacterial and archaeal biofilms ........................................................................................ 3 1.2.1 Role of archaeal surface structures in attachment ................................................ 6 1.3 Extracellular polymeric substances .................................................................................. 7 1.3.1 Isolation of EPS ....................................................................................................... 7 1.3.2 Function of EPS ....................................................................................................... 8 1.3.3 Secretion of EPS ................................................................................................... 10 1.3.4 Role of glycosyltransferases in synthesis of exopolysaccharides ........................ 12 1.4 Aims of this study ........................................................................................................... 19 2. MATERIALS & METHODS .............................................................................................. 21 2.1 Chemicals and plasmids ................................................................................................. 21 2.2 Commercial kits .............................................................................................................. 21 2.3 Instruments .................................................................................................................... 22 2.4 Software and databases ................................................................................................. 24 2.5 Strains and precultivation .............................................................................................. 25 2.5.1 Escherichia coli ..................................................................................................... 25 2.5.2 Sulfolobus acidocaldarius and Sulfolobus solfataricus......................................... 25 2.6 General characterization of S. acidocaldarius biofilms .................................................. 27 2.6.1 Optimization of growth conditions ...................................................................... 27 2.6.2 Determination of biofilm mass ............................................................................ 28 2.6.3 Determination of total cell counts ....................................................................... 29 2.6.4 Determination of colony counts .......................................................................... 29 i Table of Contents 2.6.5 Microscopy of biofilms and EPS components ...................................................... 29 2.6.6 Determination of cell surface hydrophobicity ..................................................... 30 2.7 EPS isolation ................................................................................................................... 31 2.8 Quantitative biochemical analysis .................................................................................. 32 2.8.1 Multi-element analysis of biofilms and EPS ......................................................... 32 2.8.2 Quantification of carbohydrates .......................................................................... 32 2.8.3 Quantification of proteins .................................................................................... 33 2.8.4 Quantification of DNA .......................................................................................... 34 2.9 Identification of monosaccharides ................................................................................. 34 2.9.1 Hydrolysis of polysaccharides .............................................................................. 34 2.9.2 Thin layer chromatography (TLC) ......................................................................... 34 2.10 Sodium-dodecyl-sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) .................... 35 2.10.1 1D gel electrophoresis.......................................................................................... 35 2.10.2 2D gel electrophoresis.......................................................................................... 36 2.11 Gel staining and image acquisition................................................................................. 38 2.11.1 Silver staining ....................................................................................................... 38 2.11.2 Enhanced Coomassie Brilliant Blue staining ........................................................ 38 2.11.3 Rapid Coomassie Blue staining ............................................................................ 39 2.11.4 Staining of glycoproteins ...................................................................................... 39 2.12 Determination of enzyme activities ............................................................................... 39 2.12.1 Fluorimetric screening of enzyme activity ........................................................... 39 2.12.2 Zymographic analysis of protease activity ........................................................... 40 2.12.3 Zymographic analysis of esterase activity ............................................................ 41 2.13 Identification of EPS proteins via MALDI-TOF/MS ......................................................... 41 2.14 Molecular biology methods ........................................................................................... 42 2.14.1 Isolation of chromosomal DNA from S. acidocaldarius ....................................... 42 2.14.2 Isolation of plasmid DNA from E. coli DH5α ........................................................ 42 2.14.3 Agarose gel electrophoresis ................................................................................. 42 2.14.4 Purification of DNA fragments ............................................................................. 42 2.14.5 Amplification of S. acidocaldarius genomic DNA via polymerase chain reaction (PCR) ..................................................................................................................... 43 2.14.6 Restriction and ligation of DNA ............................................................................ 44 ii Table of Contents 2.14.7 Preparation of chemically competent E. coli cells ............................................... 45 2.14.8 Preparation of competent S. acidocaldarius MW001 cells for electroporation .. 45 2.14.9 Transformation of competent E. coli cells ........................................................... 45 2.14.10 Electroporation of competent S. acidocaldarius MW001 cells ........................... 46 2.14.11 Identification of positive E. coli clones ................................................................. 46 2.14.12 DNA Sequencing ................................................................................................... 46 2.14.13 Deletion of glycosyltransferase genes in S. acidocaldarius MW001 ................... 46 2.14.14 Construction of thermopsin insertion mutant S. acidocaldarius ∆1714 ............. 47 2.14.15 Screening for positive S. acidocaldarius mutants ................................................ 47 2.14.16 Heterologous expression of S. acidocaldarius glycosyltransferases .................... 47 2.14.17 Cell disruption and heat precipitation ................................................................. 48 2.14.18 Ni-TED affinity chromatography .......................................................................... 48 2.14.19 Western blotting and immunodetection ............................................................. 49 3. RESULTS ................................................................................................................... 50 3.1 Optimization of growth and general characterization of S. acidocaldarius biofilms ..... 50 3.1.1 Cell surface hydrophobicity.................................................................................
Recommended publications
  • Proteolytic Enzymes in Grass Pollen and Their Relationship to Allergenic Proteins
    Proteolytic Enzymes in Grass Pollen and their Relationship to Allergenic Proteins By Rohit G. Saldanha A thesis submitted in fulfilment of the requirements for the degree of Masters by Research Faculty of Medicine The University of New South Wales March 2005 TABLE OF CONTENTS TABLE OF CONTENTS 1 LIST OF FIGURES 6 LIST OF TABLES 8 LIST OF TABLES 8 ABBREVIATIONS 8 ACKNOWLEDGEMENTS 11 PUBLISHED WORK FROM THIS THESIS 12 ABSTRACT 13 1. ASTHMA AND SENSITISATION IN ALLERGIC DISEASES 14 1.1 Defining Asthma and its Clinical Presentation 14 1.2 Inflammatory Responses in Asthma 15 1.2.1 The Early Phase Response 15 1.2.2 The Late Phase Reaction 16 1.3 Effects of Airway Inflammation 16 1.3.1 Respiratory Epithelium 16 1.3.2 Airway Remodelling 17 1.4 Classification of Asthma 18 1.4.1 Extrinsic Asthma 19 1.4.2 Intrinsic Asthma 19 1.5 Prevalence of Asthma 20 1.6 Immunological Sensitisation 22 1.7 Antigen Presentation and development of T cell Responses. 22 1.8 Factors Influencing T cell Activation Responses 25 1.8.1 Co-Stimulatory Interactions 25 1.8.2 Cognate Cellular Interactions 26 1.8.3 Soluble Pro-inflammatory Factors 26 1.9 Intracellular Signalling Mechanisms Regulating T cell Differentiation 30 2 POLLEN ALLERGENS AND THEIR RELATIONSHIP TO PROTEOLYTIC ENZYMES 33 1 2.1 The Role of Pollen Allergens in Asthma 33 2.2 Environmental Factors influencing Pollen Exposure 33 2.3 Classification of Pollen Sources 35 2.3.1 Taxonomy of Pollen Sources 35 2.3.2 Cross-Reactivity between different Pollen Allergens 40 2.4 Classification of Pollen Allergens 41 2.4.1
    [Show full text]
  • Investigating the Impact of Mpapr1, an Aspartic Protease from the Yeast Metschnikowia Pulcherrima, on Wine Properties
    THÈSE EN COTUTELLE PRÉSENTÉE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE BORDEAUX ET DE L’UNIVERSITÉ DE STELLENBOSCH ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTÉ SPÉCIALITÉ ŒNOLOGIE FACULTY OF AGRISCIENCES Par Louwrens THERON ETUDE DE L’IMPACT DE MPAPR1, UNE PROTEASE ASPARTIQUE DE LA LEVURE METSCHNIKOWIA PULCHERRIMA, SUR LES PROPRIETES DU VIN Sous la direction de Benoit DIVOL et de Marina BELY Soutenue le 27 janvier 2017 Membres du jury: Mme. LE HENAFF-LE MARREC Claire, Professeur à l’université de Bordeaux Président M. MARANGON Matteo, Chargé de recherche à l’université de Padoue Rapporteur Mme. CAMARASA Carole, Chargée de recherche à l’INRA de Montpellier Rapporteur M. BAUER Florian, Professeur à l’université de Stellenbosch Examinateur Titre : Etude de l’impact de MpAPr1, une protéase aspartique de la levure Metschnikowia pulcherrima, sur les propriétés du vin Résumé : L'élimination des protéines est une étape clé lors de la production du vin blanc afin d'éviter l'apparition éventuelle d'un voile inoffensif mais inesthétique. Des solutions de rechange à l'utilisation de la bentonite sont activement recherchées en raison des problèmes technologiques, organoleptiques et de durabilité associés à son utilisation. Dans cette étude, MpAPr1, une protéase aspartique extracellulaire préalablement isolée et partiellement caractérisée à partir de la levure Metschnikowia pulcherrima, a été clonée et exprimée de manière hétérologue dans la levure Komagataella pastoris. Les propriétés enzymatiques de MpAPr1 ont été initialement caractérisées dans un extrait brut. Après plusieurs essais faisant appel à différentes techniques, MpAPr1 a été purifié avec succès par chromatographie échangeusede cations.
    [Show full text]
  • Molecular Sciences a New Pepstatin-Insensitive Thermopsin
    Int. J. Mol. Sci. 2014, 15, 3204-3219; doi:10.3390/ijms15023204 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article A New Pepstatin-Insensitive Thermopsin-Like Protease Overproduced in Peptide-Rich Cultures of Sulfolobus solfataricus Marta Gogliettino †, Alessia Riccio †, Ennio Cocca, Mosè Rossi, Gianna Palmieri * and Marco Balestrieri Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), Via Pietro Castellino 111, Naples 80131, Italy; E-Mails: [email protected] (M.G.); [email protected] (A.R.); [email protected] (E.C.); [email protected] (M.R.); [email protected] (M.B.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-081-6132-711; Fax: +39-081-6132-277. Received: 5 December 2013; in revised form: 26 January 2014 / Accepted: 11 February 2014 / Published: 21 February 2014 Abstract: In this study, we gain insight into the extracellular proteolytic system of Sulfolobus solfataricus grown on proteinaceous substrates, providing further evidence that acidic proteases were specifically produced in response to peptide-rich media. The main proteolytic component was the previously isolated SsMTP (Sulfolobus solfataricus multi-domain thermopsin-like protease), while the less abundant (named SsMTP-1) one was purified, characterized and identified as the sso1175 gene-product. The protein revealed a multi-domain organization shared with the cognate SsMTP with a catalytic domain followed by several tandemly-repeated motifs. Moreover, both enzymes were found spread across the Crenarchaeota phylum and belonging to the thermopsin family, although segregated into diverse phylogenetic clusters.
    [Show full text]
  • Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases
    Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases Alan J. Barrett Neil D. Rawlings J. Fred Woessner Editor biographies xxi Contributors xxiii Preface xxxi Introduction ' Abbreviations xxxvii ASPARTIC PEPTIDASES Introduction 1 Aspartic peptidases and their clans 3 2 Catalytic pathway of aspartic peptidases 12 Clan AA Family Al 3 Pepsin A 19 4 Pepsin B 28 5 Chymosin 29 6 Cathepsin E 33 7 Gastricsin 38 8 Cathepsin D 43 9 Napsin A 52 10 Renin 54 11 Mouse submandibular renin 62 12 Memapsin 1 64 13 Memapsin 2 66 14 Plasmepsins 70 15 Plasmepsin II 73 16 Tick heme-binding aspartic proteinase 76 17 Phytepsin 77 18 Nepenthesin 85 19 Saccharopepsin 87 20 Neurosporapepsin 90 21 Acrocylindropepsin 9 1 22 Aspergillopepsin I 92 23 Penicillopepsin 99 24 Endothiapepsin 104 25 Rhizopuspepsin 108 26 Mucorpepsin 11 1 27 Polyporopepsin 113 28 Candidapepsin 115 29 Candiparapsin 120 30 Canditropsin 123 31 Syncephapepsin 125 32 Barrierpepsin 126 33 Yapsin 1 128 34 Yapsin 2 132 35 Yapsin A 133 36 Pregnancy-associated glycoproteins 135 37 Pepsin F 137 38 Rhodotorulapepsin 139 39 Cladosporopepsin 140 40 Pycnoporopepsin 141 Family A2 and others 41 Human immunodeficiency virus 1 retropepsin 144 42 Human immunodeficiency virus 2 retropepsin 154 43 Simian immunodeficiency virus retropepsin 158 44 Equine infectious anemia virus retropepsin 160 45 Rous sarcoma virus retropepsin and avian myeloblastosis virus retropepsin 163 46 Human T-cell leukemia virus type I (HTLV-I) retropepsin 166 47 Bovine leukemia virus retropepsin 169 48
    [Show full text]
  • University of Groningen Signal Peptides of Secreted
    CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Groningen University of Groningen Signal peptides of secreted proteins of the archaeon Sulfolobus solfataricus: a genomic survey Albers, S.V.; Driessen, A.J.M. Published in: Archives of Microbiology DOI: 10.1007/s00203-001-0386-y IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2002 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Albers, S. V., & Driessen, A. J. M. (2002). Signal peptides of secreted proteins of the archaeon Sulfolobus solfataricus: a genomic survey: a genomic survey. Archives of Microbiology, 177(3), 209 - 216. https://doi.org/10.1007/s00203-001-0386-y Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 12-11-2019 Arch Microbiol (2002) 177:209–216 DOI 10.1007/s00203-001-0386-y MINI-REVIEW Sonja-Verena Albers · Arnold J.
    [Show full text]
  • Picrophilus Torridus and Its Implications for Life Around Ph 0
    Genome sequence of Picrophilus torridus and its implications for life around pH 0 O. Fu¨ tterer*, A. Angelov*, H. Liesegang*, G. Gottschalk*, C. Schleper†, B. Schepers‡, C. Dock‡, G. Antranikian‡, and W. Liebl*§ *Institut of Microbiology and Genetics, University of Goettingen, Grisebachstrasse 8, D-37075 Goettingen, Germany; †Institut of Microbiology and Genetics, Technical University Darmstadt, Schnittspahnstrasse 10, 64287 D-Darmstadt, Germany; and ‡Technical Microbiology, Technical University Hamburg–Harburg, Kasernenstrasse 12, 21073 D-Hamburg, Germany Edited by Dieter So¨ll, Yale University, New Haven, CT, and approved April 20, 2004 (received for review February 26, 2004) The euryarchaea Picrophilus torridus and Picrophilus oshimae are (4–6). After analysis of a number of archaeal and bacterial ge- able to grow around pH 0 at up to 65°C, thus they represent the nomes, it has been argued that microorganisms that live together most thermoacidophilic organisms known. Several features that swap genes at a higher frequency (7, 8). With the genome sequence may contribute to the thermoacidophilic survival strategy of P. of P. torridus, five complete genomes of thermoacidophilic organ- torridus were deduced from analysis of its 1.55-megabase genome. isms are available, which allows a more complex investigation of the P. torridus has the smallest genome among nonparasitic aerobic evolution of organisms sharing the extreme growth conditions of a microorganisms growing on organic substrates and simulta- unique niche in the light of horizontal gene transfer. neously the highest coding density among thermoacidophiles. An exceptionally high ratio of secondary over ATP-consuming primary Methods transport systems demonstrates that the high proton concentra- Sequencing Strategy.
    [Show full text]
  • New Retroviral-Like Membrane-Associated Aspartic Proteases From
    Novas proteases aspárticas membranares do tipo retroviral de rickettsiae: caracterização bioquímica e determinação de especificidade New retroviral-Iike membrane-associated aspartic proteases from rickettsiae: biochemical characterization and specificity profiling Tese de Doutoramento apresentada à Universidade de Coimbra para obtenção do grau de Doutor em Bioquímica (especialidade de Tecnologia Bioquímica). Doctoral thesis in the scientific area of Biochemistry (specialty Biochemistry Technology) presented to the University of Coimbra. Rui Gonçalo Batista Mamede da Cruz Coimbra - 2014 Department of Life Sciences University of Coimbra UNIVERSIDADE DE COIMBRA Front cover image illustrates Rickettsia cells (in green) invading mammalian host cells. Publishing rights were granted by Michael Taylor, the original author of the image. Agradecimentos / Acknowledgments A conclusão desta etapa não teria sido possível sem o apoio incondicional da família, amigos, orientadores, colegas e de todos aqueles que foram cruzando o meu caminho e deixando o seu contributo, em particular nos últimos quatro anos que conduziram a esta dissertação. Gostaria por isso de lhes deixar algumas palavras de profundo e sincero agradecimento. Em primeiro lugar, gostaria de agradecer à Doutora Isaura Simões e ao Professor Carlos Faro, por me terem acolhido e proporcionado as excepcionais condições para a realização deste trabalho. Em especial à Doutora Isaura Simões, expresso a minha profunda gratidão pela orientação, rigor, sentido crítico e paixão com que encara a ciência. Agradeço-lhe por acreditar em mim e por me fazer ir sempre mais além. Um agradecimento muito especial a todos aqueles que fazem e fizeram parte do laboratório de Biotecnologia de Molecular do Biocant, pelo seu contributo no meu crescimento científico, profissional e pessoal.
    [Show full text]
  • Expression of Recombinant Acid Protease (Thermopsin) Gene from Thermoplasma Volcanium
    EXPRESSION OF RECOMBINANT ACID PROTEASE (THERMOPSIN) GENE FROM THERMOPLASMA VOLCANIUM A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCE OF MIDDLE EAST TECHNICAL UNIVERSITY BY BİLSEV KOYUNCU IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BIOLOGY JANUARY 2006 Approval of the Graduate School of Natural and Applied Sciences Prof. Dr. Canan ÖZGEN Director I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science Prof. Dr. Semra KOCABIYIK Head of Department This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science Prof. Dr. Semra KOCABIYIK Supervisor Examining Committee Members Assoc. Prof. Dr. Candan GÜRAKAN (METU, FDE) Prof. Dr. Semra KOCABIYIK (METU, BIOL) Assoc. Prof. Dr. Meral KENCE (METU, BIOL) Assoc. Prof. Dr. Fatih İZGÜ (METU, BIOL) Assist. Prof. Dr. Hasan KOYUN (Yüzüncü Yıl Unv.) I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Bilsev KOYUNCU: Signature : iii ABSTRACT EXPRESSION OF RECOMBINANT ACID PROTEASE (THERMOPSIN) GENE FROM THERMOPLASMA VOLCANIUM KOYUNCU, Bilsev M.Sc., Department of Biology Supervisor: Prof. Dr. Semra KOCABIYIK January, 2006, 113 pages Acid proteases, commonly known as aspartic proteases are degredative enzymes which catalyze the cleavage reaction of peptide bonds in proteins with a pH optimum in the acidic range (pH 3-4).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur Et Al
    US 2012026.6329A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur et al. (43) Pub. Date: Oct. 18, 2012 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/10 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/24 (2006.01) CI2N 9/02 (2006.01) (75) Inventors: Eric J. Mathur, Carlsbad, CA CI2N 9/06 (2006.01) (US); Cathy Chang, San Marcos, CI2P 2L/02 (2006.01) CA (US) CI2O I/04 (2006.01) CI2N 9/96 (2006.01) (73) Assignee: BP Corporation North America CI2N 5/82 (2006.01) Inc., Houston, TX (US) CI2N 15/53 (2006.01) CI2N IS/54 (2006.01) CI2N 15/57 2006.O1 (22) Filed: Feb. 20, 2012 CI2N IS/60 308: Related U.S. Application Data EN f :08: (62) Division of application No. 1 1/817,403, filed on May AOIH 5/00 (2006.01) 7, 2008, now Pat. No. 8,119,385, filed as application AOIH 5/10 (2006.01) No. PCT/US2006/007642 on Mar. 3, 2006. C07K I4/00 (2006.01) CI2N IS/II (2006.01) (60) Provisional application No. 60/658,984, filed on Mar. AOIH I/06 (2006.01) 4, 2005. CI2N 15/63 (2006.01) Publication Classification (52) U.S. Cl. ................... 800/293; 435/320.1; 435/252.3: 435/325; 435/254.11: 435/254.2:435/348; (51) Int. Cl. 435/419; 435/195; 435/196; 435/198: 435/233; CI2N 15/52 (2006.01) 435/201:435/232; 435/208; 435/227; 435/193; CI2N 15/85 (2006.01) 435/200; 435/189: 435/191: 435/69.1; 435/34; CI2N 5/86 (2006.01) 435/188:536/23.2; 435/468; 800/298; 800/320; CI2N 15/867 (2006.01) 800/317.2: 800/317.4: 800/320.3: 800/306; CI2N 5/864 (2006.01) 800/312 800/320.2: 800/317.3; 800/322; CI2N 5/8 (2006.01) 800/320.1; 530/350, 536/23.1: 800/278; 800/294 CI2N I/2 (2006.01) CI2N 5/10 (2006.01) (57) ABSTRACT CI2N L/15 (2006.01) CI2N I/19 (2006.01) The invention provides polypeptides, including enzymes, CI2N 9/14 (2006.01) structural proteins and binding proteins, polynucleotides CI2N 9/16 (2006.01) encoding these polypeptides, and methods of making and CI2N 9/20 (2006.01) using these polynucleotides and polypeptides.
    [Show full text]
  • Biochemical Characterization of an Aspartic Protease Inhibitor from Bacillus Licheniformis: Interactions with Hydrolytic Enzymes
    BIOCHEMICAL CHARACTERIZATION OF AN ASPARTIC PROTEASE INHIBITOR FROM BACILLUS LICHENIFORMIS: INTERACTIONS WITH HYDROLYTIC ENZYMES Thesis submitted to University of Pune For the degree of DOCTOR OF PHILOSOPHY IN BIOTECHNOLOGY By Ajit Kumar Division of Biochemical Sciences National Chemical Laboratory Pune – 411008 India March 2007 In Fond Memories of My Father… ii TABLE OF CONTENTS Page No. ACKNOWLEDGMENTS ix CERTIFICATE xi DECLARATION BY THE RESEARCH SCHOLAR xii ABBREVIATIONS xiii ABSTRACT xv LIST OF PUBLICATIONS xxii CONFERENCES /POSTERS/ ABSTRACTS xxiii Chapter I General Introduction 1- 21 The Proteases 1- 21 I. The aspartic proteases 2 i. Pepsin family 3 ii. Retropepsin family 4 iii. Cauliflower mosaic virus proteases family 4 iv. Plant aspartic proteases 4 v. Membrane bound aspartic proteases 5 vi. Putative aspartic proteases 6 II. Proteases inhibitors 8 i. Inhibitors of aspartic proteases 8 a. Proteinaecous inhibitors 9 b. Low-Molecular-Weight Inhibitors 10 ii. HIV-1 proteases inhibitors 12 iii. Renin inhibitors 14 iv. Plasmepsins inhibitors 15 v. Cathepsin D inhibitors 16 vi. Secreted aspartic proteases inhibitors 17 vii) β-Secretase Inhibitors 18 III. Sequence homology 19 iii IV. Inhibitor design and future prospects 20 Chapter II 22 - 62 Biochemical Characterization of an Aspartic Protease Inhibitor from Thermo Tolerant Bacillus licheniformis: Interaction with Pepsin Part I Isolation And Identification Of Thermo Tolerant Bacillus licheniformis Summary 22 Introduction 23 Materials and Methods 24 Materials 24 Isolation and identification
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur Et Al
    US 20150240226A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur et al. (43) Pub. Date: Aug. 27, 2015 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/16 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/02 (2006.01) CI2N 9/78 (2006.01) (71) Applicant: BP Corporation North America Inc., CI2N 9/12 (2006.01) Naperville, IL (US) CI2N 9/24 (2006.01) CI2O 1/02 (2006.01) (72) Inventors: Eric J. Mathur, San Diego, CA (US); CI2N 9/42 (2006.01) Cathy Chang, San Marcos, CA (US) (52) U.S. Cl. CPC. CI2N 9/88 (2013.01); C12O 1/02 (2013.01); (21) Appl. No.: 14/630,006 CI2O I/04 (2013.01): CI2N 9/80 (2013.01); CI2N 9/241.1 (2013.01); C12N 9/0065 (22) Filed: Feb. 24, 2015 (2013.01); C12N 9/2437 (2013.01); C12N 9/14 Related U.S. Application Data (2013.01); C12N 9/16 (2013.01); C12N 9/0061 (2013.01); C12N 9/78 (2013.01); C12N 9/0071 (62) Division of application No. 13/400,365, filed on Feb. (2013.01); C12N 9/1241 (2013.01): CI2N 20, 2012, now Pat. No. 8,962,800, which is a division 9/2482 (2013.01); C07K 2/00 (2013.01); C12Y of application No. 1 1/817,403, filed on May 7, 2008, 305/01004 (2013.01); C12Y 1 1 1/01016 now Pat. No. 8,119,385, filed as application No. PCT/ (2013.01); C12Y302/01004 (2013.01); C12Y US2006/007642 on Mar. 3, 2006.
    [Show full text]
  • Peptidases: a View of Classification and Nomenclature
    Proteases: New Perspectives V. Turk (ed.) © 1999 Birkhauser Verlag Basel/Switzerland Peptidases: a view of classification and nomenclature Alan 1. Barrett MRC Molecular Enzymology Laboratory, The Babraham Institute, Cambridge CB2 4AT, UK Introduction It is beyond question that the results of research on proteolytic enzymes, or peptidases, are already benefiting mankind in many ways, and there is no doubt that research in this area has the potential to contribute still more in the future. One of the clearest indications of the gener­ al recognition of this promise is the vast annual expenditure of the pharmaceutical industry on exploring the involvement of peptidases in human health and disease. The high and accelerating rate of research on peptidases is being rewarded by a rate of dis­ covery that could not have been imagined just a few years ago. One measure of this is the num­ ber of known peptidases. At the present time, we can recognise perhaps 600 distinct peptidas­ es, including over 200 that are expressed in mammals, and new ones are being discovered almost daily. This means that there is a clear need for sound systems for classifying the enzymes and for naming them. Only with such systems in place can the wealth of new information that is becoming available be shared efficiently amongst the many scientists now active in this field of research. Without such systems, there will be needless and expensive duplication of effort, and the rate of discovery, and its consequent benefits to mankind, will be slower. The justifi­ cation for trying to improve the systems is therefore strictly practical, and most of the questions that arise are best dealt with by asking what will be most useful to the scientists working in the field, not by reference to any abstract theory.
    [Show full text]