University of Groningen Signal Peptides of Secreted

Total Page:16

File Type:pdf, Size:1020Kb

University of Groningen Signal Peptides of Secreted CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Groningen University of Groningen Signal peptides of secreted proteins of the archaeon Sulfolobus solfataricus: a genomic survey Albers, S.V.; Driessen, A.J.M. Published in: Archives of Microbiology DOI: 10.1007/s00203-001-0386-y IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2002 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Albers, S. V., & Driessen, A. J. M. (2002). Signal peptides of secreted proteins of the archaeon Sulfolobus solfataricus: a genomic survey: a genomic survey. Archives of Microbiology, 177(3), 209 - 216. https://doi.org/10.1007/s00203-001-0386-y Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 12-11-2019 Arch Microbiol (2002) 177:209–216 DOI 10.1007/s00203-001-0386-y MINI-REVIEW Sonja-Verena Albers · Arnold J. M. Driessen Signal peptides of secreted proteins of the archaeon Sulfolobus solfataricus: a genomic survey Received: 21 August 2001 / Revised: 31 October 2001 / Accepted: 15 November 2001 / Published online: 11 January 2002 © Springer-Verlag 2002 Abstract Analysis of the recently completed genome se- ratus of S. solfataricus. Here, we briefly discuss bacterial quence of the thermoacidophilic archaeon Sulfolobus sol- and eukaryal secretion mechanisms and substrates and use fataricus reveals that about 4.2% of its proteome consists this information to classify the identified and putative se- of putative secretory proteins with signal peptides. This creted proteins of S. solfataricus that are present in its includes members of the four major classes of signal pep- proteome. tides: secretory signal peptides, twin-arginine signal pep- In gram-negative bacteria, the general secretion system tides, possible lipoprotein precursors, and type IV pilin directs proteins to the periplasmic space and the outer signal peptides. The latter group is surprisingly large membrane (Pugsley 1993). Various other secretion mech- compared to the size of the groups in other organisms and anisms are involved in the delivery of macromolecules to seems to be used predominately for a subset of extracellu- the extracellular medium, a process that involves a trans- lar substrate-binding proteins. location step across the outer membrane. These systems are classified in four groups (Nunn 1999). Type I secre- Keywords Sulfolobus solfataricus · Archaea · Signal tion systems consists of three proteins including an peptide · Secretion · Type IV pilin signal peptide · ATPase that belongs to the ABC-type of transporters. This Sugar-binding protein system mediates the translocation of proteins across the inner and outer membrane without the accumulation of a periplasmic intermediate. The type II secretion system is Introduction formed by over 12 subunits that reside in the inner and outer membrane. This system handles the translocation of Sulfolobus solfataricus is an obligate aerobic archaeon periplasmic substrate intermediates prior to their translo- that grows either litoautotrophically or chemoheterotro- cation across the outer membrane (Sandkvist 2001). Type phically in hot (about 80°C) and acidic (pH 2–4) environ- III secretion systems are involved in eukaryotic host inva- ments. S. solfataricus P2 originates from a solfataric field sion mechanisms and are complicated structures with up near Naples, Italy (Zillig et al. 1980), and its genome se- to 30 subunits. These systems include an injection device quence has recently been determined (She et al. 2001). As that delivers macromolecules directly from the bacterial a model organism for the domain of crenarchaeotes, its cytoplasm into the host cells (Tamano et al. 2000). Type mechanisms of cell cycle, DNA replication, chromosomal IV secretion systems are involved in various processes integration, transcription and translation have been stud- such as single-stranded DNA transport into host cells (the ied extensively. Furthermore its membrane-spanning tetra- Vir system of Agrobacterium tumefaciens), toxin secre- ether lipids, metabolic routes and sugar degradation path- tion and pilin biogenesis (Christie 2001). Some of the ways are unique (Schönheit et al. 1995). Only limited data components of the type IV secretion machinery, in partic- are available on the secreted proteins and secretory appa- ular the subunits of the macromolecule-conducting pore in the outer membrane, exhibit striking similarities with type II secretion systems. Also subunits of the type IV pilin biogenesis apparatus that are involved in twitching S.-V. Albers · A.J.M. Driessen (✉) motility share homology with components of the type II Department of Microbiology, secretome (Wall et al. 1999). Secretion of proteins across Groningen Biomolecular Sciences and Biotechnology Institute, the S-layer of archaea has barely been addressed experi- University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands mentally. Although the S-layer contains pores with a di- e-mail: [email protected], ameter of 4–5 nm, it is not known if these structures con- Tel.: +31-5036-32164, Fax: +31-5036-32154 duct protein movements in an active or passive sense. In- 210 terestingly, archaea contain homologues of PilT, the mo- tor protein of the type IV pilin biogenesis apparatus, and of the VirB proteins involved in type IV secretion. Structure and function of signal peptides Proteins translocated across the cytoplasmic membrane of bacteria, the thylakoid membrane in plant chloroplasts, and the endoplasmic reticulum (ER) membrane of eukaryotes are all synthesized as precursors with an amino-terminal signal peptide. These signal peptides are functionally ex- changeable between the different organisms (von Heijne 1990), and although their amino acid composition show lit- tle similarity, three different domains can be distinguished (von Heijne 1990) (Pugsley 1993). The N-domain contains basic amino acid residues. In bacteria, the net positive charge of this domain is thought to orient the N-terminus in the cytoplasm according to the ∆ψ, which in most organ- isms is inside negative (Andersson et al. 1994). The N-do- main also interacts electrostatically with negatively charged phospholipids in the lipid bilayer during translocation (de Vrije et al. 1990) and with the translocation ATPase SecA. The H-domain is a stretch of about 10–15 hydrophobic residues that tends to fold into α-helical conformation in the membrane. A glycine or proline residue is often found in the middle of the H-domain and has been proposed to promote the insertion of the signal peptide into the mem- brane by forming a hairpin-like structure. Unlooping of this hairpin may result in the insertion of the complete signal peptide (de Vrije et al. 1990). The H-domain is followed by the short polar C-domain, which contains the recognition Fig.1 The different classes of signal peptides found in Sulfolobus solfataricus. The length of the domains N, H and C is given and site for the signal peptidase. Recent studies have shown the arrow indicates the cleavage site. + Positive charges, black box that the composition of the C-domain determines the accu- hydrophobic residues racy of cleavage by type I signal peptidases (SPase), and not the length or even the presence of the H-domain (Car- los et al. 2000). After proteolytic cleavage by a signal pep- Class 4 signal peptides constitute a heterogeneous group tidase, the mature protein is released from the membrane of signal peptides such as the signals that direct the secre- for further folding and assembly. The signal peptide is de- tion of small antimicrobial peptides via ABC transporters. graded by signal peptide peptidases. Amino-terminal bacterial signal peptides can be di- vided into at least four different classes dependent on the Distribution of signal peptide classes signal peptidase recognition site (Fig.1). Class 1 consists in Sulfolobus solfataricus of the typical signal peptides, which are mostly cleaved by the type I signal peptidases (SPases) (Tjalsma et al. This section describes the results of an analysis of the 2000). A subclass of these signal peptides contains a “twin- S. solfataricus genome which was screened for the distribu- arginine” motif, which directs these proteins to a different tion of the various classes of signal peptides. To identify translocation pathway, the Tat pathway (Berks et al. and classify putative secreted proteins, the complete 2000). This pathway is mostly involved in the transloca- genome database (http://www-archbac.u-psud.fr/projects/ tion of folded redox proteins with bound co-factor. Class sulfolobus/) was analyzed by a neural network-based method 2 signal peptides exhibit a typical domain with an invari- and a hidden Markov model (http://www.cbs.dtu.dk/services/ ant cysteine that is lipid-modified prior to the cleavage by SignalP/) trained on both eukaryotic and gram-positive type II SPases. The resulting lipoprotein remains an- and gram-negative bacterial signal peptide datasets. Poly- chored to the cytoplasmic membrane after cleavage. Class topic membrane proteins were excluded from the analysis, 3 signal peptides include the type IV pilin-like peptides. but membrane proteins containing only one amino-termi- Prepilins are cleaved between the N- and the H-domain, nal transmembrane segment may be falsely predicted as leaving the H-domain attached to the mature pilin.
Recommended publications
  • Foreign Gene Expression in Yeast: a Review
    YEAST VOL. 8: 423-488 (1992) Foreign Gene Expression in Yeast: a Review MICHAEL A. ROMANOS, CAROL A. SCORER AND JEFFREY J. CLARE Department of Cell Biology, Wellcome Research Laboratories. Beckenham, Kent BR3 3BS, U.K. Received 14 February 1992; accepted 22 February 1992 CONTENTS Expression in non-Saccharomyces yeasts Introduction Introduction Pichia pastoris Transformation and selectable markers Hansenula polymorpha Auxotrophic selection markers Kluyveromyces lactis Dominant selectable markers Yarrowia lipolytica Autoselection Schizosaccharomyces pombe Episomal vectors Physiology of foreign gene expression ARS vectors Mechanisms of toxicity 2pbased vectors Generation of low-expressingvariants Regulated copy number vectors Large-scale fermentation and Integrating vectors optimization YIP vectors Concluding remarks Transplacement Acknowledgements Integration into reiterated DNA References Transposition vectors Transcriptional promoters and terminators Foreign versus yeast promoters INTRODUCTION Glycolytic promoters Galactose-regulated promoters The yeast Saccharomyces cerevisiae has several Phosphate-regulated promoters properties which have established it as an important Glucose-repressible promoters tool in theexpressionofforeign protein sfor research, Other regulated promoter systems industrial or medical use. As a food organism, it Selection of novel yeast promoters is highly acceptable for the production of pharma- Foreign promoter systems ceutical proteins. In contrast, Escherichia coli has Yeast terminators toxic cell wall pyrogens and mammalian cells may contain oncogenic or viral DNA, so that products Factors affecting intracellular expression Initiation of transcription from these organisms must be tested more exten- RNA elongation sively. Yeast can be grown rapidly on simple media RNA stability and to high cell density, and its genetics are more Initiation of translation advanced than any other eukaryote, so that it can be Translational elongation manipulated almost as readily as E.coli.
    [Show full text]
  • Structural and Biochemical Characterizations of Three Potential Drug Targets from Pathogens
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2020 Structural and Biochemical Characterizations of Three Potential Drug Targets from Pathogens LU LU ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-1148-7 UPPSALA urn:nbn:se:uu:diva-435815 2021 Dissertation presented at Uppsala University to be publicly examined in Room A1:111a, BMC, Husargatan 3, Uppsala, Friday, 16 April 2021 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Christian Cambillau. Abstract Lu, L. 2021. Structural and Biochemical Characterizations of Three Potential Drug Targets from Pathogens. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2020. 91 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1148-7. As antibiotic resistance of various pathogens emerged globally, the need for new effective drugs with novel modes of action became urgent. In this thesis, we focus on infectious diseases, e.g. tuberculosis, malaria, and nosocomial infections, and the corresponding causative pathogens, Mycobacterium tuberculosis, Plasmodium falciparum, and the Gram-negative ESKAPE pathogens that underlie so many healthcare-acquired diseases. Following the same- target-other-pathogen (STOP) strategy, we attempted to comprehensively explore the properties of three promising drug targets. Signal peptidase I (SPase I), existing both in Gram-negative and Gram-positive bacteria, as well as in parasites, is vital for cell viability, due to its critical role in signal peptide cleavage, thus, protein maturation, and secreted protein transport. Three factors, comprising essentiality, a unique mode of action, and easy accessibility, make it an attractive drug target.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Proteolytic Enzymes in Grass Pollen and Their Relationship to Allergenic Proteins
    Proteolytic Enzymes in Grass Pollen and their Relationship to Allergenic Proteins By Rohit G. Saldanha A thesis submitted in fulfilment of the requirements for the degree of Masters by Research Faculty of Medicine The University of New South Wales March 2005 TABLE OF CONTENTS TABLE OF CONTENTS 1 LIST OF FIGURES 6 LIST OF TABLES 8 LIST OF TABLES 8 ABBREVIATIONS 8 ACKNOWLEDGEMENTS 11 PUBLISHED WORK FROM THIS THESIS 12 ABSTRACT 13 1. ASTHMA AND SENSITISATION IN ALLERGIC DISEASES 14 1.1 Defining Asthma and its Clinical Presentation 14 1.2 Inflammatory Responses in Asthma 15 1.2.1 The Early Phase Response 15 1.2.2 The Late Phase Reaction 16 1.3 Effects of Airway Inflammation 16 1.3.1 Respiratory Epithelium 16 1.3.2 Airway Remodelling 17 1.4 Classification of Asthma 18 1.4.1 Extrinsic Asthma 19 1.4.2 Intrinsic Asthma 19 1.5 Prevalence of Asthma 20 1.6 Immunological Sensitisation 22 1.7 Antigen Presentation and development of T cell Responses. 22 1.8 Factors Influencing T cell Activation Responses 25 1.8.1 Co-Stimulatory Interactions 25 1.8.2 Cognate Cellular Interactions 26 1.8.3 Soluble Pro-inflammatory Factors 26 1.9 Intracellular Signalling Mechanisms Regulating T cell Differentiation 30 2 POLLEN ALLERGENS AND THEIR RELATIONSHIP TO PROTEOLYTIC ENZYMES 33 1 2.1 The Role of Pollen Allergens in Asthma 33 2.2 Environmental Factors influencing Pollen Exposure 33 2.3 Classification of Pollen Sources 35 2.3.1 Taxonomy of Pollen Sources 35 2.3.2 Cross-Reactivity between different Pollen Allergens 40 2.4 Classification of Pollen Allergens 41 2.4.1
    [Show full text]
  • Investigating the Impact of Mpapr1, an Aspartic Protease from the Yeast Metschnikowia Pulcherrima, on Wine Properties
    THÈSE EN COTUTELLE PRÉSENTÉE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE BORDEAUX ET DE L’UNIVERSITÉ DE STELLENBOSCH ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTÉ SPÉCIALITÉ ŒNOLOGIE FACULTY OF AGRISCIENCES Par Louwrens THERON ETUDE DE L’IMPACT DE MPAPR1, UNE PROTEASE ASPARTIQUE DE LA LEVURE METSCHNIKOWIA PULCHERRIMA, SUR LES PROPRIETES DU VIN Sous la direction de Benoit DIVOL et de Marina BELY Soutenue le 27 janvier 2017 Membres du jury: Mme. LE HENAFF-LE MARREC Claire, Professeur à l’université de Bordeaux Président M. MARANGON Matteo, Chargé de recherche à l’université de Padoue Rapporteur Mme. CAMARASA Carole, Chargée de recherche à l’INRA de Montpellier Rapporteur M. BAUER Florian, Professeur à l’université de Stellenbosch Examinateur Titre : Etude de l’impact de MpAPr1, une protéase aspartique de la levure Metschnikowia pulcherrima, sur les propriétés du vin Résumé : L'élimination des protéines est une étape clé lors de la production du vin blanc afin d'éviter l'apparition éventuelle d'un voile inoffensif mais inesthétique. Des solutions de rechange à l'utilisation de la bentonite sont activement recherchées en raison des problèmes technologiques, organoleptiques et de durabilité associés à son utilisation. Dans cette étude, MpAPr1, une protéase aspartique extracellulaire préalablement isolée et partiellement caractérisée à partir de la levure Metschnikowia pulcherrima, a été clonée et exprimée de manière hétérologue dans la levure Komagataella pastoris. Les propriétés enzymatiques de MpAPr1 ont été initialement caractérisées dans un extrait brut. Après plusieurs essais faisant appel à différentes techniques, MpAPr1 a été purifié avec succès par chromatographie échangeusede cations.
    [Show full text]
  • Structures of Lipoprotein Signal Peptidase II From
    University of Birmingham Structures of lipoprotein signal peptidase II from Staphylococcus aureus complexed with antibiotics globomycin and myxovirescin Olatunji, Samir; Yu, Xiaoxiao; Bailey, Jonathan; Huang, Chia-Ying; Zapotoczna, Marta; Bowen, Katherine; Remškar, Maja; Müller, Rolf; Scanlan, Eoin M; Geoghegan, Joan A; Olieric, Vincent; Caffrey, Martin DOI: 10.1038/s41467-019-13724-y License: Creative Commons: Attribution (CC BY) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Olatunji, S, Yu, X, Bailey, J, Huang, C-Y, Zapotoczna, M, Bowen, K, Remškar, M, Müller, R, Scanlan, EM, Geoghegan, JA, Olieric, V & Caffrey, M 2020, 'Structures of lipoprotein signal peptidase II from Staphylococcus aureus complexed with antibiotics globomycin and myxovirescin', Nature Communications, vol. 11, no. 1, 140. https://doi.org/10.1038/s41467-019-13724-y Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.
    [Show full text]
  • Molecular Sciences a New Pepstatin-Insensitive Thermopsin
    Int. J. Mol. Sci. 2014, 15, 3204-3219; doi:10.3390/ijms15023204 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article A New Pepstatin-Insensitive Thermopsin-Like Protease Overproduced in Peptide-Rich Cultures of Sulfolobus solfataricus Marta Gogliettino †, Alessia Riccio †, Ennio Cocca, Mosè Rossi, Gianna Palmieri * and Marco Balestrieri Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), Via Pietro Castellino 111, Naples 80131, Italy; E-Mails: [email protected] (M.G.); [email protected] (A.R.); [email protected] (E.C.); [email protected] (M.R.); [email protected] (M.B.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-081-6132-711; Fax: +39-081-6132-277. Received: 5 December 2013; in revised form: 26 January 2014 / Accepted: 11 February 2014 / Published: 21 February 2014 Abstract: In this study, we gain insight into the extracellular proteolytic system of Sulfolobus solfataricus grown on proteinaceous substrates, providing further evidence that acidic proteases were specifically produced in response to peptide-rich media. The main proteolytic component was the previously isolated SsMTP (Sulfolobus solfataricus multi-domain thermopsin-like protease), while the less abundant (named SsMTP-1) one was purified, characterized and identified as the sso1175 gene-product. The protein revealed a multi-domain organization shared with the cognate SsMTP with a catalytic domain followed by several tandemly-repeated motifs. Moreover, both enzymes were found spread across the Crenarchaeota phylum and belonging to the thermopsin family, although segregated into diverse phylogenetic clusters.
    [Show full text]
  • Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases
    Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases Alan J. Barrett Neil D. Rawlings J. Fred Woessner Editor biographies xxi Contributors xxiii Preface xxxi Introduction ' Abbreviations xxxvii ASPARTIC PEPTIDASES Introduction 1 Aspartic peptidases and their clans 3 2 Catalytic pathway of aspartic peptidases 12 Clan AA Family Al 3 Pepsin A 19 4 Pepsin B 28 5 Chymosin 29 6 Cathepsin E 33 7 Gastricsin 38 8 Cathepsin D 43 9 Napsin A 52 10 Renin 54 11 Mouse submandibular renin 62 12 Memapsin 1 64 13 Memapsin 2 66 14 Plasmepsins 70 15 Plasmepsin II 73 16 Tick heme-binding aspartic proteinase 76 17 Phytepsin 77 18 Nepenthesin 85 19 Saccharopepsin 87 20 Neurosporapepsin 90 21 Acrocylindropepsin 9 1 22 Aspergillopepsin I 92 23 Penicillopepsin 99 24 Endothiapepsin 104 25 Rhizopuspepsin 108 26 Mucorpepsin 11 1 27 Polyporopepsin 113 28 Candidapepsin 115 29 Candiparapsin 120 30 Canditropsin 123 31 Syncephapepsin 125 32 Barrierpepsin 126 33 Yapsin 1 128 34 Yapsin 2 132 35 Yapsin A 133 36 Pregnancy-associated glycoproteins 135 37 Pepsin F 137 38 Rhodotorulapepsin 139 39 Cladosporopepsin 140 40 Pycnoporopepsin 141 Family A2 and others 41 Human immunodeficiency virus 1 retropepsin 144 42 Human immunodeficiency virus 2 retropepsin 154 43 Simian immunodeficiency virus retropepsin 158 44 Equine infectious anemia virus retropepsin 160 45 Rous sarcoma virus retropepsin and avian myeloblastosis virus retropepsin 163 46 Human T-cell leukemia virus type I (HTLV-I) retropepsin 166 47 Bovine leukemia virus retropepsin 169 48
    [Show full text]
  • Picrophilus Torridus and Its Implications for Life Around Ph 0
    Genome sequence of Picrophilus torridus and its implications for life around pH 0 O. Fu¨ tterer*, A. Angelov*, H. Liesegang*, G. Gottschalk*, C. Schleper†, B. Schepers‡, C. Dock‡, G. Antranikian‡, and W. Liebl*§ *Institut of Microbiology and Genetics, University of Goettingen, Grisebachstrasse 8, D-37075 Goettingen, Germany; †Institut of Microbiology and Genetics, Technical University Darmstadt, Schnittspahnstrasse 10, 64287 D-Darmstadt, Germany; and ‡Technical Microbiology, Technical University Hamburg–Harburg, Kasernenstrasse 12, 21073 D-Hamburg, Germany Edited by Dieter So¨ll, Yale University, New Haven, CT, and approved April 20, 2004 (received for review February 26, 2004) The euryarchaea Picrophilus torridus and Picrophilus oshimae are (4–6). After analysis of a number of archaeal and bacterial ge- able to grow around pH 0 at up to 65°C, thus they represent the nomes, it has been argued that microorganisms that live together most thermoacidophilic organisms known. Several features that swap genes at a higher frequency (7, 8). With the genome sequence may contribute to the thermoacidophilic survival strategy of P. of P. torridus, five complete genomes of thermoacidophilic organ- torridus were deduced from analysis of its 1.55-megabase genome. isms are available, which allows a more complex investigation of the P. torridus has the smallest genome among nonparasitic aerobic evolution of organisms sharing the extreme growth conditions of a microorganisms growing on organic substrates and simulta- unique niche in the light of horizontal gene transfer. neously the highest coding density among thermoacidophiles. An exceptionally high ratio of secondary over ATP-consuming primary Methods transport systems demonstrates that the high proton concentra- Sequencing Strategy.
    [Show full text]
  • New Retroviral-Like Membrane-Associated Aspartic Proteases From
    Novas proteases aspárticas membranares do tipo retroviral de rickettsiae: caracterização bioquímica e determinação de especificidade New retroviral-Iike membrane-associated aspartic proteases from rickettsiae: biochemical characterization and specificity profiling Tese de Doutoramento apresentada à Universidade de Coimbra para obtenção do grau de Doutor em Bioquímica (especialidade de Tecnologia Bioquímica). Doctoral thesis in the scientific area of Biochemistry (specialty Biochemistry Technology) presented to the University of Coimbra. Rui Gonçalo Batista Mamede da Cruz Coimbra - 2014 Department of Life Sciences University of Coimbra UNIVERSIDADE DE COIMBRA Front cover image illustrates Rickettsia cells (in green) invading mammalian host cells. Publishing rights were granted by Michael Taylor, the original author of the image. Agradecimentos / Acknowledgments A conclusão desta etapa não teria sido possível sem o apoio incondicional da família, amigos, orientadores, colegas e de todos aqueles que foram cruzando o meu caminho e deixando o seu contributo, em particular nos últimos quatro anos que conduziram a esta dissertação. Gostaria por isso de lhes deixar algumas palavras de profundo e sincero agradecimento. Em primeiro lugar, gostaria de agradecer à Doutora Isaura Simões e ao Professor Carlos Faro, por me terem acolhido e proporcionado as excepcionais condições para a realização deste trabalho. Em especial à Doutora Isaura Simões, expresso a minha profunda gratidão pela orientação, rigor, sentido crítico e paixão com que encara a ciência. Agradeço-lhe por acreditar em mim e por me fazer ir sempre mais além. Um agradecimento muito especial a todos aqueles que fazem e fizeram parte do laboratório de Biotecnologia de Molecular do Biocant, pelo seu contributo no meu crescimento científico, profissional e pessoal.
    [Show full text]
  • Structural and Kinetic Analysis of Escherichia Coli Signal Peptide Peptidase A
    Structural and Kinetic Analysis of Escherichia coli Signal Peptide Peptidase A by Apollos C. Kim B.A. (Psychology), Simon Fraser University, 2001 B.Sc. (Biology), Seoul National University, Korea, 1992 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Molecular Biology and Biochemistry Faculty of Science Apollos C. Kim 2013 SIMON FRASER UNIVERSITY Summer 2013 All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be reproduced, without authorization, under the conditions for “Fair Dealing.” Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately. Approval Name: Apollos C. Kim Degree: Doctor of Philosophy (Molecular Biology and Biochemistry) Title of Thesis: Structural and kinetic analysis of Escherichia coli signal peptide peptidase A Examining Committee: Chair: Frederic Pio, Associate Professor Mark Paetzel Senior Supervisor Associate Professor Nicholas Harden Supervisor Professor Edgar C. Young Supervisor Associate Professor Dipankar Sen Internal Examiner Professor Ross MacGillivray External Examiner Professor Department of Biochemistry and Molecular Biology University of British Columbia Date Defended/Approved: June 19, 2013 ii Partial Copyright Licence iii Abstract Secretory proteins contain a signal peptide at their N-terminus. The signal peptide functions to guide proteins to the membrane and is cleaved off by signal peptidase. The remnant signal peptides must be removed from the membrane to prevent their accumulation which can lead to membrane destabilization. Escherichia coli signal peptide peptidase A (SppAEC) has been identified as a major enzyme that processes the remnant signal peptide to smaller fragments.
    [Show full text]
  • Peptide Sequence
    Peptide Sequence Annotation AADHDG CAS-L1 AAEAISDA M10.005-stromelysin 1 (MMP-3) AAEHDG CAS-L2 AAEYGAEA A01.009-cathepsin D AAGAMFLE M10.007-stromelysin 3 (MMP-11) AAQNASMW A06.001-nodavirus endopeptidase AASGFASP M04.003-vibriolysin ADAHDG CAS-L3 ADAPKGGG M02.006-angiotensin-converting enzyme 2 ADATDG CAS-L5 ADAVMDNP A01.009-cathepsin D ADDPDG CAS-21 ADEPDG CAS-L11 ADETDG CAS-22 ADEVDG CAS-23 ADGKKPSS S01.233-plasmin AEALERMF A01.009-cathepsin D AEEQGVTD C03.007-rhinovirus picornain 3C AETFYVDG A02.001-HIV-1 retropepsin AETWYIDG A02.007-feline immunodeficiency virus retropepsin AFAHDG CAS-L24 AFATDG CAS-25 AFDHDG CAS-L26 AFDTDG CAS-27 AFEHDG CAS-28 AFETDG CAS-29 AFGHDG CAS-30 AFGTDG CAS-31 AFQHDG CAS-32 AFQTDG CAS-33 AFSHDG CAS-L34 AFSTDG CAS-35 AFTHDG CAS-L36 AGERGFFY Insulin B-chain AGLQRGGG M14.004-carboxypeptidase N AGSHLVEA Insulin B-chain AIDIDG CAS-L37 AIDPDG CAS-38 AIDTDG CAS-39 AIDVDG CAS-L40 AIEHDG CAS-L41 AIEIDG CAS-L42 AIENDG CAS-43 AIEPDG CAS-44 AIEQDG CAS-45 AIESDG CAS-46 AIETDG CAS-47 AIEVDG CAS-48 AIFQGPID C03.007-rhinovirus picornain 3C AIGHDG CAS-49 AIGNDG CAS-L50 AIGPDG CAS-L51 AIGQDG CAS-52 AIGSDG CAS-53 AIGTDG CAS-54 AIPMSIPP M10.051-serralysin AISHDG CAS-L55 AISNDG CAS-L56 AISPDG CAS-57 AISQDG CAS-58 AISSDG CAS-59 AISTDG CAS-L60 AKQRAKRD S08.071-furin AKRQGLPV C03.007-rhinovirus picornain 3C AKRRAKRD S08.071-furin AKRRTKRD S08.071-furin ALAALAKK M11.001-gametolysin ALDIDG CAS-L61 ALDPDG CAS-62 ALDTDG CAS-63 ALDVDG CAS-L64 ALEIDG CAS-L65 ALEPDG CAS-L66 ALETDG CAS-67 ALEVDG CAS-68 ALFQGPLQ C03.001-poliovirus-type picornain
    [Show full text]