Characterization of the Extracellular Proteome of a Natural Microbial Community with an Integrated Mass Spectrometric / Bioinformatic Approach

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of the Extracellular Proteome of a Natural Microbial Community with an Integrated Mass Spectrometric / Bioinformatic Approach University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2010 Characterization of the Extracellular Proteome of a Natural Microbial Community with an Integrated Mass Spectrometric / Bioinformatic Approach Brian Keith Erickson UTK, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Bioinformatics Commons, Environmental Microbiology and Microbial Ecology Commons, and the Systems Biology Commons Recommended Citation Erickson, Brian Keith, "Characterization of the Extracellular Proteome of a Natural Microbial Community with an Integrated Mass Spectrometric / Bioinformatic Approach. " PhD diss., University of Tennessee, 2010. https://trace.tennessee.edu/utk_graddiss/879 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Brian Keith Erickson entitled "Characterization of the Extracellular Proteome of a Natural Microbial Community with an Integrated Mass Spectrometric / Bioinformatic Approach." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Robert L. Hettich, Major Professor We have read this dissertation and recommend its acceptance: Alison Buchan, Loren J. Hauser, Cynthia B. Peterson, Brynn H. Voy Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a dissertation written by Brian Keith Erickson entitled “Characterization of the Extracellular Proteome of a Natural Microbial Community with an Integrated Mass Spectrometric / Bioinformatic Approach.” I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Robert Hettich , Major Professor We have read this dissertation and recommend its acceptance: Alison Buchan Loren Hauser Cynthia Peterson Brynn Voy Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official student records.) Characterization of the Extracellular Proteome of a Natural Microbial Community with an Integrated Mass Spectrometric / Bioinformatic Approach A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Brian Keith Erickson December 2010 Copyright © 2010 by Brian Keith Erickson All rights reserved. ii DEDICATION I dedicate this dissertation to my family, especially my wife, Alison Russell Erickson. Their support, encouragement and love has shaped who I am today and without them I would not have had the opportunities that have preceded this dissertation. iii ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Robert Hettich for his support and consistent, thoughtful, and embedded approach throughout the course of this work. I would like to acknowledge my committee members: Dr. Alison Buchan, Dr. Loren Hauser, Dr. Cynthia Peterson, and Dr. Brynn Voy for their time, excellent comments, suggestions, and thought provoking discussions. I would like to thank the Organic and Biological Mass Spectrometry group at Oak Ridge National Laboratory for their patience and guidance. I would also like to thank the staff, Dr. Cynthia Peterson and Dr. Albrecht von Arnim of the Genome Science and Technology program at the University of Tennessee for the professional enrichment and personal support. I would like to thank my wife, Alison, and close friends, (Dr.) Scott Younger and Dr. Rich Giannone, for their invaluable friendship and support. Finally, I would like to thank my parents, Jim and Jennifer; and Jeff and Gretchen for their love and support. iv ABSTRACT Proteomics comprises the identification and characterization of the complete suite of expressed proteins in a given cell, organism or community. The coupling of high performance liquid chromatography (LC) with high throughput mass spectrometry (MS) has provided the foundation for current proteomic progression. The transition from proteomic analysis of a single cultivated microbe to that of natural microbial assemblages has required significant advancement in technology and has provided greater biological understanding of microbial community diversity and function. To enhance the capabilities of a mass spectrometric based proteomic analysis, an integrated approach combining bioinformatics with analytical preparations and experimental data collection was developed and applied. This has resulted in a deep characterization of the extracellular fraction of a community of microbes thriving in an acid mine drainage system. Among the notable features of this relatively low complexity community, they exist in a solution that is highly acidic (pH < 1) and hot (temperature > 40°C), with molar concentrations of metals. The extracellular fraction is of particular interest due to the potential to identify and characterize novel proteins that are critical for survival and interactions with the harsh environment. The following analyses have resulted in the specific identification and characterization of novel extracellular proteins. In order to more accurately identify which proteins are present in the extracellular space, a combined computational prediction and experimental identification of the extracellular fraction was performed. Among the hundreds of proteins identified, a highly abundant novel cytochrome was targeted and ultimately characterized through high performance MS. In order to achieve deep proteomic coverage of the extracellular fraction, a metal affinity based protein enrichment utilizing seven different metals was developed and employed resulting in novel protein identifications. A combined top down and bottom up analysis resulted in the characterization of the intact molecular forms of extracellular proteins, including the identification of post-translational modifications. Finally, in order to determine the effectiveness of current MS methodologies, a software package was designed to characterize the > 100,000 mass spectra collected during an MS v experiment, revealing that specific optimizations in the LC, MS and protein sequence database have a significant impact on proteomic depth. vi TABLE OF CONTENTS Chapter 1: Introduction to Proteome Mass Spectrometry and Rationale for Characterization of an Extracellular Fraction of a Natural Microbial Community………...1 Chapter 2: An Integrated Experimental / Computational MS Based Platform for the Proteomic Characterization of a Natural Microbial Community…………………………..16 Chapter 3: Computational Prediction and Experimental Validation of Signal Peptide Cleavages in the Extracellular Proteome of a Natural Microbial Community………………………………..32 Chapter 4: An Integrated, Comparative Metal Affinity Enrichment and Proteomic Characterization of Novel Proteins from a Natural Microbial Community………………………………………58 Chapter 5: High Resolution Mass Spectrometry for the Characterization of a Novel, Growth Stage Dependent Cytochrome……………………………………………………...84 Chapter 6: The Design and Implementation of Software for Integrating Bottom up and Top Down MS Datasets for the Characterization of an Extracellular Fraction from a Natural Microbial Community…………………………………………..…………....96 Chapter 7: Development of a Spectral Assignment Approach to Evaluate Assigned versus Unassigned Tandem Mass Spectra in the Proteomic Analyses of Microbial Isolates and Communities……………..........................................................................117 Chapter 8: Conclusions and Significance of the Characterization of the Extracellular Fraction in a Natural Microbial Community………………………………………….........143 References…………………………………………………………………………….….....150 Vita………………………………………………………………………………………….....161 vii LIST OF TABLES 3.1: Summary of Computational Prediction and MS Identification of Signal Peptide Cleaved Proteins from 5 Distinct Extracellular AMD Samples………………………41 3.2: Distribution of Predicted Signal Peptide Cleaved Proteins for the Dominant Microbes in the AMD Microbial Community…………………………………………….42 3.3: Results of Edman N-terminal Sequencing of Select Secretome Proteins from the AMD Microbial Community…………………………………………………………….46 3.4: Highly Conserved and Replicated Signal Peptide Cleaved Proteins with Confirming N-terminus Spectra……………………………………………………………49 3.5: NSAF Comparison of Select, Highly Differential Signal Peptide Cleaved Proteins………………………………………………………………………………………...51 3.6: Pfam Domain Analysis of Conserved and High Confidence Signal Peptide Cleaved Proteins……………………………………………………………………......……53 4.1: Number of Proteins Labeled as Uniquely IMAC Bound or Unbound After Analysis of MS Data from Chromatographic Fractions…………………………….…68 4.2: Average Amino Acid Abundance within Protein Groups that are Bound to Specific Metals, or Groups of Metals…………………………………………….…........71 4.3: Identified Flagellar Proteins and Their Pattern of IMAC Enrichment…...…….75 4.4: Pfam Identifications
Recommended publications
  • Proteolytic Enzymes in Grass Pollen and Their Relationship to Allergenic Proteins
    Proteolytic Enzymes in Grass Pollen and their Relationship to Allergenic Proteins By Rohit G. Saldanha A thesis submitted in fulfilment of the requirements for the degree of Masters by Research Faculty of Medicine The University of New South Wales March 2005 TABLE OF CONTENTS TABLE OF CONTENTS 1 LIST OF FIGURES 6 LIST OF TABLES 8 LIST OF TABLES 8 ABBREVIATIONS 8 ACKNOWLEDGEMENTS 11 PUBLISHED WORK FROM THIS THESIS 12 ABSTRACT 13 1. ASTHMA AND SENSITISATION IN ALLERGIC DISEASES 14 1.1 Defining Asthma and its Clinical Presentation 14 1.2 Inflammatory Responses in Asthma 15 1.2.1 The Early Phase Response 15 1.2.2 The Late Phase Reaction 16 1.3 Effects of Airway Inflammation 16 1.3.1 Respiratory Epithelium 16 1.3.2 Airway Remodelling 17 1.4 Classification of Asthma 18 1.4.1 Extrinsic Asthma 19 1.4.2 Intrinsic Asthma 19 1.5 Prevalence of Asthma 20 1.6 Immunological Sensitisation 22 1.7 Antigen Presentation and development of T cell Responses. 22 1.8 Factors Influencing T cell Activation Responses 25 1.8.1 Co-Stimulatory Interactions 25 1.8.2 Cognate Cellular Interactions 26 1.8.3 Soluble Pro-inflammatory Factors 26 1.9 Intracellular Signalling Mechanisms Regulating T cell Differentiation 30 2 POLLEN ALLERGENS AND THEIR RELATIONSHIP TO PROTEOLYTIC ENZYMES 33 1 2.1 The Role of Pollen Allergens in Asthma 33 2.2 Environmental Factors influencing Pollen Exposure 33 2.3 Classification of Pollen Sources 35 2.3.1 Taxonomy of Pollen Sources 35 2.3.2 Cross-Reactivity between different Pollen Allergens 40 2.4 Classification of Pollen Allergens 41 2.4.1
    [Show full text]
  • Investigating the Impact of Mpapr1, an Aspartic Protease from the Yeast Metschnikowia Pulcherrima, on Wine Properties
    THÈSE EN COTUTELLE PRÉSENTÉE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE BORDEAUX ET DE L’UNIVERSITÉ DE STELLENBOSCH ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTÉ SPÉCIALITÉ ŒNOLOGIE FACULTY OF AGRISCIENCES Par Louwrens THERON ETUDE DE L’IMPACT DE MPAPR1, UNE PROTEASE ASPARTIQUE DE LA LEVURE METSCHNIKOWIA PULCHERRIMA, SUR LES PROPRIETES DU VIN Sous la direction de Benoit DIVOL et de Marina BELY Soutenue le 27 janvier 2017 Membres du jury: Mme. LE HENAFF-LE MARREC Claire, Professeur à l’université de Bordeaux Président M. MARANGON Matteo, Chargé de recherche à l’université de Padoue Rapporteur Mme. CAMARASA Carole, Chargée de recherche à l’INRA de Montpellier Rapporteur M. BAUER Florian, Professeur à l’université de Stellenbosch Examinateur Titre : Etude de l’impact de MpAPr1, une protéase aspartique de la levure Metschnikowia pulcherrima, sur les propriétés du vin Résumé : L'élimination des protéines est une étape clé lors de la production du vin blanc afin d'éviter l'apparition éventuelle d'un voile inoffensif mais inesthétique. Des solutions de rechange à l'utilisation de la bentonite sont activement recherchées en raison des problèmes technologiques, organoleptiques et de durabilité associés à son utilisation. Dans cette étude, MpAPr1, une protéase aspartique extracellulaire préalablement isolée et partiellement caractérisée à partir de la levure Metschnikowia pulcherrima, a été clonée et exprimée de manière hétérologue dans la levure Komagataella pastoris. Les propriétés enzymatiques de MpAPr1 ont été initialement caractérisées dans un extrait brut. Après plusieurs essais faisant appel à différentes techniques, MpAPr1 a été purifié avec succès par chromatographie échangeusede cations.
    [Show full text]
  • Molecular Sciences a New Pepstatin-Insensitive Thermopsin
    Int. J. Mol. Sci. 2014, 15, 3204-3219; doi:10.3390/ijms15023204 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article A New Pepstatin-Insensitive Thermopsin-Like Protease Overproduced in Peptide-Rich Cultures of Sulfolobus solfataricus Marta Gogliettino †, Alessia Riccio †, Ennio Cocca, Mosè Rossi, Gianna Palmieri * and Marco Balestrieri Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), Via Pietro Castellino 111, Naples 80131, Italy; E-Mails: [email protected] (M.G.); [email protected] (A.R.); [email protected] (E.C.); [email protected] (M.R.); [email protected] (M.B.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-081-6132-711; Fax: +39-081-6132-277. Received: 5 December 2013; in revised form: 26 January 2014 / Accepted: 11 February 2014 / Published: 21 February 2014 Abstract: In this study, we gain insight into the extracellular proteolytic system of Sulfolobus solfataricus grown on proteinaceous substrates, providing further evidence that acidic proteases were specifically produced in response to peptide-rich media. The main proteolytic component was the previously isolated SsMTP (Sulfolobus solfataricus multi-domain thermopsin-like protease), while the less abundant (named SsMTP-1) one was purified, characterized and identified as the sso1175 gene-product. The protein revealed a multi-domain organization shared with the cognate SsMTP with a catalytic domain followed by several tandemly-repeated motifs. Moreover, both enzymes were found spread across the Crenarchaeota phylum and belonging to the thermopsin family, although segregated into diverse phylogenetic clusters.
    [Show full text]
  • Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases
    Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases Alan J. Barrett Neil D. Rawlings J. Fred Woessner Editor biographies xxi Contributors xxiii Preface xxxi Introduction ' Abbreviations xxxvii ASPARTIC PEPTIDASES Introduction 1 Aspartic peptidases and their clans 3 2 Catalytic pathway of aspartic peptidases 12 Clan AA Family Al 3 Pepsin A 19 4 Pepsin B 28 5 Chymosin 29 6 Cathepsin E 33 7 Gastricsin 38 8 Cathepsin D 43 9 Napsin A 52 10 Renin 54 11 Mouse submandibular renin 62 12 Memapsin 1 64 13 Memapsin 2 66 14 Plasmepsins 70 15 Plasmepsin II 73 16 Tick heme-binding aspartic proteinase 76 17 Phytepsin 77 18 Nepenthesin 85 19 Saccharopepsin 87 20 Neurosporapepsin 90 21 Acrocylindropepsin 9 1 22 Aspergillopepsin I 92 23 Penicillopepsin 99 24 Endothiapepsin 104 25 Rhizopuspepsin 108 26 Mucorpepsin 11 1 27 Polyporopepsin 113 28 Candidapepsin 115 29 Candiparapsin 120 30 Canditropsin 123 31 Syncephapepsin 125 32 Barrierpepsin 126 33 Yapsin 1 128 34 Yapsin 2 132 35 Yapsin A 133 36 Pregnancy-associated glycoproteins 135 37 Pepsin F 137 38 Rhodotorulapepsin 139 39 Cladosporopepsin 140 40 Pycnoporopepsin 141 Family A2 and others 41 Human immunodeficiency virus 1 retropepsin 144 42 Human immunodeficiency virus 2 retropepsin 154 43 Simian immunodeficiency virus retropepsin 158 44 Equine infectious anemia virus retropepsin 160 45 Rous sarcoma virus retropepsin and avian myeloblastosis virus retropepsin 163 46 Human T-cell leukemia virus type I (HTLV-I) retropepsin 166 47 Bovine leukemia virus retropepsin 169 48
    [Show full text]
  • University of Groningen Signal Peptides of Secreted
    CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Groningen University of Groningen Signal peptides of secreted proteins of the archaeon Sulfolobus solfataricus: a genomic survey Albers, S.V.; Driessen, A.J.M. Published in: Archives of Microbiology DOI: 10.1007/s00203-001-0386-y IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2002 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Albers, S. V., & Driessen, A. J. M. (2002). Signal peptides of secreted proteins of the archaeon Sulfolobus solfataricus: a genomic survey: a genomic survey. Archives of Microbiology, 177(3), 209 - 216. https://doi.org/10.1007/s00203-001-0386-y Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 12-11-2019 Arch Microbiol (2002) 177:209–216 DOI 10.1007/s00203-001-0386-y MINI-REVIEW Sonja-Verena Albers · Arnold J.
    [Show full text]
  • Picrophilus Torridus and Its Implications for Life Around Ph 0
    Genome sequence of Picrophilus torridus and its implications for life around pH 0 O. Fu¨ tterer*, A. Angelov*, H. Liesegang*, G. Gottschalk*, C. Schleper†, B. Schepers‡, C. Dock‡, G. Antranikian‡, and W. Liebl*§ *Institut of Microbiology and Genetics, University of Goettingen, Grisebachstrasse 8, D-37075 Goettingen, Germany; †Institut of Microbiology and Genetics, Technical University Darmstadt, Schnittspahnstrasse 10, 64287 D-Darmstadt, Germany; and ‡Technical Microbiology, Technical University Hamburg–Harburg, Kasernenstrasse 12, 21073 D-Hamburg, Germany Edited by Dieter So¨ll, Yale University, New Haven, CT, and approved April 20, 2004 (received for review February 26, 2004) The euryarchaea Picrophilus torridus and Picrophilus oshimae are (4–6). After analysis of a number of archaeal and bacterial ge- able to grow around pH 0 at up to 65°C, thus they represent the nomes, it has been argued that microorganisms that live together most thermoacidophilic organisms known. Several features that swap genes at a higher frequency (7, 8). With the genome sequence may contribute to the thermoacidophilic survival strategy of P. of P. torridus, five complete genomes of thermoacidophilic organ- torridus were deduced from analysis of its 1.55-megabase genome. isms are available, which allows a more complex investigation of the P. torridus has the smallest genome among nonparasitic aerobic evolution of organisms sharing the extreme growth conditions of a microorganisms growing on organic substrates and simulta- unique niche in the light of horizontal gene transfer. neously the highest coding density among thermoacidophiles. An exceptionally high ratio of secondary over ATP-consuming primary Methods transport systems demonstrates that the high proton concentra- Sequencing Strategy.
    [Show full text]
  • New Retroviral-Like Membrane-Associated Aspartic Proteases From
    Novas proteases aspárticas membranares do tipo retroviral de rickettsiae: caracterização bioquímica e determinação de especificidade New retroviral-Iike membrane-associated aspartic proteases from rickettsiae: biochemical characterization and specificity profiling Tese de Doutoramento apresentada à Universidade de Coimbra para obtenção do grau de Doutor em Bioquímica (especialidade de Tecnologia Bioquímica). Doctoral thesis in the scientific area of Biochemistry (specialty Biochemistry Technology) presented to the University of Coimbra. Rui Gonçalo Batista Mamede da Cruz Coimbra - 2014 Department of Life Sciences University of Coimbra UNIVERSIDADE DE COIMBRA Front cover image illustrates Rickettsia cells (in green) invading mammalian host cells. Publishing rights were granted by Michael Taylor, the original author of the image. Agradecimentos / Acknowledgments A conclusão desta etapa não teria sido possível sem o apoio incondicional da família, amigos, orientadores, colegas e de todos aqueles que foram cruzando o meu caminho e deixando o seu contributo, em particular nos últimos quatro anos que conduziram a esta dissertação. Gostaria por isso de lhes deixar algumas palavras de profundo e sincero agradecimento. Em primeiro lugar, gostaria de agradecer à Doutora Isaura Simões e ao Professor Carlos Faro, por me terem acolhido e proporcionado as excepcionais condições para a realização deste trabalho. Em especial à Doutora Isaura Simões, expresso a minha profunda gratidão pela orientação, rigor, sentido crítico e paixão com que encara a ciência. Agradeço-lhe por acreditar em mim e por me fazer ir sempre mais além. Um agradecimento muito especial a todos aqueles que fazem e fizeram parte do laboratório de Biotecnologia de Molecular do Biocant, pelo seu contributo no meu crescimento científico, profissional e pessoal.
    [Show full text]
  • Expression of Recombinant Acid Protease (Thermopsin) Gene from Thermoplasma Volcanium
    EXPRESSION OF RECOMBINANT ACID PROTEASE (THERMOPSIN) GENE FROM THERMOPLASMA VOLCANIUM A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCE OF MIDDLE EAST TECHNICAL UNIVERSITY BY BİLSEV KOYUNCU IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BIOLOGY JANUARY 2006 Approval of the Graduate School of Natural and Applied Sciences Prof. Dr. Canan ÖZGEN Director I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science Prof. Dr. Semra KOCABIYIK Head of Department This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science Prof. Dr. Semra KOCABIYIK Supervisor Examining Committee Members Assoc. Prof. Dr. Candan GÜRAKAN (METU, FDE) Prof. Dr. Semra KOCABIYIK (METU, BIOL) Assoc. Prof. Dr. Meral KENCE (METU, BIOL) Assoc. Prof. Dr. Fatih İZGÜ (METU, BIOL) Assist. Prof. Dr. Hasan KOYUN (Yüzüncü Yıl Unv.) I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Bilsev KOYUNCU: Signature : iii ABSTRACT EXPRESSION OF RECOMBINANT ACID PROTEASE (THERMOPSIN) GENE FROM THERMOPLASMA VOLCANIUM KOYUNCU, Bilsev M.Sc., Department of Biology Supervisor: Prof. Dr. Semra KOCABIYIK January, 2006, 113 pages Acid proteases, commonly known as aspartic proteases are degredative enzymes which catalyze the cleavage reaction of peptide bonds in proteins with a pH optimum in the acidic range (pH 3-4).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur Et Al
    US 2012026.6329A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur et al. (43) Pub. Date: Oct. 18, 2012 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/10 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/24 (2006.01) CI2N 9/02 (2006.01) (75) Inventors: Eric J. Mathur, Carlsbad, CA CI2N 9/06 (2006.01) (US); Cathy Chang, San Marcos, CI2P 2L/02 (2006.01) CA (US) CI2O I/04 (2006.01) CI2N 9/96 (2006.01) (73) Assignee: BP Corporation North America CI2N 5/82 (2006.01) Inc., Houston, TX (US) CI2N 15/53 (2006.01) CI2N IS/54 (2006.01) CI2N 15/57 2006.O1 (22) Filed: Feb. 20, 2012 CI2N IS/60 308: Related U.S. Application Data EN f :08: (62) Division of application No. 1 1/817,403, filed on May AOIH 5/00 (2006.01) 7, 2008, now Pat. No. 8,119,385, filed as application AOIH 5/10 (2006.01) No. PCT/US2006/007642 on Mar. 3, 2006. C07K I4/00 (2006.01) CI2N IS/II (2006.01) (60) Provisional application No. 60/658,984, filed on Mar. AOIH I/06 (2006.01) 4, 2005. CI2N 15/63 (2006.01) Publication Classification (52) U.S. Cl. ................... 800/293; 435/320.1; 435/252.3: 435/325; 435/254.11: 435/254.2:435/348; (51) Int. Cl. 435/419; 435/195; 435/196; 435/198: 435/233; CI2N 15/52 (2006.01) 435/201:435/232; 435/208; 435/227; 435/193; CI2N 15/85 (2006.01) 435/200; 435/189: 435/191: 435/69.1; 435/34; CI2N 5/86 (2006.01) 435/188:536/23.2; 435/468; 800/298; 800/320; CI2N 15/867 (2006.01) 800/317.2: 800/317.4: 800/320.3: 800/306; CI2N 5/864 (2006.01) 800/312 800/320.2: 800/317.3; 800/322; CI2N 5/8 (2006.01) 800/320.1; 530/350, 536/23.1: 800/278; 800/294 CI2N I/2 (2006.01) CI2N 5/10 (2006.01) (57) ABSTRACT CI2N L/15 (2006.01) CI2N I/19 (2006.01) The invention provides polypeptides, including enzymes, CI2N 9/14 (2006.01) structural proteins and binding proteins, polynucleotides CI2N 9/16 (2006.01) encoding these polypeptides, and methods of making and CI2N 9/20 (2006.01) using these polynucleotides and polypeptides.
    [Show full text]
  • Biochemical Characterization of an Aspartic Protease Inhibitor from Bacillus Licheniformis: Interactions with Hydrolytic Enzymes
    BIOCHEMICAL CHARACTERIZATION OF AN ASPARTIC PROTEASE INHIBITOR FROM BACILLUS LICHENIFORMIS: INTERACTIONS WITH HYDROLYTIC ENZYMES Thesis submitted to University of Pune For the degree of DOCTOR OF PHILOSOPHY IN BIOTECHNOLOGY By Ajit Kumar Division of Biochemical Sciences National Chemical Laboratory Pune – 411008 India March 2007 In Fond Memories of My Father… ii TABLE OF CONTENTS Page No. ACKNOWLEDGMENTS ix CERTIFICATE xi DECLARATION BY THE RESEARCH SCHOLAR xii ABBREVIATIONS xiii ABSTRACT xv LIST OF PUBLICATIONS xxii CONFERENCES /POSTERS/ ABSTRACTS xxiii Chapter I General Introduction 1- 21 The Proteases 1- 21 I. The aspartic proteases 2 i. Pepsin family 3 ii. Retropepsin family 4 iii. Cauliflower mosaic virus proteases family 4 iv. Plant aspartic proteases 4 v. Membrane bound aspartic proteases 5 vi. Putative aspartic proteases 6 II. Proteases inhibitors 8 i. Inhibitors of aspartic proteases 8 a. Proteinaecous inhibitors 9 b. Low-Molecular-Weight Inhibitors 10 ii. HIV-1 proteases inhibitors 12 iii. Renin inhibitors 14 iv. Plasmepsins inhibitors 15 v. Cathepsin D inhibitors 16 vi. Secreted aspartic proteases inhibitors 17 vii) β-Secretase Inhibitors 18 III. Sequence homology 19 iii IV. Inhibitor design and future prospects 20 Chapter II 22 - 62 Biochemical Characterization of an Aspartic Protease Inhibitor from Thermo Tolerant Bacillus licheniformis: Interaction with Pepsin Part I Isolation And Identification Of Thermo Tolerant Bacillus licheniformis Summary 22 Introduction 23 Materials and Methods 24 Materials 24 Isolation and identification
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur Et Al
    US 20150240226A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur et al. (43) Pub. Date: Aug. 27, 2015 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/16 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/02 (2006.01) CI2N 9/78 (2006.01) (71) Applicant: BP Corporation North America Inc., CI2N 9/12 (2006.01) Naperville, IL (US) CI2N 9/24 (2006.01) CI2O 1/02 (2006.01) (72) Inventors: Eric J. Mathur, San Diego, CA (US); CI2N 9/42 (2006.01) Cathy Chang, San Marcos, CA (US) (52) U.S. Cl. CPC. CI2N 9/88 (2013.01); C12O 1/02 (2013.01); (21) Appl. No.: 14/630,006 CI2O I/04 (2013.01): CI2N 9/80 (2013.01); CI2N 9/241.1 (2013.01); C12N 9/0065 (22) Filed: Feb. 24, 2015 (2013.01); C12N 9/2437 (2013.01); C12N 9/14 Related U.S. Application Data (2013.01); C12N 9/16 (2013.01); C12N 9/0061 (2013.01); C12N 9/78 (2013.01); C12N 9/0071 (62) Division of application No. 13/400,365, filed on Feb. (2013.01); C12N 9/1241 (2013.01): CI2N 20, 2012, now Pat. No. 8,962,800, which is a division 9/2482 (2013.01); C07K 2/00 (2013.01); C12Y of application No. 1 1/817,403, filed on May 7, 2008, 305/01004 (2013.01); C12Y 1 1 1/01016 now Pat. No. 8,119,385, filed as application No. PCT/ (2013.01); C12Y302/01004 (2013.01); C12Y US2006/007642 on Mar. 3, 2006.
    [Show full text]
  • Peptidases: a View of Classification and Nomenclature
    Proteases: New Perspectives V. Turk (ed.) © 1999 Birkhauser Verlag Basel/Switzerland Peptidases: a view of classification and nomenclature Alan 1. Barrett MRC Molecular Enzymology Laboratory, The Babraham Institute, Cambridge CB2 4AT, UK Introduction It is beyond question that the results of research on proteolytic enzymes, or peptidases, are already benefiting mankind in many ways, and there is no doubt that research in this area has the potential to contribute still more in the future. One of the clearest indications of the gener­ al recognition of this promise is the vast annual expenditure of the pharmaceutical industry on exploring the involvement of peptidases in human health and disease. The high and accelerating rate of research on peptidases is being rewarded by a rate of dis­ covery that could not have been imagined just a few years ago. One measure of this is the num­ ber of known peptidases. At the present time, we can recognise perhaps 600 distinct peptidas­ es, including over 200 that are expressed in mammals, and new ones are being discovered almost daily. This means that there is a clear need for sound systems for classifying the enzymes and for naming them. Only with such systems in place can the wealth of new information that is becoming available be shared efficiently amongst the many scientists now active in this field of research. Without such systems, there will be needless and expensive duplication of effort, and the rate of discovery, and its consequent benefits to mankind, will be slower. The justifi­ cation for trying to improve the systems is therefore strictly practical, and most of the questions that arise are best dealt with by asking what will be most useful to the scientists working in the field, not by reference to any abstract theory.
    [Show full text]