Diplomarbeit

Total Page:16

File Type:pdf, Size:1020Kb

Diplomarbeit Institut für Pharmazeutische Wissenschaften Bereich Pharmakognosie Karl-Franzens-Universität Graz United States Department of Agriculture - Agricultural Research Service Natural Products Utilization Research Unit University of Mississippi Diplomarbeit Bio-guided isolation of phytotoxic coumarin derivatives of Thamnosma montana Torr. & Frém., a Rutaceae native to the southwestern United States Zur Erlangung des akademischen Grades eines Magisters der Pharmazie an der Naturwissenschaftlichen Fakultät der Karl-Franzens-Universität Graz vorgelegt von Aaron Sallegger Graz, Juni 2009 This thesis was composed between August 2008 and June 2009 at the United States Department of Agriculture - Agricultural Research Service, Natural Products Utilization Research Unit, University of Mississippi and the Institute of Pharmaceutical Sciences - Department of Pharmacognosy, University of Graz. First of all, I want to thank Dr. Wolfgang Schühly for being a great and motivated supervisor. Without him, this project would not have taken place and I would never have had the chance to experience working in the United States of America. I also want to thank Dr. Charles Cantrell for taking over supervision in Oxford and Dr. Stephen Duke for coordinating the bioassays. Dr. Cantrell was a great mentor and friend, always ready to guide me through this interesting project and help me to get set up in Oxford. Furthermore, my thanks go to Amber Callahan Reichley, Solomon Green III and Bob Johnson for being the best technicians I ever had the honor to work with and for giving me an amazing time in Oxford. I will never forget you guys! Very special thanks goes to my family for being with me all the time, emotionally, mentally and financially. Without them, I would not have been able to achieve my goals. Moreover, I want to thank the “Büro für Internationale Beziehungen” and the “Naturwissenschaftliche Fakultät” for the generous funding. I also wish to thank Rolf Muertter, Aaron Schusteff and “jrdnz” for granting me permission to use their beautiful pictures of Thamnosma montana , which gave my thesis a colorful touch. Last but not least, I want to mention my numerous friends and all the people, who helped me along my way, making me the person I am. Thank y'all! Table of Contents Table of Contents 1 Introduction.........................................................................................1 2 Literature review..................................................................................2 2.1 Rutaceae.......................................................................................2 2.2 Thamnosma ...................................................................................2 2.2.1 Classification...........................................................................3 2.3 Thamnosma montana .....................................................................4 2.3.1 Botanical characteristics............................................................4 2.3.2 Distribution.............................................................................5 2.3.3 Ethnobotanical use...................................................................6 2.3.4 Constituents............................................................................7 2.4 Coumarins.....................................................................................7 2.4.1 Classification...........................................................................8 2.4.1.1 Simple coumarins..............................................................8 2.4.1.2 Furanocoumarins...............................................................8 2.4.1.3 Pyranocoumarins...............................................................8 2.4.2 Biosynthesis............................................................................9 2.4.2.1 Simple coumarins..............................................................9 2.4.2.2 Furanocoumarins...............................................................9 2.4.3 Furanocoumarins and phototoxicity..........................................10 2.5 Bioassays....................................................................................10 2.5.1 Bioassay-guided fractionation..................................................11 3 Materials and methods.........................................................................13 3.1 Chromatography...........................................................................13 3.1.1. Analytical thin-layer chromatography.......................................13 3.1.2 Preparative TLC......................................................................13 3.1.3 Column chromatography.........................................................14 3.1.4 Analytical and preparative high-performance liquid chromatography (HPLC)..........................................................................................14 3.1.5 GC-MS..................................................................................14 3.1.6 LC-MS...................................................................................15 I Table of Contents 3.2 NMR............................................................................................15 3.3 Instrumentation...........................................................................16 3.3.1 TLC and preparative TLC.........................................................16 3.3.2 Column chromatography.........................................................16 3.3.3 HPLC and preparative HPLC.....................................................16 3.3.4 GC-MS..................................................................................17 3.3.5 High resolution LC-MS.............................................................17 3.3.6 NMR.....................................................................................17 3.4 Plant material...............................................................................17 3.5 Extraction....................................................................................18 3.6 Fractionation................................................................................18 3.7 Bioassays against A. stolonifera and L. sativa ...................................19 3.8 Bioassay guided fractionation.........................................................20 3.8.1 Fraction V6............................................................................21 3.8.2 Fraction V7............................................................................22 3.8.3 Fraction V7ppt.......................................................................24 3.8.4 Fraction V8ppt.......................................................................24 3.8.5 Fraction V9............................................................................24 3.8.6 Fraction V10..........................................................................26 3.8.7 Fraction V11..........................................................................28 3.9 Bioassay against Lemna paucicostata L...........................................29 3.9.1 General.................................................................................29 3.9.2 Conduction of L. paucicostata bioassay.....................................30 4 Results and discussion.........................................................................32 4.1 Structure elucidation.....................................................................32 4.2 AS1WS37_V6_comp1 (Isoimperatorin)............................................33 4.3 AS1WS37_V6_comp2 (Suberosin)..................................................35 4.4 AS1WS37_V7_B and AS1WS37_V7_ppt (Swietenocoumarin B)..........38 4.5 AS1WS37_V8_ppt (Bergapten).......................................................45 4.6 AS1WS37_V9_A_P2 (Psoralen).......................................................48 4.7 AS1WS37_V9_C (Dehydrogeijerin).................................................50 4.8 AS1WS37_V10_C_cry (Isopimpinellin)............................................53 II Table of Contents 4.9 AS1WS37_V10_E_B1 (Epoxysuberosin)...........................................55 4.10 AS1WS37_V10_E_B2 (Alloimperatorin methyl ether epoxide)...........58 5 Summary...........................................................................................61 6 Appendix............................................................................................63 6.1 Bibliography.................................................................................63 6.2 Index of Figures...........................................................................67 6.3 Index of Tables............................................................................68 III Introduction 1 Introduction Secondary metabolites from various higher plants are of high interest to both the biologist, who aimes to understand the reason for their production and the pharmacologist looking out for potential sources of substances useful for human beings either as pharmaceuticals, dietary supplements or pesticides. To date, out of the ten thousands of known natural products, many have found their way into an application in either medicine or agriculture. The use of natural products as pesticides dates back to ancient Greece and to the Roman Empire. Humans always searched for methods to extinguish weeds, insects or other herbivores in order to optimize crop yields. Modern agricultural practices rely on chemicals for pest control, but concerns about a potential impact of these pesticides on the environment and
Recommended publications
  • Tree of Life Marula Oil in Africa
    HerbalGram 79 • August – October 2008 HerbalGram 79 • August Herbs and Thyroid Disease • Rosehips for Osteoarthritis • Pelargonium for Bronchitis • Herbs of the Painted Desert The Journal of the American Botanical Council Number 79 | August – October 2008 Herbs and Thyroid Disease • Rosehips for Osteoarthritis • Pelargonium for Bronchitis • Herbs of the Painted Desert • Herbs of the Painted Bronchitis for Osteoarthritis Disease • Rosehips for • Pelargonium Thyroid Herbs and www.herbalgram.org www.herbalgram.org US/CAN $6.95 Tree of Life Marula Oil in Africa www.herbalgram.org Herb Pharm’s Botanical Education Garden PRESERVING THE FULL-SPECTRUM OF NATURE'S CHEMISTRY The Art & Science of Herbal Extraction At Herb Pharm we continue to revere and follow the centuries-old, time- proven wisdom of traditional herbal medicine, but we integrate that wisdom with the herbal sciences and technology of the 21st Century. We produce our herbal extracts in our new, FDA-audited, GMP- compliant herb processing facility which is located just two miles from our certified-organic herb farm. This assures prompt delivery of freshly-harvested herbs directly from the fields, or recently HPLC chromatograph showing dried herbs directly from the farm’s drying loft. Here we also biochemical consistency of 6 receive other organic and wildcrafted herbs from various parts of batches of St. John’s Wort extracts the USA and world. In producing our herbal extracts we use precision scientific instru- ments to analyze each herb’s many chemical compounds. However, You’ll find Herb Pharm we do not focus entirely on the herb’s so-called “active compound(s)” at fine natural products and, instead, treat each herb and its chemical compounds as an integrated whole.
    [Show full text]
  • Joshua Tree Species Status Assessment
    U.S. FISH & WILDLIFE SERVICE Joshua Tree Species Status Assessment Felicia Sirchia, Scott Hoffmann, and Jennifer Wilkening 10/23/2018 Acknowledgements First and foremost, we would like to thank Tony Mckinney, Carlsbad Fish and Wildlife Office (CFWO) GIS Manager. Tony acquired and summarized data and generated maps for the Species Status Assessment (SSA) – information critical to development of the SSA. Thanks to our Core Team members Jennifer ‘Jena’ Lewinshon, Utah Fish and Wildlife Office, and Brian Wooldridge, Arizona Fish and Wildlife Office. Both these folks were involved early in the SSA development process and provided background on the SSA framework and constructive, helpful feedback on early drafts. Thanks to Bradd Bridges, CFWO Listing and Recovery Chief, and Jenness McBride, Palm Springs Fish and Wildlife Office Division Chief, who provided thorough, helpful comments on early drafts. Thanks to the rest of the Core Team: Arnold Roessler, Region 8, Regional listing Lead; Nancy Ferguson, CFWO; Justin Shoemaker, Region 6; Cheryll Dobson, Region 8 Solicitor; and Jane Hendron, CFWO Public Affairs. All these folks provided constructive, thoughtful comments on drafts of the SSA. Last but not least, we want to thank Wayne Nuckols, CFWO librarian, who provided invaluable research and reference support. Recommended Citation: U.S. Fish and Wildlife Service. 2018. Joshua Tree Status Assessment. Dated October 23, 2018. 113 pp. + Appendices A–C. i Table of Contents Acknowledgements .......................................................................................................................................
    [Show full text]
  • A Detailed Review on Morphotaxonomy And
    Acta Scientific Microbiology (ISSN: 2581-3226) Review Article Volume 1 Issue 6 June 2018 Skimmia anquetilia N.P. Taylor and Airy Shaw A Detailed Review on Morphotaxonomy and Chemoprofiling of Saduf Nissar1, Neelofar Majid1, Aabid M Rather1*, Irshad A Nawchoo1 and GG Mohi-Ud-Din2 1Plant Reproductive Biology, Genetic Diversity and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, India 2Department of Botany, Government Degree College for Women, Sopore, Baramullah, India *Corresponding Author: Aabid M Rather, Plant Reproductive Biology, Genetic Diversity and Phytochemistry Research Laboratory, DepartmentReceived: April of Botany, 20, 2018; University Published: of Kashmir, May 28, Srinagar, 2018 India. Abstract - In recent times, medicinal plants have attracted huge attention due to their diverse range of biological and therapeutic proper Skimmia ties. Evidences have been accumulated since ages to demonstrate promising potential of medicinal plants used in various traditional, anquetilia complementary, and alternative systems with the ever-increasing interest of today’s population towards natural products, Rutaceae N.P. Taylor and Airy Shaw emerged out to be one of the most eye-catching plant bearing multiple medicinal properties. It is a perennial aromatic evergreen shrub belonging to family . Pharmacological studies have demonstrated significant action - of different extracts as antimicrobial, anti-inflammatory agents, among others, supporting some of its popular uses. An attempt has S. anquetilia been made in this review article to provide an up-to-date overview of the morphological parameters, taxonomic features, distribu tion pattern, traditional uses, as well as the phytochemistry and biological activities of . The present review provides insights for future research aiming for both ethnopharmacological validation of its popular use and its exploration as a new source ofKeywords herbal drugs: Skimmia and/or anquetilia; bioactive Rutaceaenatural products.
    [Show full text]
  • Research Article Toxicological Evaluation of Essential Oils from Some Plants of Rutaceae Family
    Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2018, Article ID 4394687, 7 pages https://doi.org/10.1155/2018/4394687 Research Article Toxicological Evaluation of Essential Oils from Some Plants of Rutaceae Family Iram Liaqat ,1 Naila Riaz,2 Qurat-ul-Ain Saleem,2 Hafiz Muhammad Tahir,1 Muhammad Arshad,3 and Najma Arshad 2 1 Department of Zoology, Government College University, Lahore, Pakistan 2Department of Zoology, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan 3Department of Zoology, University of Education, Lahore, Pakistan Correspondence should be addressed to Najma Arshad; [email protected] Received 25 January 2018; Accepted 12 April 2018; Published 6 May 2018 Academic Editor: Nativ Dudai Copyright © 2018 Iram Liaqat et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Essential oils are produced as secondary metabolites by aromatic plants, predominantly belonging to families Apiaceae, Lamiaceae, Myrtaceae, and Rutaceae. Te family Rutaceae has great economic importance for its numerous edible fruits and essential oils. In the present study, essential oils of seven plants of family Rutaceae, Aegle marmelos, Murraya koenigii, Citrus reticulata Blanco, Zanthoxylum armatum, Skimmia laureola, Murraya paniculata,andBoenninghausenia albifora, were used for their toxicological assessment. Seven groups of selected essential oils-treated Wistar rats were established against control group (�=5) that received water for 14 days; animals were ofered feed and water ad libitum and treated with essential oils at 400 mg/kg body weight. Hematological studies revealed signifcant elevation in TEC in animals treated with essential oils of M.
    [Show full text]
  • December 2012 Number 1
    Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada.
    [Show full text]
  • LIST of PLANTS ACCEPTABLE in UTILITY EASEMENT Guideline for Shallow Rooting Plants* *Some Neighborhoods May Have More Stringent Or Restricted Plant List
    LIST OF PLANTS ACCEPTABLE IN UTILITY EASEMENT Guideline for Shallow Rooting Plants* *Some Neighborhoods may have more stringent or restricted plant list. In those cases use plant that are on both this plant list and that required by the neighborhood. Botanical Name Common Name GROUNDCOVERS Acacia redolens Desert carpet trailing acacia 2’ by 15’ Aloe barbadensis Medicinal aloe 2” by 2” Aloe saponaria Tiger aloe 1” by 1” Ambrosia deltoidea Triangle leaf bur-sage 2” by 2 Ambrosia dumosa White bur-sage 2’ by 3’ Artemisia ludoviciana White sage 2’ by 4’ Asparagus densiflorus ‘Sprengeri” Sprenger asparagus 2’ by 4’ Baccharis spp. “Twin Peaks” Twin peaks coyote brush 2’ by 5’ Bulbine frutescens Bulbine 1’ by 2’ Convolvulus mauritanicus Ground morning glory 1’ by 2’ Dalea Capitata “Sierra Gold” Yellow flowered trailing dalea 8, by 3’ Dalea greggii Trailing indigo bush 2’ by 4’ Ericameria laricifolia Turpentine bush 2’ by 3’ Eriogonum fasciculatum California buckwheat 2’ by 2’ Eriogonum wrightii Buckwheat 2’ by 3’ Gazania rigens “Sun Gold” Gold gazania 1’ by 3’ Lantana spp. “New Gold” Yellow lantana “New Gold” 1’ by 3’ Oenothera berlandieri Mexican evening primrose 1’ by 4’ Oenothera caespitosa Tufted evening primrose 1’ by 2’ Oenothera stubbei Saltillo Primrose 1’ by 4’ Rosemarinus officinalis “Prostratus” Trailing rosemary 2’ by 6’ Salvia chamaedryoides Blue sage 2’ by 2’ Salvia coccinea Sage 2’ by 3’ Santolina chamaecyparissus Lavender cotton 2’ by 2’ Santolina virens Green santolina 2’ by 18” Turf (out of R.O.W. areas and less then 50% of total landscape area) Teucrium chamaedrys ‘Prostrata” Germander 1’ by 2’ Verbena peruviana Peruvian verbena 8” by 3’ Verbena rigida Sandpaper verbena 2’ by 3’ Zephyranthes candida Rain lily 1’ by 1’ Zinnia grandiflora Rocky mountain zinnia 6” by 1’ SHRUBS Abutilon palmeri Superstition mallow Aloysia spp.
    [Show full text]
  • Facilitation of Yucca Brevifolia Recruitment by Mojave Desert Shrubs
    UNLV Retrospective Theses & Dissertations 1-1-1998 Facilitation of Yucca brevifolia recruitment by Mojave Desert shrubs Steve B Brittingham University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Brittingham, Steve B, "Facilitation of Yucca brevifolia recruitment by Mojave Desert shrubs" (1998). UNLV Retrospective Theses & Dissertations. 950. http://dx.doi.org/10.25669/ms22-zauw This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter free, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • MEDICINAL PLANTS OPIUM POPPY: BOTANY, TEA: CULTIVATION to of NORTH AFRICA Opidjd CHEMISTRY and CONSUMPTION by Loutfy Boulos
    hv'IERIGAN BCXtlNICAL COJNCIL -----New Act(uisition~---------l ETHNOBOTANY FLORA OF LOUISIANA Jllll!llll GUIDE TO FLOWERING FLORA Ed. by Richard E. Schultes and Siri of by Margaret Stones. 1991. Over PLANT FAMILIES von Reis. 1995. Evolution of o LOUISIANA 200 beautiful full color watercolors by Wendy Zomlefer. 1994. 130 discipline. Thirty-six chapters from and b/w illustrations. Each pointing temperate to tropical families contributors who present o tru~ accompanied by description, habitat, common to the U.S. with 158 globol perspective on the theory and and growing conditions. Hardcover, plates depicting intricate practice of todoy's ethnobotony. 220 pp. $45. #8127 of 312 species. Extensive Hardcover, 416 pp. $49.95. #8126 glossary. Hardcover, 430 pp. $55. #8128 FOLK MEDICINE MUSHROOMS: TAXOL 4t SCIENCE Ed. by Richard Steiner. 1986. POISONS AND PANACEAS AND APPLICATIONS Examines medicinal practices of by Denis Benjamin. 1995. Discusses Ed. by Matthew Suffness. 1995. TAXQL® Aztecs and Zunis. Folk medicine Folk Medicine signs, symptoms, and treatment of Covers the discovery and from Indio, Fup, Papua New Guinea, poisoning. Full color photographic development of Toxol, supp~. Science and Australia, and Africa. Active identification. Health and nutritional biology (including biosynthesis and ingredients of garlic and ginseng. aspects of different species. biopharmoceutics), chemistry From American Chemical Society Softcover, 422 pp. $34.95 . #8130 (including structure, detection and Symposium. Softcover, isolation), and clinical studies. 223 pp. $16.95. #8129 Hardcover, 426 pp. $129.95 #8142 MEDICINAL PLANTS OPIUM POPPY: BOTANY, TEA: CULTIVATION TO OF NORTH AFRICA OpiDJD CHEMISTRY AND CONSUMPTION by Loutfy Boulos. 1983. Authoritative, Poppy PHARMACOLOGY TEA Ed.
    [Show full text]
  • Himalayan Aromatic Medicinal Plants: a Review of Their Ethnopharmacology, Volatile Phytochemistry, and Biological Activities
    medicines Review Himalayan Aromatic Medicinal Plants: A Review of their Ethnopharmacology, Volatile Phytochemistry, and Biological Activities Rakesh K. Joshi 1, Prabodh Satyal 2 and Wiliam N. Setzer 2,* 1 Department of Education, Government of Uttrakhand, Nainital 263001, India; [email protected] 2 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-256-824-6519; Fax: +1-256-824-6349 Academic Editor: Lutfun Nahar Received: 24 December 2015; Accepted: 3 February 2016; Published: 19 February 2016 Abstract: Aromatic plants have played key roles in the lives of tribal peoples living in the Himalaya by providing products for both food and medicine. This review presents a summary of aromatic medicinal plants from the Indian Himalaya, Nepal, and Bhutan, focusing on plant species for which volatile compositions have been described. The review summarizes 116 aromatic plant species distributed over 26 families. Keywords: Jammu and Kashmir; Himachal Pradesh; Uttarakhand; Nepal; Sikkim; Bhutan; essential oils 1. Introduction The Himalya Center of Plant Diversity [1] is a narrow band of biodiversity lying on the southern margin of the Himalayas, the world’s highest mountain range with elevations exceeding 8000 m. The plant diversity of this region is defined by the monsoonal rains, up to 10,000 mm rainfall, concentrated in the summer, altitudinal zonation, consisting of tropical lowland rainforests, 100–1200 m asl, up to alpine meadows, 4800–5500 m asl. Hara and co-workers have estimated there to be around 6000 species of higher plants in Nepal, including 303 species endemic to Nepal and 1957 species restricted to the Himalayan range [2–4].
    [Show full text]
  • Pilocarpine Content and Molecular Diversity in Jaborandi
    478 Sandhu et al. PILOCARPINE CONTENT AND MOLECULAR DIVERSITY IN JABORANDI Sardul Singh Sandhu1; Ilka Nacif Abreu2; Carlos Augusto Colombo3; Paulo Mazzafera2* 1 Department of Biological Science, R. D. University, Jabalpur, India. 2 UNICAMP/IB - Depto. de Fisiologia Vegetal. C.P. 6109 - 13083-970 - Campinas, SP - Brasil. 3 IAC - Centro de Pesquisa e Desenvolvimento de Recursos Genéticos Vegetais, C.P. 28 - 13020-902 - Campinas, SP - Brasil. *Corresponding author <[email protected]> ABSTRACT: Pilocarpine is an imidazol alkaloid exclusively found in Pilocarpus genus and P. microphyllus accumulates its highest content in the leaves. There is no report in the literature on the variability of the pilocarpine content in this genus. A population of 20 genotypes of P. microphyllus from the state of Maranhão, Brazil, was analyzed for Random Amplification of Polymorphic DNA (RAPD) markers and pilocarpine content. Although it was not possible to establish any correlation between these features, the absence or presence of some markers could indicate in some genotypes a possible association with the content of the alkaloid. Key words: RAPD, Pilocarpus jaborandi, molecular diversity, molecular markers CONTEÚDO DE PILOCARPINA E DIVERSIDADE MOLECULAR EM JABORANDI RESUMO: Pilocarpina é um alcalóide imidazólico encontrado exclusivamente em plantas do gênero Pilocarpus, sendo que as folhas de P. microphyllus acumulam o maior conteúdo deste alcalóide. Não há na literatura nenhum relato sobre a variabilidade do conteúdo de pilocarpina nesse gênero. Uma população de 20 plantas de P. microphyllus do estado do Maranhão, Brasil, foi analisada por marcadores Aplicação de DNA polimórfico randomica (RAPD) e quanto ao conteúdo de pilocarpina. Apesar de não ter sido possível estabelecer uma associação entre as variáveis estudadas, a ausência ou a presença de alguns loci marcadores em certos genótipos puderam ser associados ao teor do alcalóide.
    [Show full text]
  • Illustrated Flora of East Texas Illustrated Flora of East Texas
    ILLUSTRATED FLORA OF EAST TEXAS ILLUSTRATED FLORA OF EAST TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: DAVID GIBSON AND WILL CRENSHAW DISCOVERY FUND U.S. FISH AND WILDLIFE FOUNDATION (NATIONAL PARK SERVICE, USDA FOREST SERVICE) TEXAS PARKS AND WILDLIFE DEPARTMENT SCOTT AND STUART GENTLING BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) TEMPLE-INLAND FOUNDATION SUMMERLEE FOUNDATION AMON G. CARTER FOUNDATION ROBERT J. O’KENNON PEG & BEN KEITH DORA & GORDON SYLVESTER DAVID & SUE NIVENS NATIVE PLANT SOCIETY OF TEXAS DAVID & MARGARET BAMBERGER GORDON MAY & KAREN WILLIAMSON JACOB & TERESE HERSHEY FOUNDATION INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE II OTHER CONTRIBUTORS: ALLDREDGE, LINDA & JACK HOLLEMAN, W.B. PETRUS, ELAINE J. BATTERBAE, SUSAN ROBERTS HOLT, JEAN & DUNCAN PRITCHETT, MARY H. BECK, NELL HUBER, MARY MAUD PRICE, DIANE BECKELMAN, SARA HUDSON, JIM & YONIE PRUESS, WARREN W. BENDER, LYNNE HULTMARK, GORDON & SARAH ROACH, ELIZABETH M. & ALLEN BIBB, NATHAN & BETTIE HUSTON, MELIA ROEBUCK, RICK & VICKI BOSWORTH, TONY JACOBS, BONNIE & LOUIS ROGNLIE, GLORIA & ERIC BOTTONE, LAURA BURKS JAMES, ROI & DEANNA ROUSH, LUCY BROWN, LARRY E. JEFFORDS, RUSSELL M. ROWE, BRIAN BRUSER, III, MR. & MRS. HENRY JOHN, SUE & PHIL ROZELL, JIMMY BURT, HELEN W. JONES, MARY LOU SANDLIN, MIKE CAMPBELL, KATHERINE & CHARLES KAHLE, GAIL SANDLIN, MR. & MRS. WILLIAM CARR, WILLIAM R. KARGES, JOANN SATTERWHITE, BEN CLARY, KAREN KEITH, ELIZABETH & ERIC SCHOENFELD, CARL COCHRAN, JOYCE LANEY, ELEANOR W. SCHULTZE, BETTY DAHLBERG, WALTER G. LAUGHLIN, DR. JAMES E. SCHULZE, PETER & HELEN DALLAS CHAPTER-NPSOT LECHE, BEVERLY SENNHAUSER, KELLY S. DAMEWOOD, LOGAN & ELEANOR LEWIS, PATRICIA SERLING, STEVEN DAMUTH, STEVEN LIGGIO, JOE SHANNON, LEILA HOUSEMAN DAVIS, ELLEN D.
    [Show full text]
  • Native American Plant Resources in the Yucca Mountain Area, Nevada, Interim Report
    v6 -DOEINV-10576-19 DOFINV-10576-19 _ I- DOE/NV-1O576-19 DOEINv-1 0576-19 tNERGY YUCCA MOUNTAIN 'UxC PROJECT NATIVE AMERICAN PLANT RESOURCES IN THE YUCCA MOUNTAIN AREA, NEVADA INTERIM REPORT NOVEMBER 1989 Ci WORK PERFORMED UNDER CONTRACT NO. DE-AC0887NV10576 Technical & Management Support Services SCIENCE APPLICATIONS. INTERNATIONAL CORPORATiON I / 9007020264 :91130 k kPII PDR WASTE gflo31 WM-11 FDIC DOEINV-10576-1 9 DOE/NV-1 0576-1 9 YUCCA MOUNTAIN PROJECT NATIVE AMERICAN PLANT RESOURCES IN THE YUCCA MOUNTAIN AREA, NEVADA Interim Report November 1989 by Richard W. Stoffle Michael J. Evans David B. Halmo Institute for Social Research University of Michigan Ann Arbor, Michigan and Wesley E. Niles Joan T. O'Farrell EG&G Energy Measurements, Inc. Goleta, California Prepared for the U.S. Department of Energy, Nevada Operations Office under Contract No. DE-ACO8.B7NV10576 by Science Applications International Corporation Las Vegas, Nevada DISCLAIMER This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, mark, manufacturer, or otherwise, does not necessarily constitute or imply its en- dorsement, recommendation, or favoring by the United States Government or any agency thereof. The view and opinions of authors expressed herein do not necessarily state or re- flect those of the United States Government or any agency thereof.
    [Show full text]