Phylogenetic Relationships of Ruteae (Rutaceae): New Evidence from the Chloroplast Genome and Comparisons with Non-Molecular Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ROSIDAE V SC.ROSIDAE V, 3 Órdenes, 12 Fam
ROSIDAE V SC.ROSIDAE V, 3 Órdenes, 12 Fam. GERANIALES herbáceas G leñosas G SAPINDALES APIALES G ROSALES O. Sapindales, Fam SAPINDACEAE Drupa Serjania Allophyllus edulis “chal-chal” Drupa Flores % Trisámara Disco nectarífero Sapindus saponaria “palo jabón” O. Sapindales, Fam HIPOCASTANACEAE Infl. paniculada K(5) C5 Flores % %, K(5), C5,A6-9, G Cápsula erizada Aesculus hippocastaneum “Castaño de las Indias” O.Sapindales, Fam. ACERACEAE Acer negundo “arce” Flores Flores Disámara Acer rubrum Acer palmatum Acer saccharum “maple sugar” O. Sapindales, Fam ZIGOPHYLLACEAE Larrea “jarillas” Pcia Monte Estípulas Larrea nitida Larrea cuneifolia Larrea divaricata O. Sapindales, Fam ZIGOPHYLLACEAE Bulnesia retama “retamo” Bulnesia sarmientoi “palo santo” O. Sapindales, Fam ANACARDIACEAE Infl. panoja Disco nectarífero C5 K5 Schinus aerira “aguaribay” Diagrama floral Canal resinífero en tallo Falso pimiento Drupa Canal resinífero foliar O. Sapindales, Fam ANACARDIACEAE Schinopsis quebracho colorado “quebracho colorado santiagueño” Schinopsis Schinopsis haenkeana “horco quebracho” Schinopsis balansae Durmientes Sámara “quebracho colorado chaqueño” O. Sapindales, Fam ANACARDIACEAE Pistacia vera “pistacho” Mangifera indica “mango” Anacardium occidentale “cajú o marañon” Drupa Drupa nuez receptáculo O. Sapindales, Fam SIMAROUBACEAE Disco Quassia amara nectarífero Ailanthus altissima “arbol del cielo Cápsula alada O. Sapindales, Fam MELIACEAE Melia azedarach “paraiso” Cedrela fisilis “cedro misionero” A() Disco nectarífero Cápsula c/ semillas aladas Drupa Infl. panoja O. Sapindales, Fam RUTACEAE C5 HESPERIDIO A() () K5 Citrus C.aurantium C.paradici “nararanjo agrio” “pomelo” C.limon “limón” C.reticulata “mandarino” C.sinensis Poncirus trifoliata “naranjo dulce” O. Sapindales, Fam RUTACEAE Balfourodendron riedelianum “guatambú” Sierras de Córdoba madera Sámara Fagara coco “cocucho” Schinus sp. y Schinopsis sp. Selva Misiones Cápsula Disco nectarífero Hojas compuestas c/aguijones Folículo Ruta chalepensis “ruda” O. -
Tema 20 (12): Familia Rutáceas
Tema 20 (12): Familia Rutáceas Prof. Francisco J. García Breijo Unidad Docente de Botánica Dep. Ecosistemas Agroforestales Escuela Técnica Superior del Medio Rural y Enología Universidad Politécnica de Valencia Diapositiva nº: 1 Taxonomía -1 Pertenece: al clado Eudicotiledóneas (A.P.G. II, 2003) Clado Eudicots nucleares Clado Rósidas Clado Eurósidas II a la subclase Rosidae (Takhtajan, 1997; Cronquist, 1981) al superorden Rutanae (Thorne, 1992) al superorden Rutiflorae (Dahlgren, 1985) Familia Rutáceas ©: Francisco José García Breijo Diapositiva 2 Unidad Docente de Botánica. ETSMRE, UPV Taxonomía -2 Pertenece al: Orden Sapindales (A.P.G. II, 2003; Cronquist, 1981) Superorden Rutanae, orden Rutales (Takhtajan, 1997). Orden Rutales (Thorne, 1992; Dahlgren, 1985) Familia Rutáceas ©: Francisco José García Breijo Diapositiva 3 Unidad Docente de Botánica. ETSMRE, UPV Generalidades Rutaceae Juss. Distribución: trópicos y regiones templadas cálidas, especialmente el S de África y en Australia. Importancia económica: en alimentación (frutos cítricos: naranjas, limones, ...; Citrus, Aegle, Casimiroa, Clausena, etc.), industria (aceites para perfumería) y medicina (Ruta, Galipea, Toddalia). Familia Rutáceas ©: Francisco José García Breijo Diapositiva 4 Unidad Docente de Botánica. ETSMRE, UPV Distribución Caracteres diagnósticos -1 HÁBITO: Gran familia de árboles y arbustos, en algún caso hierbas, de gran importancia económica por ser productores de los frutos cítricos comerciales. El nombre de la familia viene de la ruda (Ruta graveolens). Pequeña mata perenne, aromática, que ha venido cultivándose durante siglos como ornamental. Abundan en esta familia los conductos secretores lisígenos con aceites esenciales en su interior. Las hojas de ruda al ser estrujadas desprenden un olor desagradable. Plantas mesófitas o xerófitas. Familia Rutáceas ©: Francisco José García Breijo Diapositiva 6 Unidad Docente de Botánica. -
Protecting the Natural Endangered Heritage in Romania, Croatia, Poland and Slovenia
Available online at http://journals.usamvcluj.ro/index.php/promediu ProEnvironment ProEnvironment 11 (2018) 143-157 Review The Rights of Alive – Protecting the Natural Endangered Heritage in Romania, Croatia, Poland and Slovenia CIOANCĂ Lia-Maria1*, Luminița UJICĂ2, Marijana MIKULANDRA3, Ryszard SOŁTYSIK4, Maja ČERNE5 1Babeș-Bolyai University Cluj-Napoca, University Extension Bistrița, Andrei Mureşanu st., no. 3-5, Romania 2High Scool with Sportive Program Bistrița, Calea Moldovei no. 18. Romania 3OŠ Tina Ujevi Osnovna škola Tina Ujevića Koturaška cesta 75 10000 Zagreb, Croatia 4Zespół Szkół Nr1 w Humniskach, 36 – 206, Huminska 264, Poland 5OŠ Rogaška Slatina, Kidričeva ulica 24, 3250 Rogaška Slatina Slovenia Received 23 July 2018; received and revised form 18 September 2018; accepted 25 September 2018 Available online 30 September 2018 Abstract This article deals with the impact of destructive actions of human population on natural world. As a consequence of relying on non-renewable energy sources and reckless encroachment on natural habitats a lot of plant and animal species have become extinct and more and more species are getting endangered. Thus celebrating biodiversity and solidarity for all life forms, from the tiniest one to the most complex eco-systems, has been in the centre of our attention and operational activities. Keywords: durable development, ecology, endangered species. 1. Introduction Within the massive destruction of forests and forest climate, we witness significant changes, Just as the man has passed from the stage of sometimes radical of the environment. For the animal hunter and collector up to animal raiser and farmer, and plants which have survived through a long period the natural vegetation has increasingly been subject of adaptation, a new difficult era starts again. -
The Relation Between Road Crack Vegetation and Plant Biodiversity in Urban Landscape
Int. J. of GEOMATE, June, 2014, Vol. 6, No. 2 (Sl. No. 12), pp. 885-891 Geotech., Const. Mat. & Env., ISSN:2186-2982(P), 2186-2990(O), Japan THE RELATION BETWEEN ROAD CRACK VEGETATION AND PLANT BIODIVERSITY IN URBAN LANDSCAPE Taizo Uchida1, JunHuan Xue1,2, Daisuke Hayasaka3, Teruo Arase4, William T. Haller5 and Lyn A. Gettys5 1Faculty of Engineering, Kyushu Sangyo University, Japan; 2Suzhou Polytechnic Institute of Agriculture, China; 3Faculty of Agriculture, Kinki University, Japan; 4Faculty of Agriculture, Shinshu University, Japan; 5Center for Aquatic and Invasive Plants, University of Florida, USA ABSTRACT: The objective of this study is to collect basic information on vegetation in road crack, especially in curbside crack of road, for evaluating plant biodiversity in urban landscape. A curbside crack in this study was defined as a linear space (under 20 mm in width) between the asphalt pavement and curbstone. The species composition of plants invading curbside cracks was surveyed in 38 plots along the serial National Route, over a total length of 36.5 km, in Fukuoka City in southern Japan. In total, 113 species including native plants (83 species, 73.5%), perennial herbs (57 species, 50.4%) and woody plants (13 species, 11.5%) were recorded in curbside cracks. Buried seeds were also obtained from soil in curbside cracks, which means the cracks would possess a potential as seed bank. Incidentally, no significant differences were found in the vegetation characteristics of curbside cracks among land-use types (Kolmogorov-Smirnov Test, P > 0.05). From these results, curbside cracks would be likely to play an important role in offering habitat for plants in urban area. -
FLORA from FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE of MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2
ISSN: 2601 – 6141, ISSN-L: 2601 – 6141 Acta Biologica Marisiensis 2018, 1(1): 60-70 ORIGINAL PAPER FLORA FROM FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE OF MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2 1Department of Pharmaceutical Botany, University of Medicine and Pharmacy of Tîrgu Mureş, Romania 2Mureş County Museum, Department of Natural Sciences, Tîrgu Mureş, Romania *Correspondence: Silvia OROIAN [email protected] Received: 2 July 2018; Accepted: 9 July 2018; Published: 15 July 2018 Abstract The aim of this study was to identify a potential source of medicinal plant from Transylvanian Plain. Also, the paper provides information about the hayfields floral richness, a great scientific value for Romania and Europe. The study of the flora was carried out in several stages: 2005-2008, 2013, 2017-2018. In the studied area, 397 taxa were identified, distributed in 82 families with therapeutic potential, represented by 164 medical taxa, 37 of them being in the European Pharmacopoeia 8.5. The study reveals that most plants contain: volatile oils (13.41%), tannins (12.19%), flavonoids (9.75%), mucilages (8.53%) etc. This plants can be used in the treatment of various human disorders: disorders of the digestive system, respiratory system, skin disorders, muscular and skeletal systems, genitourinary system, in gynaecological disorders, cardiovascular, and central nervous sistem disorders. In the study plants protected by law at European and national level were identified: Echium maculatum, Cephalaria radiata, Crambe tataria, Narcissus poeticus ssp. radiiflorus, Salvia nutans, Iris aphylla, Orchis morio, Orchis tridentata, Adonis vernalis, Dictamnus albus, Hammarbya paludosa etc. Keywords: Fărăgău, medicinal plants, human disease, Mureş County 1. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Hillier Nurseries Launches Choisya 'Aztec Gold', the Latest Masterpiece
RHS Chelsea 2012: Hillier New Plant Introduction Hillier Nurseries launches Choisya ‘Aztec Gold’, the latest masterpiece from Alan Postill, 50 years a Hillier plantsman New to Hillier Nurseries, the UK & the world in 2012 Celebrating 50 years this summer as a Hillier plantsman, man and boy, Alan Postill has done it again. The highly respected propagator of Daphne bholua ‘Jaqueline Postill’ and Digitalis ‘Serendipity’ has bred a sensational new golden form of the Mexican orange blossom, which is up for Chelsea New Plant of the Year. Choisya ‘Aztec Gold’ is an attractive, bushy, evergreen shrub with striking, golden, aromatic foliage - rich gold at the ends of the shoots, green-gold in the heart of the plant. Its slender leaflets are very waxy and weather resistant, and do not suffer the winter damage of other golden foliage varieties. In spring and early summer, and then again in autumn, delicious almond-scented white flowers appear, attracting bees and butterflies. In Choisya ‘Aztec Gold’, Alan Postill has realised his objective of creating a remarkably strong-growing, golden foliage form of the Choisya ‘Aztec Pearl’, which Hillier introduced 30 years ago in1982, and has since become one of the nation’s best-selling and best-loved garden shrubs. Knowing its pedigree and performance in real gardens, Alan selected Choisya ‘Aztec Pearl’ as one of the parent plants for the new variety. Choisya ‘Aztec Gold’ performs well in any reasonably fertile well-drained soil in full sun or partial shade, although the colour will be less golden in shade, of course. It is ideally suited to a mixed border or a large container, and planted with other gold foliage or gold variegated shrubs, or contrasted with blue flowers or plum-purple foliage. -
Downloading Or Purchasing Online At
On-farm Evaluation of Grafted Wildflowers for Commercial Cut Flower Production OCTOBER 2012 RIRDC Publication No. 11/149 On-farm Evaluation of Grafted Wildflowers for Commercial Cut Flower Production by Jonathan Lidbetter October 2012 RIRDC Publication No. 11/149 RIRDC Project No. PRJ-000509 © 2012 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-328-4 ISSN 1440-6845 On-farm Evaluation of Grafted Wildflowers for Commercial Cut Flower Production Publication No. 11/149 Project No. PRJ-000509 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright. -
Ruta Essential Oils: Composition and Bioactivities
molecules Review Ruta Essential Oils: Composition and Bioactivities Lutfun Nahar 1,* , Hesham R. El-Seedi 2, Shaden A. M. Khalifa 3, Majid Mohammadhosseini 4 and Satyajit D. Sarker 5,* 1 Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Šlechtitel ˚u27, 78371 Olomouc, Czech Republic 2 Biomedical Centre (BMC), Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden; [email protected] 3 Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden; [email protected] 4 Department of Chemistry, College of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran; [email protected] 5 Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK * Correspondence: [email protected] (L.N.); [email protected] (S.D.S.); Tel.: +44-(0)-1512312096 (S.D.S.) Abstract: Ruta L. is a typical genus of the citrus family, Rutaceae Juss. and comprises ca. 40 different species, mainly distributed in the Mediterranean region. Ruta species have long been used in traditional medicines as an abortifacient and emmenagogue and for the treatment of lung diseases and microbial infections. The genus Ruta is rich in essential oils, which predominantly contain aliphatic ketones, e.g., 2-undecanone and 2-nonanone, but lack any significant amounts of terpenes. Three Ruta species, Ruta chalepensis L., Ruta graveolens L., and Ruta montana L., have been extensively studied for the composition of their essential oils and several bioactivities, revealing their potential medicinal and agrochemical applications. -
Himalayan Aromatic Medicinal Plants: a Review of Their Ethnopharmacology, Volatile Phytochemistry, and Biological Activities
medicines Review Himalayan Aromatic Medicinal Plants: A Review of their Ethnopharmacology, Volatile Phytochemistry, and Biological Activities Rakesh K. Joshi 1, Prabodh Satyal 2 and Wiliam N. Setzer 2,* 1 Department of Education, Government of Uttrakhand, Nainital 263001, India; [email protected] 2 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-256-824-6519; Fax: +1-256-824-6349 Academic Editor: Lutfun Nahar Received: 24 December 2015; Accepted: 3 February 2016; Published: 19 February 2016 Abstract: Aromatic plants have played key roles in the lives of tribal peoples living in the Himalaya by providing products for both food and medicine. This review presents a summary of aromatic medicinal plants from the Indian Himalaya, Nepal, and Bhutan, focusing on plant species for which volatile compositions have been described. The review summarizes 116 aromatic plant species distributed over 26 families. Keywords: Jammu and Kashmir; Himachal Pradesh; Uttarakhand; Nepal; Sikkim; Bhutan; essential oils 1. Introduction The Himalya Center of Plant Diversity [1] is a narrow band of biodiversity lying on the southern margin of the Himalayas, the world’s highest mountain range with elevations exceeding 8000 m. The plant diversity of this region is defined by the monsoonal rains, up to 10,000 mm rainfall, concentrated in the summer, altitudinal zonation, consisting of tropical lowland rainforests, 100–1200 m asl, up to alpine meadows, 4800–5500 m asl. Hara and co-workers have estimated there to be around 6000 species of higher plants in Nepal, including 303 species endemic to Nepal and 1957 species restricted to the Himalayan range [2–4]. -
Plants for Butterflies
Plants for Butterflies “A Monarch will respond Brightly colored butterflies can be a welcome addition to your garden, not only when its feet touch a sugar because of the elegance, beauty, and interest they will add, but also because of solution with only one part their usefulness in pollinating flowers . of sugar for 120,400 parts of It’s easy to attract single species by planting any of the trees, shrubs, vines, or water. Its feet are more than perennials from the lists below. Attracting a wide range of species involves di- 2000 times as sensitive as the verse plantings that provide the needs of all life stages of the butterfly. They will human tounge.” (Butterflies need places to lay eggs, food plants for their larvae (caterpillars), places to form & Moths, D. H. Patent) chrysalides and a nectar sources for adults. Trees One way to invite butterflies to your garden is to plant flowering trees. The adults will visit and dine on the nectar, carrying away pollen with them and pol- linating other trees as they go. Trees Nectar Larval Food Zone Plant Culture Acer (Maple) W. Swallowtail z6 S-PSh/M Monarch Butterfly Alnus spp (Alder) Green Comma (E), W. Swallowtail z3-7 S/M-W Betula spp (Birch) Tiger Swallowtail, Crescents z3-7 S/M-W Colocedrus sp (Incense Cedar) Nelsons Hairstreak (W) z5 S/M-D Butterfly Garden Celtis spp (Hackberry) Emperor (sev.), Snout (E) z4-6 S/M Essentials Cornus spp (Dogwood) Spring Azure z3-7 S-PSh/M Butterflies need sun, water, a Crataegus spp (Hawthorn) x Swallowtail (W) z4-6 S/M food source (nectar), and a Juniperus virginiana (E. -
The New York Botanical Garden
Vol. XV DECEMBER, 1914 No. 180 JOURNAL The New York Botanical Garden EDITOR ARLOW BURDETTE STOUT Director of the Laboratories CONTENTS PAGE Index to Volumes I-XV »33 PUBLISHED FOR THE GARDEN AT 41 NORTH QUBKN STRHBT, LANCASTER, PA. THI NEW ERA PRINTING COMPANY OFFICERS 1914 PRESIDENT—W. GILMAN THOMPSON „ „ _ i ANDREW CARNEGIE VICE PRESIDENTS J FRANCIS LYNDE STETSON TREASURER—JAMES A. SCRYMSER SECRETARY—N. L. BRITTON BOARD OF- MANAGERS 1. ELECTED MANAGERS Term expires January, 1915 N. L. BRITTON W. J. MATHESON ANDREW CARNEGIE W GILMAN THOMPSON LEWIS RUTHERFORD MORRIS Term expire January. 1916 THOMAS H. HUBBARD FRANCIS LYNDE STETSON GEORGE W. PERKINS MVLES TIERNEY LOUIS C. TIFFANY Term expire* January, 1917 EDWARD D. ADAMS JAMES A. SCRYMSER ROBERT W. DE FOREST HENRY W. DE FOREST J. P. MORGAN DANIEL GUGGENHEIM 2. EX-OFFICIO MANAGERS THE MAYOR OP THE CITY OF NEW YORK HON. JOHN PURROY MITCHEL THE PRESIDENT OP THE DEPARTMENT OP PUBLIC PARES HON. GEORGE CABOT WARD 3. SCIENTIFIC DIRECTORS PROF. H. H. RUSBY. Chairman EUGENE P. BICKNELL PROF. WILLIAM J. GIES DR. NICHOLAS MURRAY BUTLER PROF. R. A. HARPER THOMAS W. CHURCHILL PROF. JAMES F. KEMP PROF. FREDERIC S. LEE GARDEN STAFF DR. N. L. BRITTON, Director-in-Chief (Development, Administration) DR. W. A. MURRILL, Assistant Director (Administration) DR. JOHN K. SMALL, Head Curator of the Museums (Flowering Plants) DR. P. A. RYDBERG, Curator (Flowering Plants) DR. MARSHALL A. HOWE, Curator (Flowerless Plants) DR. FRED J. SEAVER, Curator (Flowerless Plants) ROBERT S. WILLIAMS, Administrative Assistant PERCY WILSON, Associate Curator DR. FRANCIS W. PENNELL, Associate Curator GEORGE V.