Symmetries and Point Group in a Nut Shell

Total Page:16

File Type:pdf, Size:1020Kb

Symmetries and Point Group in a Nut Shell 30 Phys520.nb 5 Symmetries and point group in a nut shell 5.1. Basic ideas: 5.1.1. Symmetry operations ◼ Symmetry: A system remains invariant under certain operation. These operations are called symmetry operations Typically symmetry operations in crystals: (lattice) translations, space rotations, mirror reflections, time-reversal, ... ◼ The product of two symmetry operations: Consider two symmetry operations, A and B. If we perform A first and then B, this is defined as the product B A. If we first perform B and then A, then this is called the product A B ◼ The inverse operation: If A undoes B, then A is the inverse of B, A = B-1. It is easy to notice that if A undoes B, then B will also undo A. So A and B are the inverse of each other. A = B-1 and B = A-1 ◼ The identity: doing nothing. If A B = B A = I, we say A = B-1. 5.1.2. Groups A group: a set of elements and defines a product. The product satisfies four conditions ◼ Closure: If A and B are two elements, A B is also an element ◼ Identity: there is one and only one identity element (I), such that A I = I A = A for any element A in the group. ◼ Inverse: For any element A, there is one and only one element A-1, such that A A-1 = A-1 A = I ◼ Associativity: A (B C) = (A B) C Note: in general, we don’t require A B = B A. If this is true, the group is called an abelian group. If not, it is a nonabelian group. Examples: ◼ All integers and “+” form a group ◼ Positive integers and “+” doesn’t form a group ◼ Nonzero rational numbers and “×” from a group ◼ Rational numbers and “×” doesn’t form a group, because 0 has no inverse. ◼ A single translation by a lattice vector a1 (Ta1 ) doesn't form a group, because Ta1 Ta1 is NOT an element. n ◼ All lattice translations parallel to the lattice vector a1 (Ta1 where n is an integer, which means translation by n a1) form a group. ◼ All lattice translations by arbitrary lattice vector n1 a1 + n2 a2 + n3 a3 form a group. 5.1.3. Lattice translations All lattice translations form a group. TX TY = TX+Y (5.1) where X = n1 a1 + n2 a2 + n3 a3 and Y = m1 a1 + m2 a2 + m3 a3 are two lattice vectors. And Phys520.nb 31 X + Y = (n1 + m1) a1 + (n2 + m2) a2 + (n3 + m3) a3 (5.2) is also a lattice vector. This is an abelian group, because X + Y = Y +X. Note: A group formed by translations is abelian. A group formed by rotations may not be abelian. 5.2. Point group For crystals, all rotations, reflections, inversions, and their combinations form a group: the point group. 5.2.1. Rotations and reflections The operations includes: ◼ Identity: E ◼ Rotations Cn: rotation along some axis by 2 π/n n m n-m It is easy to check that Cn = E. And the inverse of Cn is Cn . ◼ Inversion: I (x,y,z becomes -x, -y, -z) Inversion changes parity (or say chirality), i.e. left-handed ↔ right-handed ◼ Mirror reflection: σ. σ = I C2 = C2 I (5.3) where I is inversion and C2 is 180 degree rotation along an axis perpendicular to the mirror plane ◼ Sn = σ Cn A rotation Cn followed by a mirror reflection perpendicular to the rotating axis. 5.2.2. Examples: ◼ C1: only one operator: the identity {E}. Examples: some crystals with triclinic Bravais lattices. (NOT all crystals with triclinic lattices have C1 symmetry. Some of them have Cs) ◼ Cs: two operations:{E, I}. The symmetry of a triclinic Bravais lattice (ignoring any structure inside each unit cell) ◼ C2: two operations:{E, C2}, where C2 is 180-degree rotation along z. Examples: some of the crystals with a monoclinic Bravais lattice. ◼ D2: if we add 180-degree rotation along x to C2, then we must also add 180-degree rotation along y, because a C2 rotation along x followed by a C2 rotation along z is equivalent to a C2 rotation along y. The closure condition requires us to add the fourth element to the group. This group is known as D2. ◼ Oh: largest lattice point group with 48 elements. All symmetry operators for a simple cubic lattice (ignoring any structure inside each unit cell) 5.2.3. Crystallographic restriction theorem In a crystal, the lattice translational symmetry enforces a constrain on rotations Cn. The value of n can only be 1 (identity), 2, 3, 4 or 6. Key implication: it is impossible to have a crystal with 5-fold rotational symmetry. (possible in quasi-crystals but not crystals). Proof: Consider one chain in the Bravais lattice (blue points). Rotate the chain along the perpendicular direction by angle θ and -θ. If rotation by θ is a symmetry operation, -θ rotational is also a symmetry operation (inverse). Image from wikipedia If both θ and -θ are symmetry operators, the green and orange points must also be lattice points of the same Bravais lattice, and thus the distance between a green and orange points (marked as m a) must be an integer times the lattice constant a. Two sides of the triangle has length a. The third side is m a. The top angle is 2 π - 2 θ. Thus geometry tells us that 32 Phys520.nb If both θ and -θ are symmetry operators, the green and orange points must also be lattice points of the same Bravais lattice, and thus the distance between a green and orange points (marked as m a) must be an integer times the lattice constant a. Two sides of the triangle has length a. The third side is m a. The top angle is 2 π - 2 θ. Thus geometry tells us that 1 - cos(π - 2 θ) 1 + cos(2 θ) m a = a2 + a2 - 2 a2 cos(2 π - 2 θ) = 2 a = 2 a = 2 a cos(θ) (5.4) 2 2 m cos θ = (5.5) 2 Because m is an integer and -1 ≤ cosθ ≤ +1, m can only take the following values: -2, -1, 0, +1, +2. So θ can only be π, 2 π/3, π/2, π/3, 0. 5.3. Lattice systems There are multiple ways to classify crystals. In earlier chapters, we introduced the idea of crystal families. There are 6 crystal families. Each family contains 1,2, 3 or 4 Bravais lattices, and there are 14 Bravais lattice in total. After we understand the ideas of point groups, we can introduce a new classification, known as lattice system. There 7 lattice systems, one more than crystal families. Lattice systems are very close to crystal families. The only modification is to split hexagonal crystal family into two lattice systems: hexagonal and rhombohedral. NOTE: there is an hexagonal crystal family and there is a hexagonal lattice system. They are both called “hexagonal”, but they are not the same thing. Th hexagonal lattice system is a subset of the hexagonal crystal family. The idea of lattice systems is as the following: assume that we draw all possible Bravais lattice and we put a sphere at each Bravais lattice point (ignoring details inside each primitive unit). Then we can ask what is the point group for all these lattices? It turns out that there are only 7 possible point groups here. They give us the 7 lattice systems. NOTE: in a crystal, the degeneracy is often higher than the prediction below for 2 reasons (1) many crystal has additional symmetries, e.g. the time-reversal symmetry and (2) when we consider spin-1/2 particles, like electrons, there are additional representations, known as double-group representations. This extra representations are from quantum physics. 5.3.1. Triclinic lattice system with Ci symmetry Triclinic lattice system coincides with the triclinic crystal family. Lattices in this lattice systems has Ci symmetry, identity and inversion. Ci contains 2 elements, and thus 2 1D representations. Because only has 1D representations, no degeneracy is in general expected in this type of crystals. 5.3.2. Monoclinic lattice system with C2 h symmetry Monoclinic lattice system coincides with the monoclinic crystal family. Lattices in this lattice systems has C2 h symmetry. C2 h contains identity, a 2-fold rotation (perpendicular to the non-rectangular surface), a mirror plane (parallel to the non-rectangular surface), and inversion. Phys520.nb 33 C2 h contains 4 elements, and thus 4 1D representations. Because only has 1D representations, no degeneracy is in general expected in this type of crystals. 5.3.3. Orthorhombic lattice system with D2 h symmetry Orthorhombic lattice system coincides with the orthorhombic crystal family. Lattices in this lattice systems has D2 h symmetry, like a cuboid. The D2 h group contains 8 elements: Identity, 2-fold rotations along x, y and z, inversion I, and three mirror planes xy, yz xz. D2 h contains 8 elements, and 8 1D representations. Because only has 1D representations, no degeneracy is in general expected in this type of crystals. 5.3.4. tetragonal lattice system with D4 h symmetry Orthorhombic lattice system coincides with the orthorhombic crystal family. Lattices in this lattice systems has D4 h symmetry, like a square prism The D4 h group contains 16 elements: Identity, 90 and 180 and 270 degree rotations along z, 2-fold rotations along x or y, 2-fold rotations along x+y or x-y, inversion I, mirror planes xy, yz, xz, (x+y)z and (x-y)z, 90 and 270 degree improper rotation along z.
Recommended publications
  • In Order for the Figure to Map Onto Itself, the Line of Reflection Must Go Through the Center Point
    3-5 Symmetry State whether the figure appears to have line symmetry. Write yes or no. If so, copy the figure, draw all lines of symmetry, and state their number. 1. SOLUTION: A figure has reflectional symmetry if the figure can be mapped onto itself by a reflection in a line. The figure has reflectional symmetry. In order for the figure to map onto itself, the line of reflection must go through the center point. Two lines of reflection go through the sides of the figure. Two lines of reflection go through the vertices of the figure. Thus, there are four possible lines that go through the center and are lines of reflections. Therefore, the figure has four lines of symmetry. eSolutionsANSWER: Manual - Powered by Cognero Page 1 yes; 4 2. SOLUTION: A figure has reflectional symmetry if the figure can be mapped onto itself by a reflection in a line. The given figure does not have reflectional symmetry. There is no way to fold or reflect it onto itself. ANSWER: no 3. SOLUTION: A figure has reflectional symmetry if the figure can be mapped onto itself by a reflection in a line. The given figure has reflectional symmetry. The figure has a vertical line of symmetry. It does not have a horizontal line of symmetry. The figure does not have a line of symmetry through the vertices. Thus, the figure has only one line of symmetry. ANSWER: yes; 1 State whether the figure has rotational symmetry. Write yes or no. If so, copy the figure, locate the center of symmetry, and state the order and magnitude of symmetry.
    [Show full text]
  • Molecular Symmetry
    Molecular Symmetry Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy) – used with group theory to predict vibrational spectra for the identification of molecular shape, and as a tool for understanding electronic structure and bonding. Symmetrical : implies the species possesses a number of indistinguishable configurations. 1 Group Theory : mathematical treatment of symmetry. symmetry operation – an operation performed on an object which leaves it in a configuration that is indistinguishable from, and superimposable on, the original configuration. symmetry elements – the points, lines, or planes to which a symmetry operation is carried out. Element Operation Symbol Identity Identity E Symmetry plane Reflection in the plane σ Inversion center Inversion of a point x,y,z to -x,-y,-z i Proper axis Rotation by (360/n)° Cn 1. Rotation by (360/n)° Improper axis S 2. Reflection in plane perpendicular to rotation axis n Proper axes of rotation (C n) Rotation with respect to a line (axis of rotation). •Cn is a rotation of (360/n)°. •C2 = 180° rotation, C 3 = 120° rotation, C 4 = 90° rotation, C 5 = 72° rotation, C 6 = 60° rotation… •Each rotation brings you to an indistinguishable state from the original. However, rotation by 90° about the same axis does not give back the identical molecule. XeF 4 is square planar. Therefore H 2O does NOT possess It has four different C 2 axes. a C 4 symmetry axis. A C 4 axis out of the page is called the principle axis because it has the largest n . By convention, the principle axis is in the z-direction 2 3 Reflection through a planes of symmetry (mirror plane) If reflection of all parts of a molecule through a plane produced an indistinguishable configuration, the symmetry element is called a mirror plane or plane of symmetry .
    [Show full text]
  • The Cubic Groups
    The Cubic Groups Baccalaureate Thesis in Electrical Engineering Author: Supervisor: Sana Zunic Dr. Wolfgang Herfort 0627758 Vienna University of Technology May 13, 2010 Contents 1 Concepts from Algebra 4 1.1 Groups . 4 1.2 Subgroups . 4 1.3 Actions . 5 2 Concepts from Crystallography 6 2.1 Space Groups and their Classification . 6 2.2 Motions in R3 ............................. 8 2.3 Cubic Lattices . 9 2.4 Space Groups with a Cubic Lattice . 10 3 The Octahedral Symmetry Groups 11 3.1 The Elements of O and Oh ..................... 11 3.2 A Presentation of Oh ......................... 14 3.3 The Subgroups of Oh ......................... 14 2 Abstract After introducing basics from (mathematical) crystallography we turn to the description of the octahedral symmetry groups { the symmetry group(s) of a cube. Preface The intention of this account is to provide a description of the octahedral sym- metry groups { symmetry group(s) of the cube. We first give the basic idea (without proofs) of mathematical crystallography, namely that the 219 space groups correspond to the 7 crystal systems. After this we come to describing cubic lattices { such ones that are built from \cubic cells". Finally, among the cubic lattices, we discuss briefly the ones on which O and Oh act. After this we provide lists of the elements and the subgroups of Oh. A presentation of Oh in terms of generators and relations { using the Dynkin diagram B3 is also given. It is our hope that this account is accessible to both { the mathematician and the engineer. The picture on the title page reflects Ha¨uy'sidea of crystal structure [4].
    [Show full text]
  • Chapter 1 – Symmetry of Molecules – P. 1
    Chapter 1 – Symmetry of Molecules – p. 1 - 1. Symmetry of Molecules 1.1 Symmetry Elements · Symmetry operation: Operation that transforms a molecule to an equivalent position and orientation, i.e. after the operation every point of the molecule is coincident with an equivalent point. · Symmetry element: Geometrical entity (line, plane or point) which respect to which one or more symmetry operations can be carried out. In molecules there are only four types of symmetry elements or operations: · Mirror planes: reflection with respect to plane; notation: s · Center of inversion: inversion of all atom positions with respect to inversion center, notation i · Proper axis: Rotation by 2p/n with respect to the axis, notation Cn · Improper axis: Rotation by 2p/n with respect to the axis, followed by reflection with respect to plane, perpendicular to axis, notation Sn Formally, this classification can be further simplified by expressing the inversion i as an improper rotation S2 and the reflection s as an improper rotation S1. Thus, the only symmetry elements in molecules are Cn and Sn. Important: Successive execution of two symmetry operation corresponds to another symmetry operation of the molecule. In order to make this statement a general rule, we require one more symmetry operation, the identity E. (1.1: Symmetry elements in CH4, successive execution of symmetry operations) 1.2. Systematic classification by symmetry groups According to their inherent symmetry elements, molecules can be classified systematically in so called symmetry groups. We use the so-called Schönfliess notation to name the groups, Chapter 1 – Symmetry of Molecules – p. 2 - which is the usual notation for molecules.
    [Show full text]
  • COXETER GROUPS (Unfinished and Comments Are Welcome)
    COXETER GROUPS (Unfinished and comments are welcome) Gert Heckman Radboud University Nijmegen [email protected] October 10, 2018 1 2 Contents Preface 4 1 Regular Polytopes 7 1.1 ConvexSets............................ 7 1.2 Examples of Regular Polytopes . 12 1.3 Classification of Regular Polytopes . 16 2 Finite Reflection Groups 21 2.1 NormalizedRootSystems . 21 2.2 The Dihedral Normalized Root System . 24 2.3 TheBasisofSimpleRoots. 25 2.4 The Classification of Elliptic Coxeter Diagrams . 27 2.5 TheCoxeterElement. 35 2.6 A Dihedral Subgroup of W ................... 39 2.7 IntegralRootSystems . 42 2.8 The Poincar´eDodecahedral Space . 46 3 Invariant Theory for Reflection Groups 53 3.1 Polynomial Invariant Theory . 53 3.2 TheChevalleyTheorem . 56 3.3 Exponential Invariant Theory . 60 4 Coxeter Groups 65 4.1 Generators and Relations . 65 4.2 TheTitsTheorem ........................ 69 4.3 The Dual Geometric Representation . 74 4.4 The Classification of Some Coxeter Diagrams . 77 4.5 AffineReflectionGroups. 86 4.6 Crystallography. .. .. .. .. .. .. .. 92 5 Hyperbolic Reflection Groups 97 5.1 HyperbolicSpace......................... 97 5.2 Hyperbolic Coxeter Groups . 100 5.3 Examples of Hyperbolic Coxeter Diagrams . 108 5.4 Hyperbolic reflection groups . 114 5.5 Lorentzian Lattices . 116 3 6 The Leech Lattice 125 6.1 ModularForms ..........................125 6.2 ATheoremofVenkov . 129 6.3 The Classification of Niemeier Lattices . 132 6.4 The Existence of the Leech Lattice . 133 6.5 ATheoremofConway . 135 6.6 TheCoveringRadiusofΛ . 137 6.7 Uniqueness of the Leech Lattice . 140 4 Preface Finite reflection groups are a central subject in mathematics with a long and rich history. The group of symmetries of a regular m-gon in the plane, that is the convex hull in the complex plane of the mth roots of unity, is the dihedral group of order 2m, which is the simplest example of a reflection Dm group.
    [Show full text]
  • Pose Estimation for Objects with Rotational Symmetry
    Pose Estimation for Objects with Rotational Symmetry Enric Corona, Kaustav Kundu, Sanja Fidler Abstract— Pose estimation is a widely explored problem, enabling many robotic tasks such as grasping and manipulation. In this paper, we tackle the problem of pose estimation for objects that exhibit rotational symmetry, which are common in man-made and industrial environments. In particular, our aim is to infer poses for objects not seen at training time, but for which their 3D CAD models are available at test time. Previous X 2 X 1 X 2 X 1 work has tackled this problem by learning to compare captured Y ∼ 2 Y ∼ 2 Y ∼ 2 Y ∼ 2 views of real objects with the rendered views of their 3D CAD Z ∼ 6 Z ∼ 1 Z ∼ Z ∼ 1 ∼ ∼ ∼ ∞ ∼ models, by embedding them in a joint latent space using neural Fig. 1. Many industrial objects such as various tools exhibit rotational networks. We show that sidestepping the issue of symmetry symmetries. In our work, we address pose estimation for such objects. in this scenario during training leads to poor performance at test time. We propose a model that reasons about rotational symmetry during training by having access to only a small set of that this is not a trivial task, as the rendered views may look symmetry-labeled objects, whereby exploiting a large collection very different from objects in real images, both because of of unlabeled CAD models. We demonstrate that our approach different background, lighting, and possible occlusion that significantly outperforms a naively trained neural network on arise in real scenes.
    [Show full text]
  • 12-5 Worksheet Part C
    Name ________________________________________ Date __________________ Class__________________ LESSON Reteach 12-5 Symmetry A figure has symmetry if there is a transformation of the figure such that the image and preimage are identical. There are two kinds of symmetry. The figure has a line of symmetry that divides the figure into two congruent halves. Line Symmetry one line of symmetry two lines of symmetry no line symmetry When a figure is rotated between 0° and 360°, the resulting figure coincides with the original. • The smallest angle through which the figure is rotated to coincide with itself is called the angle of rotational symmetry. • The number of times that you can get an identical figure when repeating the degree of rotation is called the order of the rotational Rotational symmetry. Symmetry angle: 180° 120° no rotational order: 2 3 symmetry Tell whether each figure has line symmetry. If so, draw all lines of symmetry. 1. 2. _________________________________________ ________________________________________ Tell whether each figure has rotational symmetry. If so, give the angle of rotational symmetry and the order of the symmetry. 3. 4. _________________________________________ ________________________________________ Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. 12-38 Holt Geometry Name ________________________________________ Date __________________ Class__________________ LESSON Reteach 12-5 Symmetry continued Three-dimensional figures can also have symmetry. Symmetry in Three Description Example Dimensions A plane can divide a figure into two Plane Symmetry congruent halves. There is a line about which a figure Symmetry About can be rotated so that the image and an Axis preimage are identical.
    [Show full text]
  • Symmetry and Groups, and Crystal Structures
    CHAPTER 3: SYMMETRY AND GROUPS, AND CRYSTAL STRUCTURES Sarah Lambart RECAP CHAP. 2 2 different types of close packing: hcp: tetrahedral interstice (ABABA) ccp: octahedral interstice (ABCABC) Definitions: The coordination number or CN is the number of closest neighbors of opposite charge around an ion. It can range from 2 to 12 in ionic structures. These structures are called coordination polyhedron. RECAP CHAP. 2 Rx/Rz C.N. Type Hexagonal or An ideal close-packing of sphere 1.0 12 Cubic for a given CN, can only be Closest Packing achieved for a specific ratio of 1.0 - 0.732 8 Cubic ionic radii between the anions and 0.732 - 0.414 6 Octahedral Tetrahedral (ex.: the cations. 0.414 - 0.225 4 4- SiO4 ) 0.225 - 0.155 3 Triangular <0.155 2 Linear RECAP CHAP. 2 Pauling’s rule: #1: the coodination polyhedron is defined by the ratio Rcation/Ranion #2: The Electrostatic Valency (e.v.) Principle: ev = Z/CN #3: Shared edges and faces of coordination polyhedra decreases the stability of the crystal. #4: In crystal with different cations, those of high valency and small CN tend not to share polyhedral elements #5: The principle of parsimony: The number of different sites in a crystal tends to be small. CONTENT CHAP. 3 (2-3 LECTURES) Definitions: unit cell and lattice 7 Crystal systems 14 Bravais lattices Element of symmetry CRYSTAL LATTICE IN TWO DIMENSIONS A crystal consists of atoms, molecules, or ions in a pattern that repeats in three dimensions. The geometry of the repeating pattern of a crystal can be described in terms of a crystal lattice, constructed by connecting equivalent points throughout the crystal.
    [Show full text]
  • Chapter 3: Transformations Groups, Orbits, and Spaces of Orbits
    Preprint typeset in JHEP style - HYPER VERSION Chapter 3: Transformations Groups, Orbits, And Spaces Of Orbits Gregory W. Moore Abstract: This chapter focuses on of group actions on spaces, group orbits, and spaces of orbits. Then we discuss mathematical symmetric objects of various kinds. May 3, 2019 -TOC- Contents 1. Introduction 2 2. Definitions and the stabilizer-orbit theorem 2 2.0.1 The stabilizer-orbit theorem 6 2.1 First examples 7 2.1.1 The Case Of 1 + 1 Dimensions 11 3. Action of a topological group on a topological space 14 3.1 Left and right group actions of G on itself 19 4. Spaces of orbits 20 4.1 Simple examples 21 4.2 Fundamental domains 22 4.3 Algebras and double cosets 28 4.4 Orbifolds 28 4.5 Examples of quotients which are not manifolds 29 4.6 When is the quotient of a manifold by an equivalence relation another man- ifold? 33 5. Isometry groups 34 6. Symmetries of regular objects 36 6.1 Symmetries of polygons in the plane 39 3 6.2 Symmetry groups of some regular solids in R 42 6.3 The symmetry group of a baseball 43 7. The symmetries of the platonic solids 44 7.1 The cube (\hexahedron") and octahedron 45 7.2 Tetrahedron 47 7.3 The icosahedron 48 7.4 No more regular polyhedra 50 7.5 Remarks on the platonic solids 50 7.5.1 Mathematics 51 7.5.2 History of Physics 51 7.5.3 Molecular physics 51 7.5.4 Condensed Matter Physics 52 7.5.5 Mathematical Physics 52 7.5.6 Biology 52 7.5.7 Human culture: Architecture, art, music and sports 53 7.6 Regular polytopes in higher dimensions 53 { 1 { 8.
    [Show full text]
  • Math 203 Lecture 12 Notes: Tessellation – a Complete Covering
    Math 103 Lecture #12 class notes page 1 Math 203 Lecture 12 notes: Note: this lecture is very “visual,” i.e., lots of pictures illustrating tessellation concepts Tessellation – a complete covering of a plane by one or more figures in a repeating pattern, with no overlapping. There are only 3 regular polygons that can tessellate a plane without being combined with other polygons: 1) equilateral triangle 2)square 3) regular hexagon. Once a basic design has been constructed, it may be extended through 3 different transformations: translation (slide), rotation (turn), or reflection (flip). FLIP: A figure has line symmetry if there is a line of reflection such that each point in the figure can be reflected into the figure. Line symmetry is sometimes referred to as mirror symmetry, axial, symmetry, bilateral symmetry, or reflective symmetry. The line of symmetry may be vertical, horizontal, or slanted. A figure may have one or more lines of symmetry, or none. Regular polygons with n sides have n lines of symmetry. Any line through the center of a circle is a line of symmetry for a circle. The circle is the most symmetric of all plane figures. The musical counterpart of horizontal reflection (across the y-axis) is called retrogression, while vertical reflection (across the x-axis) is called inversion. SLIDE: Translation (or slide translation) is one in which a figure moves without changing size or shape. It can be thought of as a motion that moves the figure from one location in a plane to another. The distance that the figure moves, or slides, is called the magnitude.
    [Show full text]
  • Crystallography: Symmetry Groups and Group Representations B
    EPJ Web of Conferences 22, 00006 (2012) DOI: 10.1051/epjconf/20122200006 C Owned by the authors, published by EDP Sciences, 2012 Crystallography: Symmetry groups and group representations B. Grenier1 and R. Ballou2 1SPSMS, UMR-E 9001, CEA-INAC / UJF-Grenoble, MDN, 38054 Grenoble, France 2Institut Néel, CNRS / UJF, 25 rue des Martyrs, BP. 166, 38042 Grenoble Cedex 9, France Abstract. This lecture is aimed at giving a sufficient background on crystallography, as a reminder to ease the reading of the forthcoming chapters. It more precisely recalls the crystallographic restrictions on the space isometries, enumerates the point groups and the crystal lattices consistent with these, examines the structure of the space group, which gathers all the spatial invariances of a crystal, and describes a few dual notions. It next attempts to familiarize us with the representation analysis of physical states and excitations of crystals. 1. INTRODUCTION Crystallography covers a wide spectrum of investigations: i- it aspires to get an insight into crystallization phenomena and develops methods of crystal growths, which generally pertains to the physics of non linear irreversible processes; ii- it geometrically describes the natural shapes and the internal structures of the crystals, which is carried out most conveniently by borrowing mathematical tools from group theory; iii- it investigates the crystallized matter at the atomic scale by means of diffraction techniques using X-rays, electrons or neutrons, which are interpreted in the dual context of the reciprocal space and transposition therein of the crystal symmetries; iv- it analyzes the imperfections of the crystals, often directly visualized in scanning electron, tunneling or force microscopies, which in some instances find a meaning by handling unfamiliar concepts from homotopy theory; v- it aims at providing means for discerning the influences of the crystal structure on the physical properties of the materials, which requires to make use of mathematical methods from representation theory.
    [Show full text]
  • Symmetry Groups of Platonic Solids
    Symmetry Groups of Platonic Solids David Newcomb Stanford University 03/09/12 Problem Describe the symmetry groups of the Platonic solids, with proofs, and with an emphasis on the icosahedron. Figure 1: The five Platonic solids. 1 Introduction The first group of people to carefully study Platonic solids were the ancient Greeks. Although they bear the namesake of Plato, the initial proofs and descriptions of such solids come from Theaetetus, a contemporary. Theaetetus provided the first known proof that there are only five Platonic solids, in addition to a mathematical description of each one. The five solids are the cube, the tetrahedron, the octahedron, the icosahedron, and the dodecahedron. Euclid, in his book Elements also offers a more thorough description of the construction and properties of each solid. Nearly 2000 years later, Kepler attempted a beautiful planetary model involving the use of the Platonic solids. Although the model proved to be incorrect, it helped Kepler discover fundamental laws of the universe. Still today, Platonic solids are useful tools in the natural sciences. Primarily, they are important tools for understanding the basic chemistry of molecules. Additionally, dodecahedral behavior has been found in the shape of the earth's crust as well as the structure of protons in nuclei. 1 The scope of this paper, however, is limited to the mathematical dissection of the sym- metry groups of such solids. Initially, necessary definitions will be provided along with important theorems. Next, the brief proof of Theaetetus will be discussed, followed by a discussion of the broad technique used to determine the symmetry groups of Platonic solids.
    [Show full text]