The Nature of Naming – Flo Oxley
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Barcoding the Asteraceae of Tennessee, Tribe Coreopsideae
Schilling, E.E., N. Mattson, and A. Floden. 2014. Barcoding the Asteraceae of Tennessee, tribe Coreopsideae. Phytoneuron 2014-101: 1–6. Published 20 October 2014. ISSN 2153 733X BARCODING THE ASTERACEAE OF TENNESSEE, TRIBE COREOPSIDEAE EDWARD E. SCHILLING, NICHOLAS MATTSON, AARON FLODEN Herbarium TENN Department of Ecology & Evolutionary Biology University of Tennessee Knoxville, Tennessee 37996 [email protected]; [email protected] ABSTRACT Results from barcoding studies of tribe Coreopsideae for the Tennessee flora using the nuclear ribosomal ITS marker are presented and include the first complete reports for 2 of the 20 species of the tribe that occur in the state, as well as updated reports for several others. Sequence data from the ITS region separate most of the species of Bidens in Tennessee from one another, but species of Coreopsis, especially those of sect. Coreopsis, have ITS sequences that are identical (or nearly so) to at least one congener. Comparisons of sequence data to GenBank records are complicated by apparent inaccuracies of older sequences as well as potentially misidentified samples. Broad survey of C. lanceolata from across its range showed little variability, but the ITS sequence of a morphologically distinct sample from a Florida limestone glade area was distinct in lacking a length polymorphism that was present in other samples. Tribe Coreopsideae is part of the Heliantheae alliance and earlier was often included in an expanded Heliantheae (Anderberg et al. 2007) in which it was usually treated as a subtribe (Crawford et al. 2009). The tribe shows a small burst of diversity in the southeastern USA involving Bidens and Coreopsis sect. -
TEXAS BLUEBONNET 'ALAMO FIRE' Lupinus Texensis(Fabaceae
TEXAS BLUEBONNET ‘ALAMO FIRE’ Lupinus texensis(Fabaceae) Characteristics Type: Annual Bloom Color: Maroon with white tip Root type: Tap Blooms: March to May Height: 1-2 feet Winter Hardy Water Use: Low Well drained soil Light: full sun Attractive to bees Soil: Dry Texas Superstar® Culture A hardy winter annual that is a relative of the "State Flower of Texas". The maroon flowers are densely arranged on a spike with a characteristic ice white terminal tip. Bluebonnets cannot tolerate poorly drained, clay based soils. Seed planted in poorly drained soils will germinate, but plants will never fully develop. Seedlings will become either stunted or turn yellow and soon die. Prefers a sloped area in light to gravelly, well drained, soil with a pH level between 6-7. Seed is scarified for quick germination. Bluebonnets require 8 hours of direct sun. Noteworthy Characteristics A Bluebonnet with an "Attitude" for the 21st century, the Alamo Fire is an exclusive introduction from Wildseed Farms, developed in conjunction with Dr. Jerry Parsons. The original plant was found in the wild near San Antonio, Texas and has taken over 20 years to develop for your gardening pleasure. Cross-pollination may occur in future generations. To keep plants true to color, remove any plant that blooms in purple or blue shades as soon as possible. Problems Plants in the genus Lupinus, especially the seeds, can be toxic to humans and animals if ingested. Garden Uses Texas bluebonnets can be grown in raised flower beds, half wooden barrels, hanging baskets, mixtures, hillsides, roadsides and meadows. . -
Desmodium Cuspidatum (Muhl.) Loudon Large-Bracted Tick-Trefoil
New England Plant Conservation Program Desmodium cuspidatum (Muhl.) Loudon Large-bracted Tick-trefoil Conservation and Research Plan for New England Prepared by: Lynn C. Harper Habitat Protection Specialist Massachusetts Natural Heritage and Endangered Species Program Westborough, Massachusetts For: New England Wild Flower Society 180 Hemenway Road Framingham, MA 01701 508/877-7630 e-mail: [email protected] • website: www.newfs.org Approved, Regional Advisory Council, 2002 SUMMARY Desmodium cuspidatum (Muhl.) Loudon (Fabaceae) is a tall, herbaceous, perennial legume that is regionally rare in New England. Found most often in dry, open, rocky woods over circumneutral to calcareous bedrock, it has been documented from 28 historic and eight current sites in the three states (Vermont, New Hampshire, and Massachusetts) where it is tracked by the Natural Heritage programs. The taxon has not been documented from Maine. In Connecticut and Rhode Island, the species is reported but not tracked by the Heritage programs. Two current sites in Connecticut are known from herbarium specimens. No current sites are known from Rhode Island. Although secure throughout most of its range in eastern and midwestern North America, D. cuspidatum is Endangered in Vermont, considered Historic in New Hampshire, and watch-listed in Massachusetts. It is ranked G5 globally. Very little is understood about the basic biology of this species. From work on congeners, it can be inferred that there are likely to be no problems with pollination, seed set, or germination. As for most legumes, rhizobial bacteria form nitrogen-fixing nodules on the roots of D. cuspidatum. It is unclear whether there have been any changes in the numbers or distribution of rhizobia capable of forming effective mutualisms with D. -
Chromosome Numbers in Compositae, XII: Heliantheae
SMITHSONIAN CONTRIBUTIONS TO BOTANY 0 NCTMBER 52 Chromosome Numbers in Compositae, XII: Heliantheae Harold Robinson, A. Michael Powell, Robert M. King, andJames F. Weedin SMITHSONIAN INSTITUTION PRESS City of Washington 1981 ABSTRACT Robinson, Harold, A. Michael Powell, Robert M. King, and James F. Weedin. Chromosome Numbers in Compositae, XII: Heliantheae. Smithsonian Contri- butions to Botany, number 52, 28 pages, 3 tables, 1981.-Chromosome reports are provided for 145 populations, including first reports for 33 species and three genera, Garcilassa, Riencourtia, and Helianthopsis. Chromosome numbers are arranged according to Robinson’s recently broadened concept of the Heliantheae, with citations for 212 of the ca. 265 genera and 32 of the 35 subtribes. Diverse elements, including the Ambrosieae, typical Heliantheae, most Helenieae, the Tegeteae, and genera such as Arnica from the Senecioneae, are seen to share a specialized cytological history involving polyploid ancestry. The authors disagree with one another regarding the point at which such polyploidy occurred and on whether subtribes lacking higher numbers, such as the Galinsoginae, share the polyploid ancestry. Numerous examples of aneuploid decrease, secondary polyploidy, and some secondary aneuploid decreases are cited. The Marshalliinae are considered remote from other subtribes and close to the Inuleae. Evidence from related tribes favors an ultimate base of X = 10 for the Heliantheae and at least the subfamily As teroideae. OFFICIALPUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution’s annual report, Smithsonian Year. SERIESCOVER DESIGN: Leaf clearing from the katsura tree Cercidiphyllumjaponicum Siebold and Zuccarini. Library of Congress Cataloging in Publication Data Main entry under title: Chromosome numbers in Compositae, XII. -
Plant Life MagillS Encyclopedia of Science
MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D. -
Coreopsis Lanceolata) in Roadside Right-Of-Ways1 Jeffrey G
ENH1103 Establishment of Lanceleaf Tickseed (Coreopsis lanceolata) in Roadside Right-of-Ways1 Jeffrey G. Norcini, Anne L. Frances, and Carrie Reinhardt Adams2 Introduction The Florida Department of Transportation’s (FDOT) roadside right-of-way (ROW) wildflower program began in 1963 (3). In addition to the aesthetic attributes of wildflower plantings, FDOT noted that the plantings would increase driver alertness and would also lower maintenance costs. The economic benefit is even more relevant today because maintenance expenses are driven by higher fuel, labor, and equipment costs. The economic value of using native wildflowers in ROWs, especially native wildflowers adapted to Florida’s environ- ment (often referred to as Florida ecotypes) began to be Figure 1. A roadside right-of-way planting of lanceleaf tickseed. recognized in the 1980s (3). Today, the ecological value Lanceleaf Tickseed and sustainability of using native wildflowers adapted to Lanceleaf tickseed occurs throughout most of the United specific regions of the country is widely acknowledged States, the main exception being the Rocky Mountain states (5). And when plantings of these types of wildflowers are (12). In Florida, the documented range of this upland established and managed appropriately, maintenance costs species extends southward into Lake County (14). Lanceleaf are minimized, as is the need to replant. tickseed frequently occurs in sandhills and disturbed habitats, including roadside ROWs. The northern Florida lanceleaf tickseed ecotype is a low-growing (6–8 inches tall), short-lived perennial that 1. This document is ENH1103, one of a series of the Environmental Horticulture Department, UF/IFAS Extension. Original publication date July 2008. Revised March 2009. -
Longevity of Scarified Seed of Three Native Legumes Under Different Seed Storage Conditions Annie Young-Mathews, Kathy Pendergrass and Amy Bartow
FINAL STUDY REPORT NRCS Plant Materials Center, Corvallis, OR December 2017 Longevity of Scarified Seed of Three Native Legumes under Different Seed Storage Conditions Annie Young-Mathews, Kathy Pendergrass and Amy Bartow ABSTRACT Seed mixes are often needed at short notice for revegetation or erosion control plantings, and many native Pacific Northwest legumes used for such plantings require mechanical scarification in order to obtain rapid, even germination. Mechanical scarification and seed storage conditions have the potential to affect the long-term viability of seed. Studies were conducted at the USDA Natural Resources Conservation Service Corvallis Plant Materials Center, Corvallis, Oregon to determine the response of riverbank lupine (Lupinus rivularis), broadleaf lupine (Lupinus latifolius), and rosy bird’s-foot trefoil (Lotus aboriginus) to seed storage environment and scarification treatment over the course of five years. Seed of all three legume species showed little response to either storage environment or scarification, retaining greater than 90% viability levels over the five years of the study. Results suggest that scarified legume seed might be maintained for several years in “ready-to-go” seed mixes, even under less than ideal storage conditions, thus facilitating rapid revegetation efforts when the need arises. INTRODUCTION In western Oregon, seed mixes are often needed at short notice for revegetation of retired logging roads, road cuts, reseeding after fires, or for other erosion control plantings. The Salem and Eugene Districts of the Oregon Bureau of Land Management (BLM) were interested in developing simple seed mixes, including legumes and grasses, which could be seeded in projects on the west slopes of the Cascades and Coast Range in western Oregon. -
Illustrated Flora of East Texas Illustrated Flora of East Texas
ILLUSTRATED FLORA OF EAST TEXAS ILLUSTRATED FLORA OF EAST TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: DAVID GIBSON AND WILL CRENSHAW DISCOVERY FUND U.S. FISH AND WILDLIFE FOUNDATION (NATIONAL PARK SERVICE, USDA FOREST SERVICE) TEXAS PARKS AND WILDLIFE DEPARTMENT SCOTT AND STUART GENTLING BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) TEMPLE-INLAND FOUNDATION SUMMERLEE FOUNDATION AMON G. CARTER FOUNDATION ROBERT J. O’KENNON PEG & BEN KEITH DORA & GORDON SYLVESTER DAVID & SUE NIVENS NATIVE PLANT SOCIETY OF TEXAS DAVID & MARGARET BAMBERGER GORDON MAY & KAREN WILLIAMSON JACOB & TERESE HERSHEY FOUNDATION INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE II OTHER CONTRIBUTORS: ALLDREDGE, LINDA & JACK HOLLEMAN, W.B. PETRUS, ELAINE J. BATTERBAE, SUSAN ROBERTS HOLT, JEAN & DUNCAN PRITCHETT, MARY H. BECK, NELL HUBER, MARY MAUD PRICE, DIANE BECKELMAN, SARA HUDSON, JIM & YONIE PRUESS, WARREN W. BENDER, LYNNE HULTMARK, GORDON & SARAH ROACH, ELIZABETH M. & ALLEN BIBB, NATHAN & BETTIE HUSTON, MELIA ROEBUCK, RICK & VICKI BOSWORTH, TONY JACOBS, BONNIE & LOUIS ROGNLIE, GLORIA & ERIC BOTTONE, LAURA BURKS JAMES, ROI & DEANNA ROUSH, LUCY BROWN, LARRY E. JEFFORDS, RUSSELL M. ROWE, BRIAN BRUSER, III, MR. & MRS. HENRY JOHN, SUE & PHIL ROZELL, JIMMY BURT, HELEN W. JONES, MARY LOU SANDLIN, MIKE CAMPBELL, KATHERINE & CHARLES KAHLE, GAIL SANDLIN, MR. & MRS. WILLIAM CARR, WILLIAM R. KARGES, JOANN SATTERWHITE, BEN CLARY, KAREN KEITH, ELIZABETH & ERIC SCHOENFELD, CARL COCHRAN, JOYCE LANEY, ELEANOR W. SCHULTZE, BETTY DAHLBERG, WALTER G. LAUGHLIN, DR. JAMES E. SCHULZE, PETER & HELEN DALLAS CHAPTER-NPSOT LECHE, BEVERLY SENNHAUSER, KELLY S. DAMEWOOD, LOGAN & ELEANOR LEWIS, PATRICIA SERLING, STEVEN DAMUTH, STEVEN LIGGIO, JOE SHANNON, LEILA HOUSEMAN DAVIS, ELLEN D. -
Vascular Flora of Gus Engeling Wildlife Management Area, Anderson County, Texas
2003SOUTHEASTERN NATURALIST 2(3):347–368 THE VASCULAR FLORA OF GUS ENGELING WILDLIFE MANAGEMENT AREA, ANDERSON COUNTY, TEXAS 1 2,3 2 JASON R. SINGHURST , JAMES C. CATHY , DALE PROCHASKA , 2 4 5 HAYDEN HAUCKE , GLENN C. KROH , AND WALTER C. HOLMES ABSTRACT - Field studies in the Gus Engeling Wildlife Management Area, which consists of approximately 4465.5 ha (11,034.1 acres) of the Post Oak Savannah of Anderson County, have resulted in an annotated checklist of the vascular flora corroborating its remarkable species richness. A total of 930 taxa (excluding family names), belonging to 485 genera and 145 families are re- corded. Asteraceae (124 species), Poaceae (114 species), Fabaceae (67 species), and Cyperaceae (61 species) represented the largest families. Six Texas endemic taxa occur on the site: Brazoria truncata var. pulcherrima (B. pulcherrima), Hymenopappus carrizoanus, Palafoxia reverchonii, Rhododon ciliatus, Trades- cantia humilis, and T. subacaulis. Within Texas, Zigadenus densus is known only from the study area. The area also has a large number of species that are endemic to the West Gulf Coastal Plain and Carrizo Sands phytogeographic distribution patterns. Eleven vegetation alliances occur on the property, with the most notable being sand post oak-bluejack oak, white oak-southern red oak-post oak, and beakrush-pitcher plant alliances. INTRODUCTION The Post Oak Savannah (Gould 1962) comprises about 4,000,000 ha of gently rolling to hilly lands that lie immediately west of the Pineywoods (Timber belt). Some (Allred and Mitchell 1955, Dyksterhuis 1948) consider the vegetation of the area as part of the deciduous forest; i.e., burned out forest that is presently regenerating. -
Garden Smart Colorado
Garden Smart Colorado A Guide to Non-Invasive Plants for Your Garden Colorado Weed Management Association Colorado Big Country, RC&D, Inc. Garden Smart Colorado A Guide to Non-Invasive Plants for Your Garden Produced by: Colorado Weed Management Association and Colorado Big Country Resource, Conservation & Development, Inc. Written and Edited by: Irene Shonle, Project Leader COVER: Original line drawing of Penstemon and Golden banner by Steve Anthony Mary Ann Bonell Tina Booton Lisa DiNardo Alicia Doran Summer 2007 Stephen Elzinga Jennifer Mantle Colorado Weed Management Association 6456 S. Niagara Ct., Centennial, CO 80111 Judy Noel Phone: 303-779-7939 Paul Schreiner www.cwma.org Karen Scopel Jude Sirota Colorado Big Country Resource, Conservation & Development, Inc. Offi ce: 401 23rd Street, Suite 105, Glenwood Springs, CO 81602 Emily Spencer Mail: PO Box 2168, Glenwood Springs CO 81602. Lisa Tasker Phone: 970-945-5494 Ext. 4 Kelly Uhing www.coloradobigcountry.org Graphics by: Alicia Doran About This Book We have arranged this book into sections divided by invasive ornamentals that are listed in Colorado as noxious weeds. Colorado's noxious weed list is divided into A, B and C categories which require specifi c levels of man- agement. These plants are no longer allowed to be sold in our state and should not be planted. Specifi c information is available from the Colorado We Wish to Thank ... State Noxious Weed Program or from your local county weed manager. Included for each invasive are alternatives that may be planted instead. We Irene Shonle, CSU Extension, for her project leadership have divided the choices by native and cultivated options and regionally by mountain and lower elevations. -
Vascular Plants of Williamson County Lupinus Texensis − TEXAS BLUEBONNET, TEXAS LUPINE [Fabaceae]
Vascular Plants of Williamson County Lupinus texensis − TEXAS BLUEBONNET, TEXAS LUPINE [Fabaceae] Lupinus texensis Hooker, TEXAS BLUEBONNET, TEXAS LUPINE. Annual, taprooted, rosetted, 1(−several)-stemmed at base, with ascending branches from principal shoot, erect, in range to 40 cm tall; shoots with basal leaves and cauline leaves, foliage some velveteen, having short to long soft hairs, lacking glandular hairs. Stems: broadly ridged with 2 lines 180° apart, to 5 mm diameter, ridge descending from each leaf, tough, green, with upward- curved long and short hairs (not truly strigose). Leaves: helically alternate, palmately 1- compound with 5−6 leaflets, long-petiolate, with stipules; stipules 2, attached to base of petiole, ascending to suberect, narrowly triangular-linear to linear, 7−11(−15) × 0.5−1.2 mm, 1-veined off-center, villous with hairs to 2 mm long especially at tip; petiole lacking pulvinus at base, shallowly channeled to midpoint and cylindric above midpoint, to 85 mm long, with upward-arched long and short hairs; petiolules = pulvinus, to 1.2 mm long, light green, hairy; blades of leaflets subequal, oblanceolate to obovate, 25−35 × 3.5−13 mm, ± folded upward from midrib, tapered at base, entire, obtuse to rounded at tip, pinnately veined but only midrib distinct, upper surface glabrous to sparsely pilose, lower surface villous with upward-pointing hairs to 1.2 mm long. Inflorescence: raceme, terminal on primary shoots, to 250 mm long, 20+-flowered, flowers alternate, bracteate, short- tomentose; peduncle erect, cylindric, 15−45 mm long increasing 2× in fruit, hollow; rachis slightly angled with projecting bractlet bases; bractlet subtending pedicel, cupped-ovate to cupped-lanceolate to cupped-ovate, 2.5−4 mm long, somewhat papery, green (colorless), soft-hairy on lower surface, abscising from persistent base, base becoming part of swollen pedicel in developing fruit; pedicel initially spreading in fruit ascending, cylindric, 4.5−7.5 mm long increasing 2× in fruit, short-tomentose to tomentose. -
Constituents of Coreopsis Lanceolata Flower and Their Dipeptidyl Peptidase IV Inhibitory Effects
molecules Article Constituents of Coreopsis lanceolata Flower and Their Dipeptidyl Peptidase IV Inhibitory Effects Bo-Ram Kim 1,2, Sunil Babu Paudel 3, Joo-Won Nam 3 , Chang Hyun Jin 1 , Ik-Soo Lee 2,* and Ah-Reum Han 1,* 1 Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Korea; [email protected] (B.-R.K.); [email protected] (C.H.J.) 2 College of Pharmacy, Chonnam National University, Gwangju 61186, Korea 3 College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo 38541, Korea; [email protected] (S.B.P.); [email protected] (J.-W.N.) * Correspondence: [email protected] (I.-S.L.); [email protected] (A.-R.H.); Tel.: +82-62-530-2932 (I.-S.L.); +82-63-570-3167 (A.-R.H.) Academic Editor: Cristina Forzato Received: 7 September 2020; Accepted: 22 September 2020; Published: 23 September 2020 Abstract: A new polyacetylene glycoside, (5R)-6E-tetradecene-8,10,12-triyne-1-ol-5-O-β-glucoside (1), was isolated from the flower of Coreopsis lanceolata (Compositae), together with two known compounds, bidenoside C (10) and (3S,4S)-5E-trideca-1,5-dien-7,9,11-triyne-3,4-diol-4-O-β-glucopyranoside (11), which were found in Coreopsis species for the first time. The other known compounds, lanceoletin (2), 3,20-dihydroxy-4-30-dimethoxychalcone-40-glucoside (3), 4-methoxylanceoletin (4), lanceolin (5), leptosidin (6), (2R)-8-methoxybutin (7), luteolin (8) and quercetin (9), were isolated in this study and reported previously from this plant. The structure of 1 was elucidated by analyzing one-dimensional and two-dimensional nuclear magnetic resonance and high resolution-electrospray ionization-mass spectrometry data.