Microorganisms Isolated from Sawmill and Poultry Farm and Their Long Term Health Effects in Human Health

Total Page:16

File Type:pdf, Size:1020Kb

Microorganisms Isolated from Sawmill and Poultry Farm and Their Long Term Health Effects in Human Health Int.J.Curr.Microbiol.App.Sci (2019) 8(3): 809-821 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 03 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.803.098 Microorganisms Isolated from Sawmill and Poultry Farm and their Long Term Health Effects in Human Health B.S. Baranu* and E. Edmund Department of Microbiology, Rivers State, University of Science and Technology, P.M.B 5080, Port Harcourt, Nigeria *Corresponding author ABSTRACT Microorganisms from dusts of organic origin was identified from some saw mill, (Site 1) and a poultry farm (Site 1) in Port Harcourt. The exposure to these organic dusts by people employed in these establishments over a long period of time can lead to occupational health diseases especially in immune compromised persons. Nutrient Agar, Sabaroud K e yw or ds Dextrose Agar (SDA), and Mac Conkey Agar (MA) in sedimentation method were used to isolate microorganisms. In Sample Site1, the Total Heterotrophic Bacteria (THB) was Sawmill and greater than the Total Enteric Bacteria (TEB) and the Total Aerobic Fungi (TAF) on a dry Poultry farm, day while the THB is greater than TAF ˃ TEB on a wet season. While in station 2, THB> Microorganisms TEB > TAF during the dry season and THB >TEB > TAF during the wet season. This Article Info result revealed that heterotrophic bacteria are the most dominant during the rainy and dry season in both sites. Between the two sites, microbial concentration in Site 2 (poultry 2 2 Accepted: farm) at 2.115cfu/10min/m is greater than Station 1(sawmill) at 1.608cfu/10min/m ), this 07 February 2019 might be due to the fact that it is a confined area in which birds are bred and its system of Available Online: ventilation is poor. These microorganisms identified in various concentrations can cause 10 March 2019 pulmonary dysfunctions and allergic diseases such as Aspergillosis, Hypersensitivity pneumonitis, chronic bronchitis, rhinitis etc. There is therefore need for workers in these organic dust prone areas to make use of the most practical respirators (nose masks) with the highest assigned protection factor (APF). Introduction propel fine fragments into a gaseous medium (Laakkonen, 2008). Dusts can have different The risks associated with prolonged exposure sizes (ranging from 1-100 µm) and they tend to grain dusts were first identified in the early to settle out under gravitational influence 16thcentury and its exposure has been a major (ISO, 1995). Their effects on the human body source of mortality among agricultural are to a large extent dependent on their workers (Schenker, 2000). Dusts can be respective sizes and nature, also these factors referred to as very fine solid particles that are determine their site of deposition within the usually suspended in the air and they result respiratory system (Laakkonen, 2008). The from the breakdown of materials in order to dusts are usually either larger sized or smaller 809 Int.J.Curr.Microbiol.App.Sci (2019) 8(3): 809-821 sized, dusts of larger sized particles are These bioaerosols are active and they are referred to as inhalable dusts and most of made up of some components that result in them are filtered out into the nose, throat and adverse health effects to exposed workers due upper respiratory tract (TUC 2011; Laakonen, to prolonged exposure, Some of these agents 2008). Whereas, smaller sized particles when are bacterial endotoxins, fungi, viruses, high inhaled can go as far as the alveoli and the molecular weight allergens, mycotoxins, lungs and they are referred to as respirable pollens, moulds, proteins from animal hair, dusts, these smaller particles when incessantly urine and droppings, and enzymes which act inhaled over a long period of time can pose a as allergens, tannins, plicatic acid etc threat to human health (TUC, 2011). (Douwess et al., 2003). Based on their sources, dusts can be Materials and Methods categorized into two types which are Organic dusts and inorganic dusts (Schenker, 2000). Study area and sample collection The word ―organic dust‖ also refers to The study was carried out in two sampling ―bioaerosols‖ and it is defined as fine sites, one is the Sawmill located at Timber particles of biological origin (microbial, plant street by Iloabuchi mile 1, Port-Harcourt or animal) that are suspended in the air (Latitude 4.7893765, N 4047’19.38876’’ and (Douwess et al., 2003). These particles are Longitude 6.9831649, E6059’18.62376’’), and usually impregnated with microorganisms and the poultry farm located within Rivers State they include include dusts from wood, flour, University, Nkpolu-Oroworukwo, Port- cotton fibres, paper fibres, fur from animals, Harcourt (Latitude 4.80234 N4o48’8.4096 hay, grains, animal scales, animal dander, Longitude 6.97713 E 6o58’37.68096’’). The evaporated urine droplets and fecal, Sawmill is a facility where logs of wood are household wastes etc (Eduard and Halstensen, cut into lumber, here wood and wood 2009). Organic dusts are usually launched products are processed, the facility comprises into the air by natural forces, such as wind, mainly of male workers and the activities that volcanic eruption, and by mechanical or take place in the sawmill involves the anthropogenic processes such as crushing, transportation of fresh logs of wood from the grinding, milling, drilling, demolition, forest, sawing of the wood, packaging of the conveying, screening, bagging, and sweeping lumber, transportation and the export of the (ISO, 1995). cut lumbers. Organic dusts occur in a range of occupations The Nutrient Agar (NA), Mac Conkey Agar including agricultural work; the textile (MA) and Sabouraud Dextrose Agar (SDA) industry, especially cotton processing; flour plates were exposed to the organic dusts in milling and bakeries; and the wood industry, sites 1 and 2 for about 10 minutes and the particularly sawmills, carpentry, and wood isolates were collected from each source processing, the waste management industry during the wet day and dry day. and so many others. Many of these occupations, particularly agricultural work, The bacterial and fungal isolates were also have the highest potential for concurrent determined using Koch’s sedimentation exposure to other substances that affect method (settle plate technique). In this respiratory health, for example metals, gases, technique, microorganisms from the organic fibres, and chemicals (Omland, 2002). dusts get settled directly on the prepared agar 810 Int.J.Curr.Microbiol.App.Sci (2019) 8(3): 809-821 plates exposed on a 4ft high wooden stool for Characterization of fungal isolates a period of 10 minutes. The exposed Nutrient agar and Mac-conkey agar were incubated at The identification of fungal isolates was 370c for 24 hours while the Sabouraud carried out using standard methods based on dextrose agar plates were incubated at room macroscopic and microscopic features as temperature for 72 hours. The colonies that described by Ellis (1971), Domsch et al., were formed on the culture plates were (1980). In macroscopic identification, the recorded as colony forming units per 10 aerial and substratum regions were observed minutes and expressed as cfu/10mins/m2 of for colour, colony structure, colony number air using the following formula: and nature of growth. In microscopic examination, two drops of cotton blue in Cfu/10min/m² =No. of colonies x 10 x 3.142r² lacto-phenol is stained in the center of a clean Time of exposure grease-free slide. A small portion of the fungus was picked from the sub-cultured plate Where, using a sterilized inoculating needle and it was placed on the slide and covered with a r = radius of media plate used (in meters) cover slip. It was examined under the microscope at low power and high power Isolation of pure cultures (x10 and x40 respectively). Discrete colonies were all sub-cultured to Results and Discussion obtain pure colonies. This was achieved by streaking a loop-full of a particular isolate on The following fungal features were noted in an already prepared Nutrient agar plate and this test: incubated at 370c for another 24 hours. The pure cultures were stored accordingly in a Somatic structure nutrient agar slant for further studies. Vegetative structure Reproductive structure Characterization of bacterial isolates Conidial head and vesicle shapes Surface appearance This characterization was done firstly by Colony colour morphological identification of respective colonies, this was followed by using In station 1, total Heterotrophic Bacteria conventional methods which include Gram (THB) 0.804 ˃ Total Enteric Bacteria (TEB) staining, biochemical tests such as catalase, 0.576˃ Total Aerobic Fungi (TAF) 0.108 coagulase, oxidase, urease, motility, methyl- during dry day and TEB 0.204 ˃ THB 0.144 ˃ red(MR),Vogues Proskauer (VP), sugar TAF 0.060 during the wet day. While in fermentation tests which include mannitol, station 2, THB 0.846 > TEB 0.732 > TAF glucose, maltose, lactose and starch 0.192 during the dry day and THB 0.132> hydrolysis. TEB 0.114 > TAF 0.066 during the wet day (Fig. 1–6 and Table 1–6). This result reveals Identification was based on comparison of the that in both stations, heterotrophic bacteria are characteristics of the isolates with those of the the most dominant during the rainy and dry taxa. Details of the test procedures are as season It also reveals that the concentration of follows. microorganisms decreased in the wet day than during the dry season in both stations and this 811 Int.J.Curr.Microbiol.App.Sci (2019) 8(3): 809-821 result correlates with that of (Achudume et niger, Aspergillus fumigatus, Rhizopus al., 2009) which states that dusts and arrhizus, Epicoccum nigrum, Saccharomyces microbial proliferation are much higher in dry spp, Penicillium spp with Apergillus flavus seasons than in wet seasons.
Recommended publications
  • Paenibacillus Elgii Kocuria Rosea Bacillus Horikoshii Curtobacterium
    9/25/2016 Kocuria rosea Paenibacillus elgii Where we found it: Where we found it: On a Mars Exploration On a Mars Exploration Rover Rover before launch before launch (2004) at the Jet (2004) at the Jet Propulsion Laboratory (JPL- Propulsion Laboratory NASA, Pasadena, CA) (JPL-NASA, Pasadena, CA) Why it’s awesome: Why it’s awesome: This microbe is being studied This microbe produces for its ability to degrade (currently unknown) feathers which would have (photo from JPL) antimicrobials effective (photo by Alex Alexiev) applications in industrial waste (photo from JPL) against a wide range of management Fun Fact: fungi and bacteria Fun Fact: When applied to soil this microbe has been shown to This microbe is so commonly found on microbiology plates enhance growth of both tobacco and peanut at UC Davis that the students have nicknamed it “Henry” Regular Season Stats Regular Season Stats Time to saturation: 83 hrs Time to saturation: 67 hrs Time to exponential growth: 50 hrs Time to exponential growth: 9 hrs Growth Growth density: 52% Growth Growth density: 100% Description: Gram variable, faculative Description: Gram-positive, coccoid, Days Days anaerobe, rod-shaped, spore forming anaerobic Originally isolated: In Germany as “Micrococcus Originally isolated from: Shiso roots in roseus” in 1889 Korea (2004) Bacillus horikoshii Curtobacterium pusillum Where we found it: On a football field sample Where we found it: collected by the Pop Warner On the outside of Aggie Saints cheerleaders (Port Stadium, UC Davis, CA. Reading, NJ) Why it’s awesome:
    [Show full text]
  • Príloha Č. 1. Králová S. (2017) Role of Fatty Acids in Cold Adaptation Of
    Príloha č. 1. Králová S. (2017) Role of fatty acids in cold adaptation of Antarctic psychrophilic Flavobacterium spp. Syst. Appl. Microbiol., 40(6): 329-333. Doi: 10.1016/j.syapm.2017.06.001 Systematic and Applied Microbiology 40 (2017) 329–333 Contents lists available at ScienceDirect Systematic and Applied Microbiology j ournal homepage: www.elsevier.de/syapm Role of fatty acids in cold adaptation of Antarctic psychrophilic Flavobacterium spp. Stanislava Králová Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic a r t i c l e i n f o a b s t r a c t Article history: Cold-loving microorganisms developed numerous adaptation mechanisms allowing them to survive in Received 9 May 2017 extremely cold habitats, such as adaptation of the cell membrane. The focus of this study was on the Received in revised form 8 June 2017 membrane fatty acids of Antarctic Flavobacterium spp., and their adaptation response to cold-stress. Fatty Accepted 12 June 2017 acids and cold-response of Antarctic flavobacteria was also compared to mesophilic and thermophilic members of the genus Flavobacterium. The results showed that the psychrophiles produced more types Keywords: of major fatty acids than meso- and thermophilic members of this genus, namely C15:1 iso G, C15:0 iso, Flavobacterium C15:0 anteiso, C15:1 ω6c, C15:0 iso 3OH, C17:1 ω6c, C16:0 iso 3OH and C17:0 iso 3OH, summed features 3 Antarctic bacteria ω ω ω Adaptation (C16:1 7cand/or C16:1 6c) and 9 (C16:0 10-methyl and/or C17:1 iso 9c).
    [Show full text]
  • Final Report
    Final Report Study of glutamate decarboxylase gene from GABA-producing lactic acid bacteria isolated from Kung-Som, the traditional Thai fermented shrimp Investigator Suppasil Maneerat Department of Industrial Biotechnology Faculty of Agro-Industry Prince of Songkla University This research project was supported by Prince of Songkla University, Thailand, for the fiscal year of 2013-2014 (Grant No. AGR560008S) 2015 i ACKNOWLEDGEMENTS This study was financially supported by Prince of Songkla University, Thailand, for the fiscal year of 2013-2014 (Grant No. AGR560008S). Suppasil Maneerat ii ABSTRACT Kung-Som is one of several traditional Thai fermented shrimp products, especially popular in the southern part of Thailand. This is the first report to reveal the bacterial communities in the finished product of Kung-Som. Ten Kung-Som samples were evaluated using the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) methodology combined with appropriated primers to study the dynamics of the bacterial population. Two primers sets (V3; 341f(GC)-518r and rpoB; rpoB1698f(GC)-rpoB2014r primers) were considered as a possible tool for study the communities of bacteria. PCR- DGGE analysis of both the V3-region and rpoB amplicon was successfully applied to discriminate between lactic acid bacteria (LAB) and other Gram positive strains in the bacterial communities of Kung-Som products. These preliminary results concluded that the main microbiology of finished product of Kung-Som was LAB and coagulase negative cocci (CNC). Kung-Som presents a high glutamic acid which is a major substrate for biosynthesis of natural γ-aminobutyric acid (GABA) by LAB. The GABA-producing LAB from Kung- Som products were isolated, screened and identified.
    [Show full text]
  • The Novel Macrolide Resistance Genes Mef(F) and Msr(G)
    J Antimicrob Chemother 2021; 76: 48–54 doi:10.1093/jac/dkaa405 Advance Access publication 29 October 2020 The novel macrolide resistance genes mef(F) and msr(G) are located on a plasmid in Macrococcus canis and a transposon in Macrococcus caseolyticus Downloaded from https://academic.oup.com/jac/article/76/1/48/5942709 by Universitaetsbibliothek Bern user on 01 March 2021 Javier Eduardo Fernandez, Vincent Perreten* and Sybille Schwendener Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland *Corresponding author. E-mail: [email protected] Received 18 May 2020; accepted 1 September 2020 Objectives: To analyse macrolide resistance in a Macrococcus canis strain isolated from a dog with an ear infec- tion, and determine whether the resistance mechanism is also present in other bacteria, and associated with mobile genetic elements. Methods: The whole genome of M. canis Epi0082 was sequenced using PacBio and Illumina technologies. Novel macrolide resistance determinants were identified through bioinformatic analysis, and functionality was dem- onstrated by expression in Staphylococcus aureus. Mobile genetic elements containing the novel genes were analysed in silico for strain Epi0082 as well as in other bacterial strains deposited in GenBank. Results: M. canis Epi0082 contained a 3212 bp operon with the novel macrolide resistance genes mef(F) and msr(G) encoding a efflux protein and an ABC-F ribosomal protection protein, respectively. Cloning in S. aureus confirmed that both genes individually confer resistance to the 14- and 15-membered ring macrolides erythromycin and azithromycin, but not the 16-membered ring macrolide tylosin. A reduced susceptibility to the streptogramin B pristinamycin IA was additionally observed when msr(G) was expressed in S.
    [Show full text]
  • Appendix 1. New and Emended Taxa Described Since Publication of Volume One, Second Edition of the Systematics
    188 THE REVISED ROAD MAP TO THE MANUAL Appendix 1. New and emended taxa described since publication of Volume One, Second Edition of the Systematics Acrocarpospora corrugata (Williams and Sharples 1976) Tamura et Basonyms and synonyms1 al. 2000a, 1170VP Bacillus thermodenitrificans (ex Klaushofer and Hollaus 1970) Man- Actinocorallia aurantiaca (Lavrova and Preobrazhenskaya 1975) achini et al. 2000, 1336VP Zhang et al. 2001, 381VP Blastomonas ursincola (Yurkov et al. 1997) Hiraishi et al. 2000a, VP 1117VP Actinocorallia glomerata (Itoh et al. 1996) Zhang et al. 2001, 381 Actinocorallia libanotica (Meyer 1981) Zhang et al. 2001, 381VP Cellulophaga uliginosa (ZoBell and Upham 1944) Bowman 2000, VP 1867VP Actinocorallia longicatena (Itoh et al. 1996) Zhang et al. 2001, 381 Dehalospirillum Scholz-Muramatsu et al. 2002, 1915VP (Effective Actinomadura viridilutea (Agre and Guzeva 1975) Zhang et al. VP publication: Scholz-Muramatsu et al., 1995) 2001, 381 Dehalospirillum multivorans Scholz-Muramatsu et al. 2002, 1915VP Agreia pratensis (Behrendt et al. 2002) Schumann et al. 2003, VP (Effective publication: Scholz-Muramatsu et al., 1995) 2043 Desulfotomaculum auripigmentum Newman et al. 2000, 1415VP (Ef- Alcanivorax jadensis (Bruns and Berthe-Corti 1999) Ferna´ndez- VP fective publication: Newman et al., 1997) Martı´nez et al. 2003, 337 Enterococcus porcinusVP Teixeira et al. 2001 pro synon. Enterococcus Alistipes putredinis (Weinberg et al. 1937) Rautio et al. 2003b, VP villorum Vancanneyt et al. 2001b, 1742VP De Graef et al., 2003 1701 (Effective publication: Rautio et al., 2003a) Hongia koreensis Lee et al. 2000d, 197VP Anaerococcus hydrogenalis (Ezaki et al. 1990) Ezaki et al. 2001, VP Mycobacterium bovis subsp. caprae (Aranaz et al.
    [Show full text]
  • Download Special Issue
    BioMed Research International Environmental Biotechnology: Current Advances, New Knowledge Gaps, and Emerging Issues Guest Editors: Abd El-Latif Hesham, T. Komang Ralebitso-Senior, Yu Zhang, and Qing X. Li Environmental Biotechnology: Current Advances, New Knowledge Gaps, and Emerging Issues BioMed Research International Environmental Biotechnology: Current Advances, New Knowledge Gaps, and Emerging Issues Guest Editors: Abd El-Latif Hesham, T. Komang Ralebitso-Senior, Yu Zhang, and Qing X. Li Copyright © 2015 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “BioMed Research International.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Contents Environmental Biotechnology: Current Advances, New Knowledge Gaps, and Emerging Issues, Abd El-Latif Hesham, T. Komang Ralebitso-Senior, Yu Zhang, and Qing X. Li Volume 2015, Article ID 814529, 2 pages Safety Evaluation of the Coagulase-Negative Staphylococci Microbiota of Salami: Superantigenic Toxin Production and Antimicrobial Resistance, Raquel Soares Casaes Nunes, Eduardo Mere Del Aguila, and Vânia Margaret Flosi Paschoalin Volume 2015, Article ID 483548, 17 pages Improved Sugar Production by Optimizing Planetary Mill Pretreatment and Enzyme Hydrolysis Process, Jeong Heo Kwon, Siseon Lee, Jae-Won Lee, Youn-Woo Hong, Jeong Ho Chang, Daekyung Sung, Sung Hyun Kim, Byoung-In Sang, Robert J. Mitchell, and Jin Hyung Lee Volume 2015, Article ID 267538, 5 pages Fabrication of an Amperometric Flow-Injection Microfluidic Biosensor Based on Laccase for In Situ Determination of Phenolic Compounds,JuanC.Gonzalez-RiveraandJohannF.Osma Volume 2015, Article ID 845261, 9 pages Comparison of Different Strategies for Selection/Adaptation of Mixed Microbial Cultures Able to Ferment Crude Glycerol Derived from Second-Generation Biodiesel,C.Varrone,T.M.B.Heggeset, S.
    [Show full text]
  • Information Resources on the South American Camelids: Llamas
    Information Resources on the South United States Department of Agriculture American Camelids: Llamas, Alpacas, Guanacos, and Vicunas 1943-2006 Agricultural Research Service November 2001 (Updated February 2006) National Agricultural AWIC Resource Series No. 12 Library Updated by: Information Resources on the South American Camelids: Llamas, Alpacas, Guanacos, and Vicunas 2004- 2008 Animal Welfare Information Center Compiled by: Jean Larson Judith Ho Animal Welfare Information Center USDA, ARS, NAL 10301 Baltimore Ave. Beltsville, MD 20705 Contact us : http://www.nal.usda.gov/awic/contact.php PPF Shanghai Silk Photograph courtesy of owner Raccoon Ridge Farm, Mt. Airy, MD Web Policies and Links Table of Contents Introduction Acknowledgments About this Document Bibliography Selected Web Resources The South American Camelids: Llamas, Alpacas, Guanacos, and Vicunas 1943-2006 Introduction The Camelidae family consists of a small family of mammalian animals. There are two members of Old World camels living in Africa and Asia--Arabian and the Bactrian, and four members of the New World camels living in South America--the llamas, vicunas, alpacas and guanacos. They are all very well adapted to their respective environments: the camels in harsh deserts of Africa and Asia; and their South American cousins inhabit the high altiplano and bush area of South America. Most of these species have been integrated into, and play very important roles in lives of the indigenous people. They have been traditionally used for transport of people and things, hides and fibers for clothing and other textile articles, and in many cases they supply meat and milk products, etc. The South American species are being raised in non-native countries for a variety of reasons: as pack animals, pets, guard animals for sheep ranges, and for fiber.
    [Show full text]
  • Morphological Identification of Ticks and Molecular
    Morphological Identication of Ticks and Molecular Detection of Tick-Borne Pathogens from Bare- Nosed Wombats (Vombatus Ursinus) Danielle Beard Western Sydney University - Hawkesbury Campus Hayley J Stannard Charles Sturt University Julie M Old ( [email protected] ) https://orcid.org/0000-0002-2754-7757 Research Keywords: wombat, tick, microbiome, pathogen, 16S, next generation sequencing, bacteria Posted Date: May 8th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-26475/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on January 19th, 2021. See the published version at https://doi.org/10.1186/s13071-020-04565-6. Page 1/37 Abstract Background Ticks are obligate hematophagous ectoparasites of vertebrate hosts and transmit the widest range of pathogenic organisms of any arthropod vector. Seven tick species are known to feed on bare- nosed wombats (Vombatus ursinus), in addition to the highly prevalent Sarcoptes scabiei mite which causes fatal sarcoptic mange in most bare-nosed wombat populations. Little is known about the pathogens carried by most wombat ticks or how they impact wombats affected by sarcoptic mange. Methods Wombat ticks were sourced from wildlife hospitals and sanctuaries across Australia and identied to species level using taxonomic keys. Genomic DNA (gDNA) was extracted from a subsample, and following the amplication of the bacterial 16S rRNA gene V3-V4 hypervariable region, next generation sequencing (NGS) on the Illumina MiSeq platform was used to assess the microbial composition. Results A total of 447 tick specimens were collected from 47 bare-nosed wombats between January 2019 and January 2020.
    [Show full text]
  • Vombatus Ursinus) Danielle Beard1, Hayley J
    Beard et al. Parasites Vectors (2021) 14:60 https://doi.org/10.1186/s13071-020-04565-6 Parasites & Vectors RESEARCH Open Access Morphological identifcation of ticks and molecular detection of tick-borne pathogens from bare-nosed wombats (Vombatus ursinus) Danielle Beard1, Hayley J. Stannard2 and Julie M. Old1* Abstract Background: Ticks are obligate haematophagous ectoparasites of vertebrate hosts and transmit the widest range of pathogenic organisms of any arthropod vector. Seven tick species are known to feed on bare-nosed wombats (Vom- batus ursinus), in addition to the highly prevalent Sarcoptes scabiei mite which causes fatal sarcoptic mange in most bare-nosed wombat populations. Little is known about the pathogens carried by most wombat ticks or how they may impact wombats and wombat handlers. Methods: Wombat ticks were sourced from wildlife hospitals and sanctuaries across Australia and identifed to spe- cies level using taxonomic keys. Genomic DNA was extracted from a subsample, and following the amplifcation of the bacterial 16S rRNA gene V3–V4 hypervariable region, next-generation sequencing (NGS) on the Illumina MiSeq platform was used to assess the microbial composition. Results: A total of 447 tick specimens were collected from 47 bare-nosed wombats between January 2019 and Janu- ary 2020. Five species of ticks were identifed comprising wombat tick Bothriocroton auruginans (n 420), wallaby tick Haemaphysalis bancrofti (n 8), bush tick Haemaphysalis longicornis (n 3), common marsupial tick= Ixodes tasmani (n 12), and Australian paralysis= tick Ixodes holocyclus (n 4). Tick infestations= ranged from one to 73 ticks per wombat. The= wombat tick was the most prevalent tick species comprising= 94% of the total number of samples and was pre- sent on 97.9% (46/47) of wombat hosts.
    [Show full text]
  • Optimization of Conditions for the Biological
    F1000Research 2018, 7:351 Last updated: 17 MAY 2019 RESEARCH ARTICLE RETRACTED: Optimization of conditions for the biological treatment of textile dyes using isolated soil bacteria [version 1; peer review: retracted] Shafkat Shamim Rahman 1,2, Fahim Ahmed Alif1, M. Mahboob Hossain1 1Department of Mathematics and Natural Sciences, BRAC University, Dhaka, 1212, Bangladesh 2United Surgical (BD) Ltd, Kadda, Gazipur, 1702, Bangladesh Retraction The article titled “Optimization of conditions for the biological treatment of textile dyes using isolated soil bacteria” ([version 1; referees: peer review discontinued]. F1000Research 2018, 7:351 https://doi.org/10.12688/f1000research.13757.1) by Shafkat Shamim Rahman and colleagues, has been retracted by F1000Research on grounds of misconduct by the first author. Following publication of the article, the editorial team at F1000Research were notified by Romana Siddique, from BRAC University, that the data presented in this paper significantly overlaps with the data in her recently published article : Siddique and Alif; ARRB, 22(5): 1-12, 2018; Article no.ARRB.38637; https://doi.org/10.9734/ARRB/2018/38637. In response to our queries to the authors, the second and last author listed on this article, Fahim Ahmed Alif and M. Mahboob Hossain, have stated that they were not aware of the submission of this article to F1000Research, and did not agree to be authors. We have evidence which confirms their statement. After further investigation by the F1000Research team, and a separate investigation by BRAC University, it has become clear that Shafkat Shamim Rahman was not involved with the research presented in this paper, and that the decision to submit and publish the article was taken independently by him, and not his listed co-authors.
    [Show full text]
  • 1. Hollister, N., the Domestication of the Llama. Science, 1918. 47(1219): P
    1. Hollister, N., The Domestication of the Llama. Science, 1918. 47(1219): p. 461. 2. Means, P.A., The Domestication of the Llama. Science, 1918. 47(1211): p. 268-269. 3. Stordy, C.R.J., THE BREEDING OF SHEEP, LLAMA AND ALPACA IN PERU, WITH A VIEW TO SUPPLYING IMPROVED RAW MATERIAL TO THE TEXTILE TRADES. Journal of the Royal Society of Arts, 1921. 69(3556): p. 118-132. 4. Dell, A., Llama Land : East and West of the Andes in Peru. 1926, [S.l.]: Geoffrey Bles. 5. Gonza\Lez Posada, A., La Llama. 1926: Valencia. 6. Espina, C., Las Nin\0303as desaparecidas. Novela. (La Llama de Cera. Novela.). 1928: Madrid. 7. McIntosh, W.C.-M.a., Notes on a female llama. 1930, Cambridge. 8. Espina, C., Llama de Cera. 1931: Madrid. 9. Wells, H.G., La Llama Inmortal. 1934, Buenos Aires: Claridad. 10. Garcia Calderon, V.-M.a., et al., The white llama : being La venganza del condor of V. G. Calderon, now translated into English for the first time. 1938, London: Golden Cockerel Press. 123, [5]p. 11. Malkus, A.S., The Silver Llama. Story and pictures. 1939, Philadelphia: J. C. Winston Co. 12. Yankas, L.p., La llama. Novela, etc. 1939, Santiago, Chile: Editorial Nascimento. 13. Lorant, S., Chamberlain and The Beautiful Llama. 1940, [S.l.]: Hulton Press. 14. Tomas, M., La Mariposa y la Llama. 1942: Madrid. 15. Barea, A. and I. Barea, The clash. 1946, London: Fontana. 16. Aristeguieta, J., Poema de la llama y del clavel, etc. 1948, Caracas: Tipografi\0301a Garrido. 17. Guzman, J.H., Argentina is your name.
    [Show full text]
  • Welcome to Ccumt-2019
    WELCOME TO CCUMT-2019 On behalf of the organizing committee, we are pleased to announce that 18th International and 30th National Conference on Recent Trends in Chemistry is going to be held from November 27 to 29, 2019 in LAHORE – PAKISTAN. The Conference aims to provide an atmosphere for colleagues from all over the world to share expertise, to exchange new ideas, to discuss challenging issues that describe significant advances in the following areas and dimensions of Chemistry; Organic, Inorganic, Physical, Analytical, Environmental, Natural Product, Material, Nano, Nuclear, Biological, Nutritional, Agricultural, Electro, Industrial, Polymer, Textile and Computational Chemistry. Over the last 50 years, the discoveries in the chemical sciences and the application of these inventions have been targeted at the development of technology and the prosperity of mankind that ensured the high quality of life away from environmental destructions for a sustainable future. Initially, at the first place we are thankful to University of Management and Technology, which have supported the organizing of the conference at all levels. Without the great devotion of our faculty and administrative staff of the university, it would simply have been impossible to organize this esteemed event. The organizers of CCUMT 2019 are also indebted to Pakistan Academy of Sciences, Higher Education Commission and The Chemical Society of Pakistan for their utmost support in planning and executing the whole program. We are very grateful that almost 300 participants from different cities and countries attend the conference. We wish you all a very pleasant and inspiring time in Lahore, with many fruitful discussions and opportunities for new contacts that will be of importance for the future of our field.
    [Show full text]