Lockheed Martin-A Short Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sector Fact Sheet
Ottawa Engage our Aerospace, Canada’s Capital Defence and Security Ottawa is a global hub for fundamental and Sector applied research, ground-breaking Ottawa has more than 300 companies innovations, and disruptive products and actively engaged in aerospace, defence services that are in demand across the and security – from smaller, niche, globe. As the seat of the Federal companies, to multinational giants government, Ottawa is home to federal including Lockheed-Martin, General departments and agencies, more than 65 Dynamics, Thales and Raytheon. This research labs and over 130 embassies and diverse sector offers expertise in C4ISR, consulates. With a deep history of innovation robotics, unmanned aerial vehicles, high that spans over 100 years, today’s present- performance cybersecurity solutions, day technology ecosystem is driving personal protection, interoperable research in emerging fields such as technologies for first responders and autonomous vehicles, artificial intelligence, military end-users, CBRNE protection, cybersecurity and precision agriculture. This maintenance and monitoring, sub-systems dynamic and urban city is surrounding by an and support. As the home to the abundance of natural beauty that offers an Department of National Defence, affordable and unparalleled quality of life. Canadian Security and Intelligence Service, Public Safety Canada, Canadian Air Transport Security Authority, Royal National Canadian Mounted Police, Capital Region Communications Security Establishment Population 1,324,000 Canada and Canada -
C-130J Super Hercules Program Status and Fast Facts Program Status
January 2020 C-130J Super Hercules Program Status and Fast Facts Program Status 24 Super Hercules Advantages The C-130J Super Hercules provides significant performance improvements and added operational capabilities that translate directly into increased ground and air combat effectiveness. Some of these attributes include the ability to: • Operate out of 2,000 ft. long dirt strips in high mountain ranges. • Carry tons of supplies more than 3,000 miles and deliver “the last mile” to remote operating bases, keeping trucks off dangerous highways. • Perform in-flight refueling, ground fueling, weather reconnaissance, electronic warfare, medical evacuation, search and rescue, paradrop, maritime mission, special operations and many other missions. • Generate much greater operational efficiencies. The C-130J outperforms older C-130s in combat operations by at least a 2:1 margin. • Operate with only two pilots and one loadmaster for most missions, exposing fewer flight crew members to potential combat threats. • Demonstrate reliability that far exceeds most other military aircraft with average mission capable rates routinely in the 80-to-90% range. One Aircraft, Many Capabilities Electronic Air Drop Intelligence, Humanitarian Combat Aeromedical Aerial Search Commercial Surveillance Surveillance & Delivery Refueling & Rescue Freighter Reconnaissance Communication Aerial Personnel Recovery Weather Gunship Maritime Special Passenger Special Ops Personnel Ground Firefighting Reconnaissance Surveillance Accommodations Transport Refueling Super Hercules -
Design of a Light Business Jet Family David C
Design of a Light Business Jet Family David C. Alman Andrew R. M. Hoeft Terry H. Ma AIAA : 498858 AIAA : 494351 AIAA : 820228 Cameron B. McMillan Jagadeesh Movva Christopher L. Rolince AIAA : 486025 AIAA : 738175 AIAA : 808866 I. Acknowledgements We would like to thank Mr. Carl Johnson, Dr. Neil Weston, and the numerous Georgia Tech faculty and students who have assisted in our personal and aerospace education, and this project specifically. In addition, the authors would like to individually thank the following: David C. Alman: My entire family, but in particular LCDR Allen E. Alman, USNR (BSAE Purdue ’49) and father James D. Alman (BSAE Boston University ’87) for instilling in me a love for aircraft, and Karrin B. Alman for being a wonderful mother and reading to me as a child. I’d also like to thank my friends, including brother Mark T. Alman, who have provided advice, laughs, and made life more fun. Also, I am forever indebted to Roe and Penny Stamps and the Stamps President’s Scholarship Program for allowing me to attend Georgia Tech and to the Georgia Tech Research Institute for providing me with incredible opportunities to learn and grow as an engineer. Lastly, I’d like to thank the countless mentors who have believed in me, helped me learn, and Page i provided the advice that has helped form who I am today. Andrew R. M. Hoeft: As with every undertaking in my life, my involvement on this project would not have been possible without the tireless support of my family and friends. -
C-130J-Sof International Special Operations Forces Configurations
C-130J-SOF INTERNATIONAL SPECIAL OPERATIONS FORCES CONFIGURATIONS Lockheed Martin Aeronautics Company 86 South Cobb Drive Marietta, Georgia 30063 www.lockheedmartin.com MG170335-003 © 2017 Lockheed Martin Corporation. All rights reserved. PIRA# AER201706008 When the need for security cannot be compromised, a PROVEN solution must be selected. With increasing and evolving global threats, precise use of POWER provides security. In a confusing and rapidly-changing environment, PRECISION and SKILL are force multipliers for peace. These are the moments and missions where failure is not an option. Now is when special operations forces (SOF) are called upon toPROTECT your today and your tomorrows. There is one solution that fully supports all special missions needs, fferingo versatility, endurance, command and control, surveillance and protection. Feared by enemies. Guardian of friendly forces. A global force multiplier. It is the world’s ultimate special missions asset. INTRODUCING THE C-130J-SOF. THE NEWEST MEMBER OF THE SUPER HERCULES FAMILY. SPECIAL OPERATIONS AIRCRAFT FOR THE 21ST CENTURY The C-130J-SOF provides specialized intelligence, surveillance, and reconnaissance (ISR) support, along with infiltration, C-130J-SOF exfiltration, and re-supply of special operations forces (SOF) and equipment in hostile or denied territory. With added special mission equipment options, the C-130J-SOF may be configured to execute armed overwatch, precision strike, helicopter and vertical lift aerial refueling, psychological operations, high-speed/low-signature -
CAA - Airworthiness Approved Organisations
CAA - Airworthiness Approved Organisations Category BCAR Name British Balloon and Airship Club Limited (DAI/8298/74) (GA) Address Cushy DingleWatery LaneLlanishen Reference Number DAI/8298/74 Category BCAR Chepstow Website www.bbac.org Regional Office NP16 6QT Approval Date 26 FEBRUARY 2001 Organisational Data Exposition AW\Exposition\BCAR A8-15 BBAC-TC-134 ISSUE 02 REVISION 00 02 NOVEMBER 2017 Name Lindstrand Technologies Ltd (AD/1935/05) Address Factory 2Maesbury Road Reference Number AD/1935/05 Category BCAR Oswestry Website Shropshire Regional Office SY10 8GA Approval Date Organisational Data Category BCAR A5-1 Name Deltair Aerospace Limited (TRA) (GA) (A5-1) Address 17 Aston Road, Reference Number Category BCAR A5-1 Waterlooville Website http://www.deltair- aerospace.co.uk/contact Hampshire Regional Office PO7 7XG United Kingdom Approval Date Organisational Data 30 July 2021 Page 1 of 82 Name Acro Aeronautical Services (TRA)(GA) (A5-1) Address Rossmore38 Manor Park Avenue Reference Number Category BCAR A5-1 Princes Risborough Website Buckinghamshire Regional Office HP27 9AS Approval Date Organisational Data Name British Gliding Association (TRA) (GA) (A5-1) Address 8 Merus Court,Meridian Business Reference Number Park Category BCAR A5-1 Leicester Website Leicestershire Regional Office LE19 1RJ Approval Date Organisational Data Name Shipping and Airlines (TRA) (GA) (A5-1) Address Hangar 513,Biggin Hill Airport, Reference Number Category BCAR A5-1 Westerham Website Kent Regional Office TN16 3BN Approval Date Organisational Data Name -
Launch Options for the Future: a Buyer's Guide (Part 7 Of
— Chapter 3 Enhanced Baseline CONTENTS , Page Improving the Shuttle . 27 Advanced Solid Rocket Motors (ASRMs) . 27 Liquid Rocket Boosters (LRBs) . 28 Lighter Tanks . 29 Improving Shuttle Ground Operations . 29 Improving Existing ELVs . 29 Delta . 30 Atlas-Centaur . ● ● . .* . 30 Titan . ● . ✎ ✎ . 30 Capability . ✎ . ✎ ✎ . ● ✎ ✎ . 30 Table 3-1. Theoretical Lift Capability of Enhanced U.S. Launch Systems. 31 Chapter 3 Enhanced Baseline The ENHANCED BASELINE option is the U.S. Government’s “Best Buy” if . it desires a space program with current or slightly greater levels of activity. By making in- cremental improvements to existing launch vehicles, production and launch facilities, the U.S. could increase its launch capacity to about 1.4 million pounds per year to LEO. The investment required would be low compared to building new vehicles; however, the ade- quacy of the resulting fleet resiliency and dependability is uncertain. This option would not provide the low launch costs (e.g. 10 percent of current costs) sought for SDI deploy- ment or an aggressive civilian space initiative, like a piloted mission to Mars, IMPROVING THE SHUTTLE The Shuttle, though a remarkable tech- . reducing the number of factory joints and nological achievement, never achieved its in- the number of parts, tended payload capacity and recent safety . designing the ASRMs so that the Space modifications have further degraded its per- Shuttle Main Engines no longer need to formance by approximately 4,800 pounds. be throttled during the region of maxi- Advanced Solid Rocket Motors (ASRMs) or mum dynamic pressure, Liquid Rocket Boosters (LRBs) have the potential to restore some of this perfor- ● replacing asbestos-bearing materials, mance; studies on both are underway. -
Corel Ventura
The MIT Press Journals http://mitpress.mit.edu/journals This article is provided courtesy of The MIT Press. To join an e-mail alert list and receive the latest news on our publications, please visit: http://mitpress.mit.edu/e-mail Restructuring the U.S. Eugene Gholz and Defense Industry Harvey M. Sapolsky The end of the Cold War produced major changes in the U.S. defense sector. More than 2 million defense workers, military personnel, and civil servants have lost their jobs. Thousands of ªrms have left the industry. More than one hundred military bases have closed, and the production of weapons is down considerably. As signiªcant as these changes are, they do not address the key issues in restructuring the post–Cold War defense sector. The Reagan-era defense buildup led contractors to invest in huge production capacity that no longer is needed. This capacity overhang includes too many open factories, each of which produces a “legacy” system that was designed for the Cold War. Many individual defense plants are also too large to produce efªciently at post–Cold War levels of demand. Until this excess capacity is eliminated, the United States will continue to spend too much on defense. The politics of jobs and congressional districts that many analysts thought governed the Cold War have triumphed in its aftermath. Today, years after the collapse of the Soviet Union, not one Cold War weapon platform line has closed in the United States.1 The same factories still produce the same aircraft, ships, and armored vehicles (or their incremental descendants). -
Jacques Tiziou Space Collection
Jacques Tiziou Space Collection Isaac Middleton and Melissa A. N. Keiser 2019 National Air and Space Museum Archives 14390 Air & Space Museum Parkway Chantilly, VA 20151 [email protected] https://airandspace.si.edu/archives Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Biographical / Historical.................................................................................................... 1 Scope and Contents........................................................................................................ 2 Arrangement..................................................................................................................... 2 Names and Subjects ...................................................................................................... 2 Container Listing ............................................................................................................. 4 Series : Files, (bulk 1960-2011)............................................................................... 4 Series : Photography, (bulk 1960-2011)................................................................. 25 Jacques Tiziou Space Collection NASM.2018.0078 Collection Overview Repository: National Air and Space Museum Archives Title: Jacques Tiziou Space Collection Identifier: NASM.2018.0078 Date: (bulk 1960s through -
ISSEK HSE) Role of Big Data Augmented Horizon Scanning in Strategic and Marketing Analytics
National Research University Higher School of Economics Institute for Statistical Studies and Economics of Knowledge Big Data Augmented Horizon Scanning: Combination of Quantitative and Qualitative Methods for Strategic and Marketing Analytics [email protected] [email protected] XIX April International Academic Conference on Economic and Social Development Moscow, 11 April 2018 Outline - Role of artificial intelligence and big data in modern analytics - System of Intelligent Foresight Analytics iFORA - Combined quantitative and qualitative analysis methodology and software solutions - Use cases - Conclusion and discussion 2 Growing interest in Artificial Intelligence, Big Data and Machine Learning International analytical reports & news feed 12000 10000 8000 Artificial Intelligence 6000 Big Data Machine Learning 4000 2000 0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Russian analytical reports & news feed 800 700 600 500 Artificial Intelligence 400 Big Data 300 Machine Learning 200 100 0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 3 Source: System of Intelligent Foresight Analytics iFORA™ (ISSEK HSE) Role of Big Data Augmented Horizon Scanning in Strategic and Marketing Analytics AI-related tasks Tracking latest and challenges trends, technologies, drivers, barriers Market forecasting Trend analysis Understanding S&T modern skills and Instruments for Customers Market Intelligence competences analysis feedback knowledge discovery HR policy Vacancy Feedback mining -
The Aircraft Propulsion the Aircraft Propulsion
THE AIRCRAFT PROPULSION Aircraft propulsion Contact: Ing. Miroslav Šplíchal, Ph.D. [email protected] Office: A1/0427 Aircraft propulsion Organization of the course Topics of the lectures: 1. History of AE, basic of thermodynamic of heat engines, 2-stroke and 4-stroke cycle 2. Basic parameters of piston engines, types of piston engines 3. Design of piston engines, crank mechanism, 4. Design of piston engines - auxiliary systems of piston engines, 5. Performance characteristics increase performance, propeller. 6. Turbine engines, introduction, input system, centrifugal compressor. 7. Turbine engines - axial compressor, combustion chamber. 8. Turbine engines – turbine, nozzles. 9. Turbine engines - increasing performance, construction of gas turbine engines, 10. Turbine engines - auxiliary systems, fuel-control system. 11. Turboprop engines, gearboxes, performance. 12. Maintenance of turbine engines 13. Ramjet engines and Rocket engines Aircraft propulsion Organization of the course Topics of the seminars: 1. Basic parameters of piston engine + presentation (1-7)- 3.10.2017 2. Parameters of centrifugal flow compressor + presentation(8-14) - 17.10.2017 3. Loading of turbine blade + presentation (15-21)- 31.10.2017 4. Jet engine cycle + presentation (22-28) - 14.11.2017 5. Presentation alternative date Seminar work: Aircraft engines presentation A short PowerPoint presentation, aprox. 10 minutes long. Content of presentation: - a brief history of the engine - the main innovation introduced by engine - engine drawing / cross-section - -
HCM/FELEX Backgrounder • Behind-The-Scenes: Project Perspectives and Lessons Learned • Valuable Industry Insights New Sea Legs for Canada's Navy Frigates
National Défense Defence nationale Maritime Engineering 82 Journal Since 1982 March 2017 Canada’s Naval Technical Forum SPECIAL EDITION Halifax-Class Modernization / Frigate Life Extension Project In this Issue: • HCM/FELEX Backgrounder • Behind-the-scenes: Project Perspectives and Lessons Learned • Valuable Industry Insights New Sea Legs for Canada's Navy Frigates HMCS Montréal (FFH-336) in mid-life refit at Irving Shipbuilding's Halifax Shipyard MARITIME ENGINEERING JOURNAL NO. 82 (MARCH 2017) SPECIAL EDITION – HCM/FELEX Maritime Engineering 82 (Established 1982) Journal March 2017 Commodore’s Corner Teamwork, Trust and Respect Redefined ................................................................................................ 2 Project Perspectives Director General A First for the Maritime Engineering Journal .................................................................................3 Maritime Equipment Program #Teamwork .......................................................................................................................................................... 3 Management HCM/FELEX: An important Chapter in Canada's Naval Technical History .........................4 Commodore Simon Page, Technology and Teamwork – Keys to Sucess .................................................................................5 OMM, CD Backgrounder – HCM/FELEX .........................................................................................................6 HCM: A Successful Program .............................................................................................................8 -
Historian's Corner
Historian’s Corner Ray Ziehm (POC) ([email protected] ) We are making some minor changes to the Historian’s writings for each addition of the STAR. Ray Ziehm has volunteered to take the lead in coordinating our quarterly write ups. He will be the only one listed under the officers for Historians. The individual contributors are well appreciated and are needed every year. We have in the past missed some Historian write ups, so having a lead coordinator should eliminate that. The individual writers will continue to be identified with their writings. Those of you that would like to write an article in the STAR for an item of historical interest should contact Ray at 303-784- 1413. Thanks, Bob Snodgress Ed Bock ([email protected] ) Atlas/Centaur Sale and Transition to Martin Marietta This Atlas Program history was originally presented at the Centaur 50th Anniversary celebration in San Diego by Ed Bock. It has been expanded with input from Tony Christensen to include the Centaur for Titan Program Transition. To appreciate this sale and transition, it’s necessary to understand the environment at General Dynamics Space Systems (GDSS) Division in the early 1990’s. The Commercial Atlas Program was inaugurated with the launch of AC-69, the first Atlas I, in July 1990. Atlas II was in development, and its first launch occurred in December 1991. GDSS was in the process of evaluating a Russian rocket engine (the RD-180) for its evolved Atlas. From mid 1990 to late 1993 there were 14 Atlas/Centaur launches, including three Atlas I failures.