The Aircraft Propulsion the Aircraft Propulsion

Total Page:16

File Type:pdf, Size:1020Kb

The Aircraft Propulsion the Aircraft Propulsion THE AIRCRAFT PROPULSION Aircraft propulsion Contact: Ing. Miroslav Šplíchal, Ph.D. [email protected] Office: A1/0427 Aircraft propulsion Organization of the course Topics of the lectures: 1. History of AE, basic of thermodynamic of heat engines, 2-stroke and 4-stroke cycle 2. Basic parameters of piston engines, types of piston engines 3. Design of piston engines, crank mechanism, 4. Design of piston engines - auxiliary systems of piston engines, 5. Performance characteristics increase performance, propeller. 6. Turbine engines, introduction, input system, centrifugal compressor. 7. Turbine engines - axial compressor, combustion chamber. 8. Turbine engines – turbine, nozzles. 9. Turbine engines - increasing performance, construction of gas turbine engines, 10. Turbine engines - auxiliary systems, fuel-control system. 11. Turboprop engines, gearboxes, performance. 12. Maintenance of turbine engines 13. Ramjet engines and Rocket engines Aircraft propulsion Organization of the course Topics of the seminars: 1. Basic parameters of piston engine + presentation (1-7)- 3.10.2017 2. Parameters of centrifugal flow compressor + presentation(8-14) - 17.10.2017 3. Loading of turbine blade + presentation (15-21)- 31.10.2017 4. Jet engine cycle + presentation (22-28) - 14.11.2017 5. Presentation alternative date Seminar work: Aircraft engines presentation A short PowerPoint presentation, aprox. 10 minutes long. Content of presentation: - a brief history of the engine - the main innovation introduced by engine - engine drawing / cross-section - engine performance - operational use - derivate version - technical attractions Aircraft propulsion Organization of the course List of engines: • Wright Flyer (4-cyl): First engine to fly • Pratt & Whitney TF30 turbofan: First afterburning turbofan • Anzani Three-Cylinder Engine • Rolls-Royce/Snecma Olympus 593 Engine • Anzani (6-cyl): First two-row radial engine • CFM56 Engine • Curtiss OX-5 Engine • Rolls-Royce Trent Engine • Continental A-40 (4-cyl): Ancestor of current opposed engines • General Electric GEnx Engine • Jendrassik Cs-1 Engine • SMA SR305-230 Engine • Allison V-1710 (12-cyl): Most highly developed U.S. V-12 • Daimler-Benz DB 605 Engine • Continental O-300 Engine • Pratt & Whitney R-2800 Double Wasp • Pratt & Whitney Canada PT6 Engine • General Electric J35 turbojet: First U.S. production axial-flow • Garrett-Honeywell TPE331 Engine jet • Klimov VK-1F turbojet: Last large centrifugal-flow engine • Franklin Six-Cylinder Engines • Rolls-Royce Dart. • Williams FJ44 Engine • Bristol Centaurus (18-cyl): Last large British radial • Rolls-Royce Conway • Honeywell TFE731 Engine • Pratt & Whitney J57 • Pratt & Whitney Canada PW600 Engine Aircraft propulsion Organization of the course End of course: 1. Seminars syllabus and presentation complete. 2. Exam – written form – 15 test question 1 (select a,b,c,d) questions reflect the fundamentals working principles and terminology corresponds to ATPL theoretical question – one simple computational example ( for example computing engine power or thrust from given values) Only from memories no additional materials allowed – 45 minutes Exam terms: – First term: 12.12.2017 – Second term: 19.12.2017 Aircraft propulsion Materials Course materials: 1. File name: OLE-A_1, OLE-A_2, OLE-A_3 …etc Location: http://ulozto.cz Password: LU2017 Aircraft propulsion Source materials: WARD, Thomas A. Aerospace propulsion systems. Singapore: John Wiley & Sons, c2010, xxvi, 527 s. ISBN 978-0-470-82497- 9. CUMPSTY, Nicholas. Jet propulsion: A simple guide tio the aerodynamic and thermodynamic design and performance of jet engines. Cambridge: Cambridge University Press, 1997, 276 s. ISBN 0-521-59674-2 Rolls-Royce engineers "The Jet Engine, 5th Edition" Technical Publications Department, Rolls-Royce, Derby, England | 1996 | ISBN: 0902121235 https://er.jsc.nasa.gov/seh/ANASAGUIDETOENGINES[1].pdf Aircraft propulsion 1.Lecture History of aircraft propulsion The aircraft engines always want more power, more durability, and more efficiency. They also want it in the smallest, lightest package possible. And it should be easy to manufacture and not cost too much. More than 100 years to the engineers trying achieve this. History of aircraft engines Steam engines – first attempts at powered flight 1894: Hiram Maxim – 180hp Boiler weight steam engine+boiler aprox 1000kg Airplane TOW aprox 3200gr History of aircraft engines - piston • Application of Internal combustion engine • Flyer Wright - 1903 The engine was modern designed with valve gear Power - 18 hp , weight aprox 82 kg Historie leteckých motorů History of aircraft engines - piston 1908 Cooling was problem first generation of aero engine Rotary engine Gnome – 50hp at 1200 rpm Weight aprox. 80kg Crankshaft with cylinders rotate for good cooling History of aircraft engines - piston Antoinette Engine 1909 - 1910 50hp weight. 50kg. Liquid cooled Engine with very good weight /power ratio, but the reliability was not good. History of aircraft engines - piston Liberty (Curtiss J2 „Jenny“) 1917 First engine for serial production History of aircraft engines - piston modular design allowed create engines with different outputs power Many manufacturers use the same strategy Liberty engine 12V – 400Hp 1919 Engine of many WWI airplane. Currtis „Jenny „ is most known. More than 30 000 unit was made History of aircraft engines - piston Pratt &Whitney - Double Wasp engine – 1943 The end of 2250 hp – 2800hp piston engines 45883 ccm,18 cylinders era. For large aircraft it has been difficult to design more powerful engines History of aircraft engines - piston Allison Division engine V-1710 engine : maximum power 1325 hp at 3000 rpm and 51,0 in Hg nominal power 1150 hp at 3000 rpm and 42,0 in Hg 28021 ccm, 725 kg The large piston engines have two major groups - radial air-cooled engines and ordinary liquid cooled engines first run 1930 History of aircraft engines - piston The Lycoming XR-7755 was the Low TBO of large engines caused the rapidly transition to largest piston-driven aircraft turbine engines after technology engine ever produced, with 36 maturing cylinders totaling about 7,750 in³ (127 L) of displacement and a power output of 5,000 horsepower (3,700 kilowatts). History of aircraft engines - turbine First jet engine Heinkel-Strahltriebwerk 1, engine prototype 1936. First flight at 1939. Fuel was hygrogen based gas. The principles of jet propulsion had been known, but there was no technology required for the construction of up to thirty-20th century Improved engine was HS3 – Weight 360kg Thrust 450 kg History of aircraft engines - turbine Jet engine Rolls-Royce Nene: thrust 22600N at 12 400 rpm weight 726 kg , first run 1944 Successful engine, manufactured under license in many countries History of aircraft engines - turbine First turboprop engine Jendrassik Cs-1 (1937) First run at 1940 Power: 400hp Efforts to overcome the weaknesses of powerful piston engines Development was not completed due to war. History of aircraft engines - turbine Turboshaft engine - Garrett TPE331 (1961) Power: 575hp at 2000 rpm (shaft), gen 41700 rpm Dry weight: 153kg Turboprop engines are dominated in category of regional aircraft History of aircraft engines - turbine Turbofan - first commercial motor low bypass ratio Rolls-Royce RB.80 Conway Turbo fan represents a certain combination of advantages of Trust 50 – 70 kN efficient propeller propulsion Bypass ratio 3:1 with speed of jet propulsion weight 2000 kg Build year.1950 B707,DC-8 History of aircraft engines - turbine General Electric CF6 ( 2000) – High bypass ratio engine Thrust 234 – 274 kN Higher fuel efficiency, low emissions Fan diameter 2,6m Bypass ratio 4,4 First high bypass ratio engine was Pratt & Whitney JT9D on Galaxy C-5 prototype build year 1968 History of aircraft engines - turbine General Electric Genx ( 2000) – High bypass ratio engine Thrust 240 – 330 kN Higher fuel efficiency, low emissions Fan diameter 2,8m Bypass ratio 19:2 First high bypass ratio engine was General Electric CF6 on DC 10-10 prototype build year 1971 Airlines JET development SUBSONIC ENGINE SFC TRENDS (35,000 ft. 0.8 Mach Number, Standard Day [Wisler]) Future …..??? Still looking for the perfect propulsion unit History of aircraft engines in the Czech rep. Walter - traditional Czech manufacturer of aircraft engines from 1923 Scolar 1936 Power: 180 hp at 2200 rpm volume: 7800 ccm weight: 155kg History of aircraft engines in the Czech rep. Mikron III – 1938 Power: 65 hp at 2600 rpm Volume: 2400 ccm Weight (dry): 60kg For light aircraft or motorgliders like L- 13SW History of aircraft engines in the Czech rep. 1951 Minor 4-III Power: 80hp volume: 3981 ccm Light training airplanes - Zlín Z-126 History of aircraft engines in the Czech rep. Walter M337 – 1959 Power 210 hp at 2700 ot.min-1, stroke volume 5970 ccm History of aircraft engines in the Czech rep. Walter M 601 - successful turboprop for L410 airplane family Types of engines and working principles Type of power plants for airplane • Piston engines + propeller • Turbine-powered • Ramjet • Pulse jets • Rocket engines Speed range and applications of different types of engines Aircraft propulsion - terms • Thrust is the force which moves an aircraft through the air. Thrust is used to overcome the drag of an airplane. • Thrust is generated by the engines of the aircraft through some kind of propulsion system. • Thrust is generated most often through the reaction of accelerating a mass of gas. Aircraft propulsion - terms Propulsion • Propulsion means to drive forward.
Recommended publications
  • Modernizing the Opposed-Piston, Two-Stroke Engine For
    Modernizing the Opposed-Piston, Two-Stroke Engine 2013-26-0114 for Clean, Efficient Transportation Published on 9th -12 th January 2013, SIAT, India Dr. Gerhard Regner, Laurence Fromm, David Johnson, John Kosz ewnik, Eric Dion, Fabien Redon Achates Power, Inc. Copyright © 2013 SAE International and Copyright@ 2013 SIAT, India ABSTRACT Opposed-piston (OP) engines were once widely used in Over the last eight years, Achates Power has perfected the OP ground and aviation applications and continue to be used engine architecture, demonstrating substantial breakthroughs today on ships. Offering both fuel efficiency and cost benefits in combustion and thermal efficiency after more than 3,300 over conventional, four-stroke engines, the OP architecture hours of dynamometer testing. While these breakthroughs also features size and weight advantages. Despite these will initially benefit the commercial and passenger vehicle advantages, however, historical OP engines have struggled markets—the focus of the company’s current development with emissions and oil consumption. Using modern efforts—the Achates Power OP engine is also a good fit for technology, science and engineering, Achates Power has other applications due to its high thermal efficiency, high overcome these challenges. The result: an opposed-piston, specific power and low heat rejection. two-stroke diesel engine design that provides a step-function improvement in brake thermal efficiency compared to conventional engines while meeting the most stringent, DESIGN ATTRIBUTES mandated emissions
    [Show full text]
  • Fuel Cells Versus Heat Engines: a Perspective of Thermodynamic and Production
    Fuel Cells Versus Heat Engines: A Perspective of Thermodynamic and Production Efficiencies Introduction: Fuel Cells are being developed as a powering method which may be able to provide clean and efficient energy conversion from chemicals to work. An analysis of their real efficiencies and productivity vis. a vis. combustion engines is made in this report. The most common mode of transportation currently used is gasoline or diesel engine powered automobiles. These engines are broadly described as internal combustion engines, in that they develop mechanical work by the burning of fossil fuel derivatives and harnessing the resultant energy by allowing the hot combustion product gases to expand against a cylinder. This arrangement allows for the fuel heat release and the expansion work to be performed in the same location. This is in contrast to external combustion engines, in which the fuel heat release is performed separately from the gas expansion that allows for mechanical work generation (an example of such an engine is steam power, where fuel is used to heat a boiler, and the steam then drives a piston). The internal combustion engine has proven to be an affordable and effective means of generating mechanical work from a fuel. However, because the majority of these engines are powered by a hydrocarbon fossil fuel, there has been recent concern both about the continued availability of fossil fuels and the environmental effects caused by the combustion of these fuels. There has been much recent publicity regarding an alternate means of generating work; the hydrogen fuel cell. These fuel cells produce electric potential work through the electrochemical reaction of hydrogen and oxygen, with the reaction product being water.
    [Show full text]
  • DA+40+POH.Pdf
    AIRPLANE FLIGHT MANUAL DA40 Airworthiness Category : Normal, Utility Requirement : JAR-23 Serial Number :40.698 Registration :N216DG , Doc. No. : 6.01.01-E Date of Issue : 26 June 2000 Signature Authority Stamp A-1 030 Wim, Sclmirchgassc 11 Date of approval 0 9. DEZ . Z.Oa4 This Flight Manuaj has been verified for EASA by the Austrian Civil Aviation Authority J Austro Control (ACG) as Primary Certification Authority (PCA) in accordance with the I valid Certifica1ion Procedures and approved by EASA with approval no ..2.004 :- A~3Zf, f This Flight Manual has been approved by EASA on behalf of CAAC-MD. DIAMOND AIRCRAFT INDUSTRIES GMBH N.A OTTO-STR. 5 A-2700 WIENER NEUSTADT A USTRIA page 0 - 0, R~v. 6 ~V/U~/UO mun U~:~O ~AA OD~ 0~/ ~~!U ~AA LAA~U ANM-lUUL ~3 ~011 AmSafe, Inc. Inflatable Restraints Division 1043 N. 47'" Avenue Phoenix, AZ., 85043 Document No.: E509609 r FAA APPROVED AIRPLANE FLIGHT MANUAL SUPPLEMENT to PILOT'S OPERATING HANDBOOK AND FAA APPROVED AIRPLANE FLIGHT MANUAL for Diamond Aircraft Industries, Inc. Model DA40 Aircraft Reg. No. N 2 16 DG Aircraft SIN: 4 0 • 6 9 8 This supplement must be attached to the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual for Diamond Aircraft Model DA 40 when the. Airplane Is modified by the installation of AmSafe Aviation Inflatable Restraint (AAIR,.) System, V23 Version in accordance with STC SA01918LA. The information contained herein supplements or supersedes the basic manual only in those areas listed herein. For limitations, procedures, and performance information not contained in this supplement, consult c the basic Airplane Flight Manual.
    [Show full text]
  • Design of a Light Business Jet Family David C
    Design of a Light Business Jet Family David C. Alman Andrew R. M. Hoeft Terry H. Ma AIAA : 498858 AIAA : 494351 AIAA : 820228 Cameron B. McMillan Jagadeesh Movva Christopher L. Rolince AIAA : 486025 AIAA : 738175 AIAA : 808866 I. Acknowledgements We would like to thank Mr. Carl Johnson, Dr. Neil Weston, and the numerous Georgia Tech faculty and students who have assisted in our personal and aerospace education, and this project specifically. In addition, the authors would like to individually thank the following: David C. Alman: My entire family, but in particular LCDR Allen E. Alman, USNR (BSAE Purdue ’49) and father James D. Alman (BSAE Boston University ’87) for instilling in me a love for aircraft, and Karrin B. Alman for being a wonderful mother and reading to me as a child. I’d also like to thank my friends, including brother Mark T. Alman, who have provided advice, laughs, and made life more fun. Also, I am forever indebted to Roe and Penny Stamps and the Stamps President’s Scholarship Program for allowing me to attend Georgia Tech and to the Georgia Tech Research Institute for providing me with incredible opportunities to learn and grow as an engineer. Lastly, I’d like to thank the countless mentors who have believed in me, helped me learn, and Page i provided the advice that has helped form who I am today. Andrew R. M. Hoeft: As with every undertaking in my life, my involvement on this project would not have been possible without the tireless support of my family and friends.
    [Show full text]
  • Gallery of USAF Weapons Note: Inventory Numbers Are Total Active Inventory Figures As of Sept
    Gallery of USAF Weapons Note: Inventory numbers are total active inventory figures as of Sept. 30, 2011. ■ 2012 USAF Almanac Bombers B-1 Lancer Brief: A long-range, air refuelable multirole bomber capable of flying intercontinental missions and penetrating enemy defenses with the largest payload of guided and unguided weapons in the Air Force inventory. Function: Long-range conventional bomber. Operator: ACC, AFMC. First Flight: Dec. 23, 1974 (B-1A); Oct. 18, 1984 (B-1B). Delivered: June 1985-May 1988. IOC: Oct. 1, 1986, Dyess AFB, Tex. (B-1B). Production: 104. Inventory: 66. Aircraft Location: Dyess AFB, Tex.; Edwards AFB, Calif.; Eglin AFB, Fla.; Ellsworth AFB, S.D. Contractor: Boeing, AIL Systems, General Electric. Power Plant: four General Electric F101-GE-102 turbofans, each 30,780 lb thrust. Accommodation: pilot, copilot, and two WSOs (offensive and defensive), on zero/zero ACES II ejection seats. Dimensions: span 137 ft (spread forward) to 79 ft (swept aft), length 146 ft, height 34 ft. B-1B Lancer (SSgt. Brian Ferguson) Weight: max T-O 477,000 lb. Ceiling: more than 30,000 ft. carriage, improved onboard computers, improved B-2 Spirit Performance: speed 900+ mph at S-L, range communications. Sniper targeting pod added in Brief: Stealthy, long-range multirole bomber that intercontinental. mid-2008. Receiving Fully Integrated Data Link can deliver nuclear and conventional munitions Armament: three internal weapons bays capable of (FIDL) upgrade to include Link 16 and Joint Range anywhere on the globe. accommodating a wide range of weapons incl up to Extension data link, enabling permanent LOS and Function: Long-range heavy bomber.
    [Show full text]
  • CAA - Airworthiness Approved Organisations
    CAA - Airworthiness Approved Organisations Category BCAR Name British Balloon and Airship Club Limited (DAI/8298/74) (GA) Address Cushy DingleWatery LaneLlanishen Reference Number DAI/8298/74 Category BCAR Chepstow Website www.bbac.org Regional Office NP16 6QT Approval Date 26 FEBRUARY 2001 Organisational Data Exposition AW\Exposition\BCAR A8-15 BBAC-TC-134 ISSUE 02 REVISION 00 02 NOVEMBER 2017 Name Lindstrand Technologies Ltd (AD/1935/05) Address Factory 2Maesbury Road Reference Number AD/1935/05 Category BCAR Oswestry Website Shropshire Regional Office SY10 8GA Approval Date Organisational Data Category BCAR A5-1 Name Deltair Aerospace Limited (TRA) (GA) (A5-1) Address 17 Aston Road, Reference Number Category BCAR A5-1 Waterlooville Website http://www.deltair- aerospace.co.uk/contact Hampshire Regional Office PO7 7XG United Kingdom Approval Date Organisational Data 30 July 2021 Page 1 of 82 Name Acro Aeronautical Services (TRA)(GA) (A5-1) Address Rossmore38 Manor Park Avenue Reference Number Category BCAR A5-1 Princes Risborough Website Buckinghamshire Regional Office HP27 9AS Approval Date Organisational Data Name British Gliding Association (TRA) (GA) (A5-1) Address 8 Merus Court,Meridian Business Reference Number Park Category BCAR A5-1 Leicester Website Leicestershire Regional Office LE19 1RJ Approval Date Organisational Data Name Shipping and Airlines (TRA) (GA) (A5-1) Address Hangar 513,Biggin Hill Airport, Reference Number Category BCAR A5-1 Westerham Website Kent Regional Office TN16 3BN Approval Date Organisational Data Name
    [Show full text]
  • Air-Cooled Cylinders 1
    Air-Cooled Aircraft Engine Cylinders An Evolutionary Odyssey by George Genevro Part 1 - From the Past Should aircraft engines be liquid-cooled or air-cooled? This “difference of opinion” is about a hundred years old and without a doubt the argument will continue as long as piston engines power the airplanes we fly. The manner in which the question is stated is misleading, however, since all waste heat that comes through the structure of an engine is eventually delivered to the air. In “liquid-cooled” engines the coolant can be water, ethylene glycol, a mixture of the two, or one of the many other liquids that have been tried and found wanting. Its primary purpose is to carry heat from the cylinder barrel and head to the radiator through which air, the actual cooling medium, flows. Proponents of liquid-cooling–now as in the past–can point to some benefits and operational advantages such as lessened hazard of shock cooling an engine, being able to direct dedicated coolant flow to critical areas in the cylinder head such as the exhaust valve seat and guide area, flexibility in radiator placement, greater structural rigidity in the engine, and having the option of designing airframes with a relatively small cross-sectional area that could still house a powerful engine. With every advantage, imagined or real, there is almost always a price to pay. Those who opted for liquid-cooled engines had to accept added weight, greater possibility of battle damage in military applications, and greater system complexity as the penalties. Such is life.
    [Show full text]
  • ISSEK HSE) Role of Big Data Augmented Horizon Scanning in Strategic and Marketing Analytics
    National Research University Higher School of Economics Institute for Statistical Studies and Economics of Knowledge Big Data Augmented Horizon Scanning: Combination of Quantitative and Qualitative Methods for Strategic and Marketing Analytics [email protected] [email protected] XIX April International Academic Conference on Economic and Social Development Moscow, 11 April 2018 Outline - Role of artificial intelligence and big data in modern analytics - System of Intelligent Foresight Analytics iFORA - Combined quantitative and qualitative analysis methodology and software solutions - Use cases - Conclusion and discussion 2 Growing interest in Artificial Intelligence, Big Data and Machine Learning International analytical reports & news feed 12000 10000 8000 Artificial Intelligence 6000 Big Data Machine Learning 4000 2000 0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Russian analytical reports & news feed 800 700 600 500 Artificial Intelligence 400 Big Data 300 Machine Learning 200 100 0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 3 Source: System of Intelligent Foresight Analytics iFORA™ (ISSEK HSE) Role of Big Data Augmented Horizon Scanning in Strategic and Marketing Analytics AI-related tasks Tracking latest and challenges trends, technologies, drivers, barriers Market forecasting Trend analysis Understanding S&T modern skills and Instruments for Customers Market Intelligence competences analysis feedback knowledge discovery HR policy Vacancy Feedback mining
    [Show full text]
  • Carnot Cycles
    CARNOT CYCLES Sadi Carnot was a French physicist who proposed an “ideal” cycle for a heat engine in 1824. Historical note – the idea of an ideal cycle came about because engineers were trying to develop a steam engine (a type of heat engine) where they could reject (waste) a minimal amount of heat. This would produce the best efficiency since η = 1 – (QL/QH). Carnot proposed that a cycle comprised of completely (internally and externally) reversible processes would give the maximum amount of net work for a given heat input, since the work done by a system in a reversible (ideal) process is always greater than that in an irreversible (real) process. THE CARNOT HEAT ENGINE CYCLE CONSISTS OF FOUR REVERSIBLE PROCESSES IN A SEQUENCE: 1 Æ 2: Reversible isothermal expansion. Heat transfer from HTR (+) and boundary work (+) occur in closed system 2 Æ 3: Reversible adiabatic expansion Work output (+), but no heat transfer 3 Æ 4: Reversible isothermal compression Heat transfer (-) and boundary work (-) occur in closed system 4 Æ 1: Reversible adiabatic compression Work input (-), but no heat transfer AND Wout >>> Win 1 P-V DIAGRAM FOR CARNOT HEAT ENGINE CYCLE P 1 2 4 3 Showing net work is POSITIVE. V A useful example of an isothermal expansion is boiling (vaporization) at a constant pressure in a device such as a piston-cylinder. Similarly, an example of an isothermal compression is condensation at a constant pressure in a piston-cylinder. Also, heat transfer can only occur in processes 1 Æ 2 and 3 Æ4. 1 Æ 2: since work is positive (expansion) and Δu is positive (e.g., boiling) then heat transfer is positive (input from HTR).
    [Show full text]
  • The Power for Flight: NASA's Contributions To
    The Power Power The forFlight NASA’s Contributions to Aircraft Propulsion for for Flight Jeremy R. Kinney ThePower for NASA’s Contributions to Aircraft Propulsion Flight Jeremy R. Kinney Library of Congress Cataloging-in-Publication Data Names: Kinney, Jeremy R., author. Title: The power for flight : NASA’s contributions to aircraft propulsion / Jeremy R. Kinney. Description: Washington, DC : National Aeronautics and Space Administration, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2017027182 (print) | LCCN 2017028761 (ebook) | ISBN 9781626830387 (Epub) | ISBN 9781626830370 (hardcover) ) | ISBN 9781626830394 (softcover) Subjects: LCSH: United States. National Aeronautics and Space Administration– Research–History. | Airplanes–Jet propulsion–Research–United States– History. | Airplanes–Motors–Research–United States–History. Classification: LCC TL521.312 (ebook) | LCC TL521.312 .K47 2017 (print) | DDC 629.134/35072073–dc23 LC record available at https://lccn.loc.gov/2017027182 Copyright © 2017 by the National Aeronautics and Space Administration. The opinions expressed in this volume are those of the authors and do not necessarily reflect the official positions of the United States Government or of the National Aeronautics and Space Administration. This publication is available as a free download at http://www.nasa.gov/ebooks National Aeronautics and Space Administration Washington, DC Table of Contents Dedication v Acknowledgments vi Foreword vii Chapter 1: The NACA and Aircraft Propulsion, 1915–1958.................................1 Chapter 2: NASA Gets to Work, 1958–1975 ..................................................... 49 Chapter 3: The Shift Toward Commercial Aviation, 1966–1975 ...................... 73 Chapter 4: The Quest for Propulsive Efficiency, 1976–1989 ......................... 103 Chapter 5: Propulsion Control Enters the Computer Era, 1976–1998 ........... 139 Chapter 6: Transiting to a New Century, 1990–2008 ....................................
    [Show full text]
  • AEROMOTIVE Part 2
    AEROMOTIVE Part 2 What is an aircraft engine? A child might answer, "an engine that's on an aeroplane." Foolish youth! If we skip the radials, rotarys, sleeve valvers, two strokes, diesels, turbines, jets, and rockets, we're left with . the four cycle, internal combustion, spark ignited, piston reciprocating, poppet valvers, in only; aircooled, liquid cooled, inline, opposed, vee, naturally aspirated, and supercharged gasoline consuming variations. These qualifications squeeze the answer into a set of characteristics that appears remarkably like an automotive engine to enthusiastic people. Back To The Basics: We can attempt to equate engine performance in a variety of ways. However, horsepower still seems to be the best method if it is qualified by an accompanying RPM (revolutions/minute). Power output in HP/CID (horsepower/cubic inch displacement) is a standard for most engine nerds but it doesn't reveal much about the drivability (torque) or personality (horsepower curve) of the engine. Torque and horsepower are intimately related even though they are often spoken of as if they were separate entities. I have taught a private engine design and building course for 21 years and it has always been a challenge to get my students to understand the relationship between torque and horsepower. This doesn't surprise me because these two parameters, ostensibly simple, are in fact tricky to relate. I am reluctant to rehash the whole horsepower/torque issue. But, based on conversations I have had with aircraft folks - and automotive folks, for that matter - I perceive the need to establish basic terms. We (“we” meaning us at Sunset Engine Development) are often asked, "what do I want, torque or horsepower?" Trying to explain such abstract concepts on the telephone cannot do the subject justice.
    [Show full text]
  • Lecture 10. Heat Engines (Ch. 4)
    Lecture 11. Heat Engines (Ch. 4) A heat engine – any device that is capable of converting thermal energy (heating) into mechanical energy (work). We will consider an important class of such devices whose operation is cyclic. Heating – the transfer of energy to a system by thermal contact with a reservoir. Work – the transfer of energy to a system by a change in the external parameters (V, el.-mag. and grav. fields, etc.). The main question we want to address: what are the limitations imposed by thermodynamic on the performance of heat engines? Perpetual Motion Machines are Impossible Perpetual Motion Machines of the first type – these designs seek to violation of the First Law create the energy required for their (energy conservation) operation out of nothing. Perpetual Motion Machines of the second type - these designs extract the energy required for their operation violation of the Second in a manner that decreases the entropy Law of an isolated system. hot reservoir Word of caution: for non-cyclic processes, T H 100% of heat can be transformed into work without violating the Second Law. heat Example: an ideal gas expands isothermally work being in thermal contact with a hot reservoir. Since U = const at T = const, all heat has been transformed into work. impossible cyclic heat engine Fundamental Difference between Heating and Work - is the difference in the entropy transfer! Transferring purely mechanical energy to or from a system does not (necessarily) change its entropy: ΔS = 0 for reversible processes. For this reason, all forms of work are thermodynamically equivalent to each other - they are freely convertible into each other and, in particular, into mechanical work.
    [Show full text]