C-130J-Sof International Special Operations Forces Configurations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AIR FORCE Magazine / April 1998 42
Data on these pages are drawn from several official and unofficial studies.The two principal sources are Gulf War Air Power Survey, Eliot A. Cohen, et al, USAF, Washington, 1993; and Airpower in the Gulf, James P. Coyne, the Aerospace Edu cation Foundation, Arlington, Va., 1992. Also consulted were studies from the US Air Force, Department of Defense, and Congress. 42 AIR FORCE Magazine / April 1998 USAF photo by Fernando Serna AIR FORCE Magazine / April 1998 43 Flight Operations Summary n USAF’s in-theater fighter, bomber, and attack aircraft numbered 693 at the height of the war, or 58 percent of US in-theater air assets. They flew 38,000 wartime sorties. n USAF aircraft dropped nearly 160,000 munitions on Iraqi targets, 72 percent of the US forces total. n Air Force aircraft dropped 91 percent of all precision bombs and 96 percent of precision missiles used in the war. n Air Force B-52 bombers flew 1,624 combat missions and dropped 72,000 bombs, or 26,000 tons of ordnance. This F-15D from the 1st Tactical Fighter Wing, Langley AFB, Va., was among the first US forces to arrive in the Persian Gulf after Iraq invaded Kuwait. n Before the ground battle began, the USAF–led air campaign against Iraqi ground forces destroyed 1,688 battle tanks (39 percent of total), 929 armored personnel carriers (32 percent), and 1,452 artillery tubes (47 percent). n USAF combat support aircraft Chronology numbered 487 at the height of the war, 54 percent of the US support 1990 assets in-theater. -
Addressing Corner Detection Issues for Machine Vision Based UAV Aerial Refueling
Graduate Theses, Dissertations, and Problem Reports 2006 Addressing corner detection issues for machine vision based UAV aerial refueling Soujanya Vendra West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Vendra, Soujanya, "Addressing corner detection issues for machine vision based UAV aerial refueling" (2006). Graduate Theses, Dissertations, and Problem Reports. 1723. https://researchrepository.wvu.edu/etd/1723 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Addressing Corner Detection Issues for Machine Vision based UAV Aerial Refueling Soujanya Vendra Thesis submitted to the College of Engineering and Mineral Resources at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Aerospace Engineering Dr. Marcello R. Napolitano, Ph.D., Chair Dr. Giampiero Campa, Ph.D. Dr. Arun Ross, Ph.D Department of Mechanical and Aerospace Engineering Morgantown, West Virginia 2006 Keywords: machine vision, aerial refueling, feature extraction, corner detection ABSTRACT Addressing Corner Detection Issues for Machine Vision based UAV Aerial Refueling Soujanya Vendra The need for developing autonomous aerial refueling capabilities for an Unmanned Aerial Vehicle (UAV) has risen out of the growing importance of UAVs in military and non-military applications. -
Operation Nickel Grass: Airlift in Support of National Policy Capt Chris J
Secretary of the Air Force Janies F. McGovern Air Force Chief of Staff Gen Larry D. Welch Commander, Air University Lt Gen Ralph Lv Havens Commander, Center for Aerospace Doctrine, Research, and Education Col Sidney J. Wise Editor Col Keith W. Geiger Associate Editor Maj Michael A. Kirtland Professional Staff Hugh Richardson. Contributing Editor Marvin W. Bassett. Contributing Editor John A. Westcott, Art Director and Production Mu linger Steven C. Garst. Art Editor and Illustrator The Airpower Journal, published quarterly, is the professional journal of the United States Air Force. It is designed to serve as an open forum for presenting and stimulating innovative thinking on military doctrine, strategy, tactics, force structure, readiness, and other national defense matters. The views and opinions ex- pressed or implied in the Journal are those of the authors and should not be construed as car- rying the official sanction of the Department of Defense, the Air Force, Air University, or other agencies or departments of the US government. Articles in this edition may be reproduced in whole or in part without permission. If repro- duced, the Airpower Journal requests a cour- tesy line. JOURNAL SPRING 1989. Vol. Ill, No. I AFRP 50 2 Editorial 2 Air Interdiction Col Clifford R. Kxieger, USAF 4 Operation Nickel Grass: Airlift in Support of National Policy Capt Chris J. Krisinger, USAF 16 Paradox of the Headless Horseman Lt Col Joe Boyles, USAF Capt Greg K. Mittelman, USAF 29 A Rare Feeling of Satisfaction Maj Michael A. Kirtland, USAF 34 Weaseling in the BUFF Col A. Lee Harrell, USAF 36 Thinking About Air Power Maj Andrew J. -
Arming Israel to Defeat Iranian Aggression: Frontloading Weapons Delivery
Arming Israel to Defeat Iranian Aggression: Frontloading Weapons Delivery JINSA’s Gemunder Center U.S.-Israel Security Policy Project Chairman: ADM James Stavridis, USN (ret.) November 2019 DISCLAIMER The findings and recommendations contained in this publication are solely those of the authors. Cover photo credit: JINSA. Policy Project Members and Staff Chairman ADM James Stavridis, USN (ret.) Former NATO Supreme Allied Commander and former Commander of U.S. European Command Members Gen Charles “Chuck” Wald, USAF (ret.) Former Deputy Commander of U.S. European Command LTG John Gardner, USA (ret.) Former Deputy Commander of U.S. European Command Lt Gen Henry Obering, USAF (ret.) Former Director of U.S. Missile Defense Agency Gemunder Center Staff Michael Makovsky, PhD President & CEO Jonathan Ruhe Director of Foreign Policy Ari Cicurel Policy Analyst Harry Hoshovsky Policy Analyst Table of Contents Executive Summary 7 MoU Background 12 Strategic Context 13 Benefits of Frontloading 17 Frontloading Methods 19 Weapons Production Issues 22 Endnotes 25 Executive Summary The Middle East “remains a dangerous neighborhood.” Those were President Obama’s words in 2016 when he announced a new agreement to provide Israel $33 billion in U.S. defense assistance, known as foreign military financing (FMF), plus $5 billion in missile defense cooperation over the following decade – the vast majority of which will be spent in the United States. This 10-year memorandum of understanding (MoU) forms the centerpiece of America’s commitment under U.S. law to uphold Israel’s “qualitative military edge” (QME), which ensures Israel can counter military threats at acceptable cost to itself. It also represents a significant commitment to an ally, benefits the U.S. -
C-130J Super Hercules Program Status and Fast Facts Program Status
January 2020 C-130J Super Hercules Program Status and Fast Facts Program Status 24 Super Hercules Advantages The C-130J Super Hercules provides significant performance improvements and added operational capabilities that translate directly into increased ground and air combat effectiveness. Some of these attributes include the ability to: • Operate out of 2,000 ft. long dirt strips in high mountain ranges. • Carry tons of supplies more than 3,000 miles and deliver “the last mile” to remote operating bases, keeping trucks off dangerous highways. • Perform in-flight refueling, ground fueling, weather reconnaissance, electronic warfare, medical evacuation, search and rescue, paradrop, maritime mission, special operations and many other missions. • Generate much greater operational efficiencies. The C-130J outperforms older C-130s in combat operations by at least a 2:1 margin. • Operate with only two pilots and one loadmaster for most missions, exposing fewer flight crew members to potential combat threats. • Demonstrate reliability that far exceeds most other military aircraft with average mission capable rates routinely in the 80-to-90% range. One Aircraft, Many Capabilities Electronic Air Drop Intelligence, Humanitarian Combat Aeromedical Aerial Search Commercial Surveillance Surveillance & Delivery Refueling & Rescue Freighter Reconnaissance Communication Aerial Personnel Recovery Weather Gunship Maritime Special Passenger Special Ops Personnel Ground Firefighting Reconnaissance Surveillance Accommodations Transport Refueling Super Hercules -
Corel Ventura
The MIT Press Journals http://mitpress.mit.edu/journals This article is provided courtesy of The MIT Press. To join an e-mail alert list and receive the latest news on our publications, please visit: http://mitpress.mit.edu/e-mail Restructuring the U.S. Eugene Gholz and Defense Industry Harvey M. Sapolsky The end of the Cold War produced major changes in the U.S. defense sector. More than 2 million defense workers, military personnel, and civil servants have lost their jobs. Thousands of ªrms have left the industry. More than one hundred military bases have closed, and the production of weapons is down considerably. As signiªcant as these changes are, they do not address the key issues in restructuring the post–Cold War defense sector. The Reagan-era defense buildup led contractors to invest in huge production capacity that no longer is needed. This capacity overhang includes too many open factories, each of which produces a “legacy” system that was designed for the Cold War. Many individual defense plants are also too large to produce efªciently at post–Cold War levels of demand. Until this excess capacity is eliminated, the United States will continue to spend too much on defense. The politics of jobs and congressional districts that many analysts thought governed the Cold War have triumphed in its aftermath. Today, years after the collapse of the Soviet Union, not one Cold War weapon platform line has closed in the United States.1 The same factories still produce the same aircraft, ships, and armored vehicles (or their incremental descendants). -
Countersea Operations
COUNTERSEA OPERATIONS Air Force Doctrine Document 2-1.4 15 September 2005 This document complements related discussion found in Joint Publication 3-30, Command and Control for Joint Air Operations. BY ORDER OF THE AIR FORCE DOCTRINE DOCUMENT 2-1.4 SECRETARY OF THE AIR FORCE 15 SEPTEMBER 2005 SUMMARY OF REVISIONS This document is substantially revised. This revision’s overarching changes are new chapter headings and sections, terminology progression to “air and space” from “aerospace,” expanded discussion on planning and employment factors, operational considerations when conducting countersea operations, and effects-based methodology and the emphasis on operations vice capabilities or platforms. Specific changes with this revision are the additions of the naval warfighter’s perspective to enhance understanding the environment, doctrine, and operations of the maritime forces on page 3; comparison between Air Force and Navy/Marine Corp terminology, on page 7, included to ensure Air Force forces are aware of the difference in terms or semantics; a terminology matrix added to simplify that awareness on page 9; amphibious operations organization, command and control, and planning are also included throughout the document. Supersedes: AFDD 2-1.4, 4 June 1999 OPR: HQ AFDC/DS (Lt Col Richard Hughey) Certified by: AFDC/DR (Lt Col Eric Schnitzer) Pages: 66 Distribution: F Approved by: Bentley B. Rayburn, Major General, USAF Commander, Headquarters Air Force Doctrine Center FOREWORD Countersea Operations are about the use of Air Force capabilities in the maritime environment to accomplish the joint force commander’s objectives. This doctrine supports DOD Directive 5100.1 requirements for surface sea surveillance, anti-air warfare, anti-surface ship warfare, and anti-submarine warfare. -
JP 3-03, Joint Interdiction
Joint Publication 3-03 Joint Interdiction 14 October 2011 PREFACE 1. Scope This publication provides doctrine for planning, preparing, executing, and assessing joint interdiction operations. 2. Purpose This publication has been prepared under the direction of the Chairman of the Joint Chiefs of Staff. It sets forth joint doctrine to govern the activities and performance of the Armed Forces of the United States in joint operations and provides the doctrinal basis for interagency coordination and for US military involvement in multinational operations. It provides military guidance for the exercise of authority by combatant commanders and other joint force commanders (JFCs) and prescribes joint doctrine for operations, education, and training. It provides military guidance for use by the Armed Forces in preparing their appropriate plans. It is not the intent of this publication to restrict the authority of the JFC from organizing the force and executing the mission in a manner the JFC deems most appropriate to ensure unity of effort in the accomplishment of the overall objective. 3. Application a. Joint doctrine established in this publication applies to the joint staff, commanders of combatant commands, subunified commands, joint task forces, subordinate components of these commands, and the Services. b. The guidance in this publication is authoritative; as such, this doctrine will be followed except when, in the judgment of the commander, exceptional circumstances dictate otherwise. If conflicts arise between the contents of this publication and the contents of Service publications, this publication will take precedence unless the Chairman of the Joint Chiefs of Staff, normally in coordination with the other members of the Joint Chiefs of Staff, has provided more current and specific guidance. -
Issue No. 4, Oct-Dec
VOL. 6, NO. 4, OCTOBER - DECEMBER 1979 t l"i ~ ; •• , - --;j..,,,,,,1:: ~ '<• I '5t--A SERVt(;E P\JBLICATtON Of: t.OCKH EE:O-G EORGlA COt.'PAfllV A 01Vt$10,.. or t.OCKHEEOCOAf'ORATION A SERVICE PUBLICATION OF LOCKHEED-GEORGIA COMPANY The C-130 and Special Projects Engineering A DIVISION OF Division is pleased to welcome you to a LOCKHEED CORPORATION special “Meet the Hercules” edition of Service News magazine. This issue is de- Editor voted entirely to a description of the sys- Don H. Hungate tems and features of the current production models of the Hercules aircraft, the Ad- Associate Editors Charles 1. Gale vanced C-130H, and the L-100-30. Our James A. Loftin primary purpose is to better acquaint you with these two most recently updated Arch McCleskey members of Lockheed’s distinguished family Patricia A. Thomas of Hercules airlifters, but first we’d like to say a few words about the engineering or- Art Direction & Production ganization that stands behind them. Anne G. Anderson We in the Project Design organization have the responsibility for the configuration and Vol. 6, No. 4, October-December 1979 systems operation of all new or modified CONTENTS C-130 or L-100 aircraft. During the past 26 years, we have been intimately involved with all facets of Hercules design and maintenance. Our goal 2 Focal Point is to keep the Lockheed Hercules the most efficient and versatile cargo aircraft in the world. We 0. C. Brockington, C-130 encourage our customers to communicate their field experiences and recommendations to us so that Engineering Program Manager we can pass along information which will be useful to all operators, and act on those items that would benefit from engineeringattention. -
C-130J Super Hercules Whatever the Situation, We'll Be There
C-130J Super Hercules Whatever the Situation, We’ll Be There Table of Contents Introduction INTRODUCTION 1 Note: In general this document and its contents refer RECENT CAPABILITY/PERFORMANCE UPGRADES 4 to the C-130J-30, the stretched/advanced version of the Hercules. SURVIVABILITY OPTIONS 5 GENERAL ARRANGEMENT 6 GENERAL CHARACTERISTICS 7 TECHNOLOGY IMPROVEMENTS 8 COMPETITIVE COMPARISON 9 CARGO COMPARTMENT 10 CROSS SECTIONS 11 CARGO ARRANGEMENT 12 CAPACITY AND LOADS 13 ENHANCED CARGO HANDLING SYSTEM 15 COMBAT TROOP SEATING 17 Paratroop Seating 18 Litters 19 GROUND SERVICING POINTS 20 GROUND OPERATIONS 21 The C-130 Hercules is the standard against which FLIGHT STATION LAYOUTS 22 military transport aircraft are measured. Versatility, Instrument Panel 22 reliability, and ruggedness make it the military Overhead Panel 23 transport of choice for more than 60 nations on six Center Console 24 continents. More than 2,300 of these aircraft have USAF AVIONICS CONFIGURATION 25 been delivered by Lockheed Martin Aeronautics MAJOR SYSTEMS 26 Company since it entered production in 1956. Electrical 26 During the past five decades, Lockheed Martin and its subcontractors have upgraded virtually every Environmental Control System 27 system, component, and structural part of the Fuel System 27 aircraft to make it more durable, easier to maintain, Hydraulic Systems 28 and less expensive to operate. In addition to the Enhanced Cargo Handling System 29 tactical airlift mission, versions of the C-130 serve Defensive Systems 29 as aerial tanker and ground refuelers, weather PERFORMANCE 30 reconnaissance, command and control, gunships, Maximum Effort Takeoff Roll 30 firefighters, electronic recon, search and rescue, Normal Takeoff Distance (Over 50 Feet) 30 and flying hospitals. -
Exploration Systems Development
EXPLORATION SYSTEMS DEVELOPMENT COMBINED MONTHLY REPORT April 2017 ORION 4 Orion Team Makes Grand Strides Toward Exploration Missions 5 Orion EM-2 Spacecraft Takes Shape 6 Qualifying for Crewed Flight 6 Laser Communications To Help Orion Astronauts Phone Home 7 Orion EM-1 Structural Test Article Travels to Denver 8 EFT-1 Heat Shield Transferred for Testing 8 Congressional Guests Get a First-Hand Glimpse at Orion’s Progress 9 Vertical Vertigo 9 EFT-1 Orion Crew Module Lands at Kennedy Visitor Complex 10 Orion Brings Outer Space Experiences to National Space Symposium 10 UT Tyler Seniors Get Hands-On Experience 11 Orion Team Members Stand Out at RNASA Stellar Awards 12 Orion Team Holds Town Hall Meeting 12 Lockheed Martin Employees Assist with First Championship 13 Orion Backstage: NASA’s Super Guppy SPACE LAUNCH SYSTEM 15 SLS Core Stage Engine Section Test Hardware Ships from Michoud to Marshall 17 Virtually Launching at the 33rd Space Symposium 18 Integrated Structural Test Completes Qualification Testing APRIL 2017 19 Lining Up for Second Flight 19 NASA and SLS Show Off at Maxwell Air Show 20 Spaceflight Partners: Janicki Industries 20 Greetings from Illinois GROUND SYSTEMS DEVELOPMENT & OPERATIONS 23 Final Brick Installed in Launch Complex 39B 24 Engineer’s LLAMA Design Aids Orion Recovery, Earns Innovation Award 25 Ground Systems Spotlight: Dean Primavere 26 Faces of GSDO: Ron Horvath 27 Orion Heat Shield Transferred to GSDO ORION APRIL 2017 BUILDING UP FOR CREWED FLIGHT ORION TEAM MAKES GRAND STRIDES TOWARD EXPLORATION MISSIONS April 2017 was a month full of significant milestones for the Orion program. -
Air Force Air Refueling: the KC-X Aircraft Acquisition Program
Order Code RL34398 Air Force Air Refueling: The KC-X Aircraft Acquisition Program Updated June 23, 2008 William Knight, Christopher Bolkcom, and Daniel H. Else Foreign Affairs, Defense, and Trade Division Air Force Air Refueling: The KC-X Aircraft Acquisition Program Summary KC-X is the first of three planned programs intended to recapitalize the Air Force’s air refueling fleet. Eventually, the KC-X program is expected to acquire 179 new, commercial off-the-shelf airliners modified to accomplish air refueling. The program is expected to cost approximately $35 billion. Both Boeing and a consortium consisting of Northrop Grumman and European Aeronautic Defence and Space Company (EADS) — the parent company of Airbus — were in competition for KC-X. Boeing offered a variant of the 767-200, while Northrop Grumman submitted a version of the Airbus 330-200. On February 29, 2008, the Air Force awarded the KC-X contract to Northrop Grumman. The initial $12.1 billion KC-X contract covers purchase the first 68 KC-45s of the anticipated 179 aircraft. Boeing protested the Air Force’s decision to the Government Accountability Office (GAO). GAO announced its sustainment of the Boeing protest on June 18, 2008. Air Force in-flight aerial refueling aircraft, often referred to as “tankers,” provide both persistence and range to Department of Defense (DOD) fighters, bombers, airlift and surveillance aircraft. As such, the Air Force’s tanker fleet greatly multiplies the effectiveness of DOD air power across the continuum of military operations. Today, the KC-135, which makes up the preponderance of the Air Force’s tanker force, is among the Air Force’s oldest aircraft.