Virtual Planetarium in Cyberstage

Total Page:16

File Type:pdf, Size:1020Kb

Virtual Planetarium in Cyberstage Virtual Planetarium in Cyb erStage Valery Burkin, Martin Gob el, Frank Hasenbrink, Stanislav Klimenko, Igor Nikitin, Henrik Tramb erend GMD { German National Research Center for Information Technology Abstract. We describ e an educational application in virtual environ- ment, intended for teaching and demonstration of basics of astronomy. The application includes 3D mo dels of 30 ob jects in the Solar System, 3200 nearby stars, a large database, containing textual descriptions of all ob jects in a scene, interactive map of constellations and to ols for search and navigation. The metho ds, needed for visualization of di erent scale astronomical ob jects in virtual environment, are describ ed. Mo dern educational pro cess actively uses the metho ds of computer graphics and scienti c visualization. Wide opp ortunities are op ened by emerging technology of virtual environments, which can be used for a creation of high interactive virtual lab oratories intended for teaching di erent disciplines. In this pap er we describ e an exp erimental course on basics of astronomy, which is delivered inside the immersive virtual environment system CyberStage, installed at GMD, and gives a p ossibility to explore interactively the Solar System and surrounding stars. The rst section presents the virtual environment system CyberStage. The second section outlines Avango, the main software comp onent driving this sys- tem. The metho ds used for mo deling of astronomical ob jects are describ ed in the third section and summarized in conclusion. 1 Cyb erStage The CyberStage [1] is CAVE-like [2] audio-visual pro jection system. It has ro om sizes (3m3m2.4m) and integrates a 4-side stereo image pro jection and 8- channel spatial sound pro jection, b oth controlled by the p osition of the user's head, followed by a tracking system (Polhemus Fastrak sensors). The sound pro- jection is completed by vibration emitters built into the o or of the system and allowing for rendering low frequency signals p erceivable through feet and legs and by the eightchannel-surround-sound system which is fed byIRCAM's ro om acoustic software Spatilisateur [3]. Shutter glasses (Crystal Eyes) are used for stereo image p erception. An SGI Onyx 2 with 4 In nite Reality 2 graphics sub- systems and 12 MIPS R10000 pro cessors generate eight user controlled images. Each pip e generates 11 million shaded triangles per second (p eak rate). The display resolution is 1024 x 768 pixels at 120 Hz for each of the four displays. To create the illusion of presence in virtual spaces, the Cyb erStage system provides various interfaces and interaction metaphors to visually and acoustically resp ond to the user's actions. These interfaces allow for navigation in virtual spaces and manipulation of virtual ob jects. The software driving the Cyb erStage is the Avango [4] application development to olkit. 2 Avango Avango is a programming framework for building distributed, interactive VE applications. It uses the C++ programming language to de ne two categories of ob ject classes. Nodes provide an ob ject-oriented scene graph API which allows the representation and rendering of complex geometry. Sensors provide Avango with it's interface to the real world and they are used to imp ort external device data into an application. All Avango ob jects are eldcontainers, representing ob ject state information as a collection of elds. They supp ort a generic streaming interface, which allows ob jects and their state information to b e written to a stream, and the subsequent reconstruction of the ob ject from that stream. This interface is one of the basic building blo cks used for the implementation of ob ject distribution. Avango uses connections between elds to build a data ow graph which is conceptually orthogonal to the scene graph, and is used to sp ecify additional relationships between no des, which cannot be expressed in terms of the stan- dard scene graph. This facilitates implementation of interactive b ehavior and the imp ort of real world data into the scene graph. In addition to the C++ API, Avango features a complete language binding to the interpreted language Scheme [5]. Scheme is a general purp ose programming language descended from Algol and Lisp. It is a high level language, supp orting op erations on structured data such as strings, lists and vectors. All high level Avango ob jects can b e created and manipulated from Scheme. The Avango itself is based on SGI Performer to achieve the maximum p os- sible p erformance for an application and addresses the sp ecial needs involved in application development for virtual environments. Along with high p erformance rendering this framework allows live video sources as well as prefabricated anima- tions to b e imp orted into virtual worlds. Advanced rendering tasks like culling, level-of-detail switching and communication with the graphics hardware are all handled by Performer. Whenever the underlying hardware allows, Performer utilizes multiple pro cessors and multiple graphics pip elines. 3 Solar System: algorithms of visualization Our main goal is to represent all ob jects in the Solar System preserving cor- rect angular sizes from any viewp oint, as they would b e visible from a traveling spacecraft. There are several reasons why this cannot b e done in a simple way, for example, representing the Solar System as Op en Inventor's static geometry le. Sizes and distances for ob jects in the Solar system are to o di erent: maxi- 9 mal ratio of scales is ab out r (Sun-Pluto)/r (Deimos) 10 . Usually (in Inventor, Performer and Avango) the geometric shap es in a virtual scene and p osition of observer in it are describ ed by single precision (4 bytes) real numb ers. This pre- cision is insucient to represent the ob jects with so di erent scales, as a result, trembling and other undesirable e ects app ear. These problems were removed using the metho ds describ ed b elow. Non-linear geometrical model of the Solar System was constructed in the follow- ing three steps: R s 3 r r 2 0 r 1 Rinf r 1 a) b) c) Fig.1. Non-linear geometrical mo del. Initially ( g.1a) all planets have the physical sizes and lo cated on their actual orbits. The observer travels along straight lines and can p enetrate inside the planets. Then, using a convenient non-linear transformation, which maps the interior of planets to a thin outer layer ( g.2): r 1 ( Rδ =(1) R 1+( 1) (r =(R )) ; r <R 0 0 (r )= r R 1 0 r ; r R ; =1:5 0 0 Rδ r 0 Fig.2. r (r ) dep endency. 1 0 we push out the observer from the interior. Instead of the collision, the tra jectory of observer smo othly rounds the planet and then returns to the initial straight- line course. (This metho d simultaneously implements no-collision algorithm and route planner.) On the second stage ( g.1b), for all planets which are suciently close to the observer, we apply a uniform scaling with a center at the p osition of observer and co ecient, given by a function ( g.3): s1 1 0 r = r =s ; R = R=s ; s = s ((r R )=d); 2 1 1 1 1 1 1 x(2 x); 0 <x<1 s (x)= 1 1; x1 1x Fig.3. s (x) dep endency. 1 After this transformation the minimal distance from the observer to the sur- 0 face of the planet is given by a formula lim (r R )= lim (r R )=s = d=2. 2 1 1 r !R r !R 1 1 4 Wetookd=310 km (approximately 5 Earth's radii). The describ ed e ect results in the following. After the distance d, the further approaching of the planet's surface is mo derated, and simultaneously, its angular size starts to increase without a b ound. This displays the e ect of approaching a large celestial b o dy. Then all linear sizes in the system are multiplied by a global scaling factor 8 0 0 ~ s =510 : r~ = r s ; R = R s (so that the distance of closest approachto 2 2 2 2 2 4 the planet, in real units equal to d=2= 1:510 km, in CyberStage corresp onds to 75 cm). Finally ( g.1c), all planets, placed outside of a large sphere around the ob- server's p osition, are put to this sphere using a scaling: 0 ~ 1; r~ R <R 2 inf 00 0 ~ r =~r s ; R = R s ; s = R =50m. 3 2 3 3 3 inf 0 0 ~ ~ R =(~r R ); r~ R R inf 2 2 inf Note: the describ ed transformations are applied to each planet whenever the p o- sition of observer is changed. These transformation preserve actual angular sizes of planets for any viewp oint. All calculations are p erformed in double precision (8-byte real numb ers), the resulting p ositions and sizes are presented in single precision and then passed to the rendering pip eline. Model for motion of observer. The velo city of observer should also vary in a large diapason, to make the exploration of near-Earth space and distant planets p ossible in one demo session. For this purp ose we determine the velo city of observer by its p osition relative to a closest planet: v (r )=C onst r (1 + log r=R); r is the distance to planet's center, R is planet's radius. This expression is esti- mated for all planets and minimum is selected.
Recommended publications
  • The Search for Exomoons and the Characterization of Exoplanet Atmospheres
    Corso di Laurea Specialistica in Astronomia e Astrofisica The search for exomoons and the characterization of exoplanet atmospheres Relatore interno : dott. Alessandro Melchiorri Relatore esterno : dott.ssa Giovanna Tinetti Candidato: Giammarco Campanella Anno Accademico 2008/2009 The search for exomoons and the characterization of exoplanet atmospheres Giammarco Campanella Dipartimento di Fisica Università degli studi di Roma “La Sapienza” Associate at Department of Physics & Astronomy University College London A thesis submitted for the MSc Degree in Astronomy and Astrophysics September 4th, 2009 Università degli Studi di Roma ―La Sapienza‖ Abstract THE SEARCH FOR EXOMOONS AND THE CHARACTERIZATION OF EXOPLANET ATMOSPHERES by Giammarco Campanella Since planets were first discovered outside our own Solar System in 1992 (around a pulsar) and in 1995 (around a main sequence star), extrasolar planet studies have become one of the most dynamic research fields in astronomy. Our knowledge of extrasolar planets has grown exponentially, from our understanding of their formation and evolution to the development of different methods to detect them. Now that more than 370 exoplanets have been discovered, focus has moved from finding planets to characterise these alien worlds. As well as detecting the atmospheres of these exoplanets, part of the characterisation process undoubtedly involves the search for extrasolar moons. The structure of the thesis is as follows. In Chapter 1 an historical background is provided and some general aspects about ongoing situation in the research field of extrasolar planets are shown. In Chapter 2, various detection techniques such as radial velocity, microlensing, astrometry, circumstellar disks, pulsar timing and magnetospheric emission are described. A special emphasis is given to the transit photometry technique and to the two already operational transit space missions, CoRoT and Kepler.
    [Show full text]
  • Discovery of a Low-Mass Companion to a Metal-Rich F Star with the Marvels Pilot Project
    The Astrophysical Journal, 718:1186–1199, 2010 August 1 doi:10.1088/0004-637X/718/2/1186 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. DISCOVERY OF A LOW-MASS COMPANION TO A METAL-RICH F STAR WITH THE MARVELS PILOT PROJECT Scott W. Fleming1,JianGe1, Suvrath Mahadevan1,2,3, Brian Lee1, Jason D. Eastman4, Robert J. Siverd4, B. Scott Gaudi4, Andrzej Niedzielski5, Thirupathi Sivarani6, Keivan G. Stassun7,8, Alex Wolszczan2,3, Rory Barnes9, Bruce Gary7, Duy Cuong Nguyen1, Robert C. Morehead1, Xiaoke Wan1, Bo Zhao1, Jian Liu1, Pengcheng Guo1, Stephen R. Kane1,10, Julian C. van Eyken1,10, Nathan M. De Lee1, Justin R. Crepp1,11, Alaina C. Shelden1,12, Chris Laws9, John P. Wisniewski9, Donald P. Schneider2,3, Joshua Pepper7, Stephanie A. Snedden12, Kaike Pan12, Dmitry Bizyaev12, Howard Brewington12, Olena Malanushenko12, Viktor Malanushenko12, Daniel Oravetz12, Audrey Simmons12, and Shannon Watters12,13 1 Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 326711-2055, USA; scfl[email protected]fl.edu 2 Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA 3 Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802, USA 4 Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA 5 Torun´ Center for Astronomy, Nicolaus Copernicus University, ul. Gagarina 11, 87-100, Torun,´ Poland 6 Indian Institute of Astrophysics, Bangalore 560034, India 7 Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA 8 Department of Physics, Fisk University, 1000 17th Ave.
    [Show full text]
  • Deep Space Chronicle Deep Space Chronicle: a Chronology of Deep Space and Planetary Probes, 1958–2000 | Asifa
    dsc_cover (Converted)-1 8/6/02 10:33 AM Page 1 Deep Space Chronicle Deep Space Chronicle: A Chronology ofDeep Space and Planetary Probes, 1958–2000 |Asif A.Siddiqi National Aeronautics and Space Administration NASA SP-2002-4524 A Chronology of Deep Space and Planetary Probes 1958–2000 Asif A. Siddiqi NASA SP-2002-4524 Monographs in Aerospace History Number 24 dsc_cover (Converted)-1 8/6/02 10:33 AM Page 2 Cover photo: A montage of planetary images taken by Mariner 10, the Mars Global Surveyor Orbiter, Voyager 1, and Voyager 2, all managed by the Jet Propulsion Laboratory in Pasadena, California. Included (from top to bottom) are images of Mercury, Venus, Earth (and Moon), Mars, Jupiter, Saturn, Uranus, and Neptune. The inner planets (Mercury, Venus, Earth and its Moon, and Mars) and the outer planets (Jupiter, Saturn, Uranus, and Neptune) are roughly to scale to each other. NASA SP-2002-4524 Deep Space Chronicle A Chronology of Deep Space and Planetary Probes 1958–2000 ASIF A. SIDDIQI Monographs in Aerospace History Number 24 June 2002 National Aeronautics and Space Administration Office of External Relations NASA History Office Washington, DC 20546-0001 Library of Congress Cataloging-in-Publication Data Siddiqi, Asif A., 1966­ Deep space chronicle: a chronology of deep space and planetary probes, 1958-2000 / by Asif A. Siddiqi. p.cm. – (Monographs in aerospace history; no. 24) (NASA SP; 2002-4524) Includes bibliographical references and index. 1. Space flight—History—20th century. I. Title. II. Series. III. NASA SP; 4524 TL 790.S53 2002 629.4’1’0904—dc21 2001044012 Table of Contents Foreword by Roger D.
    [Show full text]
  • The Nature of the Giant Exomoon Candidate Kepler-1625 B-I René Heller
    A&A 610, A39 (2018) https://doi.org/10.1051/0004-6361/201731760 Astronomy & © ESO 2018 Astrophysics The nature of the giant exomoon candidate Kepler-1625 b-i René Heller Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany e-mail: [email protected] Received 11 August 2017 / Accepted 21 November 2017 ABSTRACT The recent announcement of a Neptune-sized exomoon candidate around the transiting Jupiter-sized object Kepler-1625 b could indi- cate the presence of a hitherto unknown kind of gas giant moon, if confirmed. Three transits of Kepler-1625 b have been observed, allowing estimates of the radii of both objects. Mass estimates, however, have not been backed up by radial velocity measurements of the host star. Here we investigate possible mass regimes of the transiting system that could produce the observed signatures and study them in the context of moon formation in the solar system, i.e., via impacts, capture, or in-situ accretion. The radius of Kepler-1625 b suggests it could be anything from a gas giant planet somewhat more massive than Saturn (0:4 MJup) to a brown dwarf (BD; up to 75 MJup) or even a very-low-mass star (VLMS; 112 MJup ≈ 0:11 M ). The proposed companion would certainly have a planetary mass. Possible extreme scenarios range from a highly inflated Earth-mass gas satellite to an atmosphere-free water–rock companion of about +19:2 180 M⊕. Furthermore, the planet–moon dynamics during the transits suggest a total system mass of 17:6−12:6 MJup.
    [Show full text]
  • On the Detection of Exomoons in Photometric Time Series
    On the Detection of Exomoons in Photometric Time Series Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades “Doctor rerum naturalium” der Georg-August-Universität Göttingen im Promotionsprogramm PROPHYS der Georg-August University School of Science (GAUSS) vorgelegt von Kai Oliver Rodenbeck aus Göttingen, Deutschland Göttingen, 2019 Betreuungsausschuss Prof. Dr. Laurent Gizon Max-Planck-Institut für Sonnensystemforschung, Göttingen, Deutschland und Institut für Astrophysik, Georg-August-Universität, Göttingen, Deutschland Prof. Dr. Stefan Dreizler Institut für Astrophysik, Georg-August-Universität, Göttingen, Deutschland Dr. Warrick H. Ball School of Physics and Astronomy, University of Birmingham, UK vormals Institut für Astrophysik, Georg-August-Universität, Göttingen, Deutschland Mitglieder der Prüfungskommision Referent: Prof. Dr. Laurent Gizon Max-Planck-Institut für Sonnensystemforschung, Göttingen, Deutschland und Institut für Astrophysik, Georg-August-Universität, Göttingen, Deutschland Korreferent: Prof. Dr. Stefan Dreizler Institut für Astrophysik, Georg-August-Universität, Göttingen, Deutschland Weitere Mitglieder der Prüfungskommission: Prof. Dr. Ulrich Christensen Max-Planck-Institut für Sonnensystemforschung, Göttingen, Deutschland Dr.ir. Saskia Hekker Max-Planck-Institut für Sonnensystemforschung, Göttingen, Deutschland Dr. René Heller Max-Planck-Institut für Sonnensystemforschung, Göttingen, Deutschland Prof. Dr. Wolfram Kollatschny Institut für Astrophysik, Georg-August-Universität, Göttingen,
    [Show full text]
  • Shallow Ultraviolet Transits of WD 1145+017
    Shallow Ultraviolet Transits of WD 1145+017 Item Type Article Authors Xu, Siyi; Hallakoun, Na’ama; Gary, Bruce; Dalba, Paul A.; Debes, John; Dufour, Patrick; Fortin-Archambault, Maude; Fukui, Akihiko; Jura, Michael A.; Klein, Beth; Kusakabe, Nobuhiko; Muirhead, Philip S.; Narita, Norio; Steele, Amy; Su, Kate Y. L.; Vanderburg, Andrew; Watanabe, Noriharu; Zhan, Zhuchang; Zuckerman, Ben Citation Siyi Xu et al 2019 AJ 157 255 DOI 10.3847/1538-3881/ab1b36 Publisher IOP PUBLISHING LTD Journal ASTRONOMICAL JOURNAL Rights Copyright © 2019. The American Astronomical Society. All rights reserved. Download date 09/10/2021 04:17:12 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/634682 The Astronomical Journal, 157:255 (12pp), 2019 June https://doi.org/10.3847/1538-3881/ab1b36 © 2019. The American Astronomical Society. All rights reserved. Shallow Ultraviolet Transits of WD 1145+017 Siyi Xu (许偲艺)1 ,Na’ama Hallakoun2 , Bruce Gary3 , Paul A. Dalba4 , John Debes5 , Patrick Dufour6, Maude Fortin-Archambault6, Akihiko Fukui7,8 , Michael A. Jura9,21, Beth Klein9 , Nobuhiko Kusakabe10, Philip S. Muirhead11 , Norio Narita (成田憲保)8,10,12,13,14 , Amy Steele15, Kate Y. L. Su16 , Andrew Vanderburg17 , Noriharu Watanabe18,19, Zhuchang Zhan (詹筑畅)20 , and Ben Zuckerman9 1 Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI 96720, USA; [email protected] 2 School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 6997801, Israel 3 Hereford Arizona Observatory, Hereford, AZ 85615, USA
    [Show full text]
  • The Minor Planet Bulletin, It Is a Pleasure to Announce the Appointment of Brian D
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 33, NUMBER 1, A.D. 2006 JANUARY-MARCH 1. LIGHTCURVE AND ROTATION PERIOD Observatory (Observatory code 926) near Nogales, Arizona. The DETERMINATION FOR MINOR PLANET 4006 SANDLER observatory is located at an altitude of 1312 meters and features a 0.81 m F7 Ritchey-Chrétien telescope and a SITe 1024 x 1024 x Matthew T. Vonk 24 micron CCD. Observations were conducted on (UT dates) Daniel J. Kopchinski January 29, February 7, 8, 2005. A total of 37 unfiltered images Amanda R. Pittman with exposure times of 120 seconds were analyzed using Canopus. Stephen Taubel The lightcurve, shown in the figure below, indicates a period of Department of Physics 3.40 ± 0.01 hours and an amplitude of 0.16 magnitude. University of Wisconsin – River Falls 410 South Third Street Acknowledgements River Falls, WI 54022 [email protected] Thanks to Michael Schwartz and Paulo Halvorcem for their great work at Tenagra Observatory. (Received: 25 July) References Minor planet 4006 Sandler was observed during January Schmadel, L. D. (1999). Dictionary of Minor Planet Names. and February of 2005. The synodic period was Springer: Berlin, Germany. 4th Edition. measured and determined to be 3.40 ± 0.01 hours with an amplitude of 0.16 magnitude. Warner, B. D. and Alan Harris, A. (2004) “Potential Lightcurve Targets 2005 January – March”, www.minorplanetobserver.com/ astlc/targets_1q_2005.htm Minor planet 4006 Sandler was discovered by the Russian astronomer Tamara Mikhailovna Smirnova in 1972. (Schmadel, 1999) It orbits the sun with an orbit that varies between 2.058 AU and 2.975 AU which locates it in the heart of the main asteroid belt.
    [Show full text]
  • Exomoon Candidates from Transit Timing Variations: Eight Kepler Systems with Ttvs Explainable by Photometrically Unseen Exomoons
    MNRAS 501, 2378–2393 (2021) doi:10.1093/mnras/staa3743 Advance Access publication 2020 December 3 Exomoon candidates from transit timing variations: eight Kepler systems with TTVs explainable by photometrically unseen exomoons Chris Fox 1,2‹ and Paul Wiegert1,2 1Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, N6A 3K7, Canada 2Institute for Earth and Space Exploration (IESX), The University of Western Ontario, London, Ontario, N6A 3K7, Canada Downloaded from https://academic.oup.com/mnras/article/501/2/2378/6019892 by Western University user on 15 January 2021 Accepted 2020 November 26. Received 2020 November 18; in original form 2020 June 24 ABSTRACT If a transiting exoplanet has a moon, that moon could be detected directly from the transit it produces itself, or indirectly via the transit timing variations (TTVs) it produces in its parent planet. There is a range of parameter space where the Kepler Space Telescope is sensitive to the TTVs exomoons might produce, though the moons themselves would be too small to detect photometrically via their own transits. The Earth’s Moon, for example, produces TTVs of 2.6 min amplitude by causing our planet to move around their mutual centre of mass. This is more than Kepler’s short-cadence interval of 1 min and so nominally detectable (if transit timings can be measured with comparable accuracy), even though the Moon’s transit signature is only 7 per cent that of Earth’s, well below Kepler’s nominal photometric threshold. Here, we examine several Kepler systems, exploring the hypothesis that an exomoon could be detected solely from the TTVs it induces on its host planet.
    [Show full text]
  • Exoplanetary Atmosphere Target Selection in the Era of Comparative Planetology
    The University of Manchester Research Exoplanetary atmosphere target selection in the era of comparative planetology DOI: 10.1093/mnras/stz783 Document Version Final published version Link to publication record in Manchester Research Explorer Citation for published version (APA): Morgan, J. S., Kerins, E., Awiphan, S., McDonald, I., Hayes, J. J., Komonjinda, S., Mkritchian, D., & Sanguansak, N. (2019). Exoplanetary atmosphere target selection in the era of comparative planetology. MNRAS, 486(1), 796- 814. https://doi.org/10.1093/mnras/stz783 Published in: MNRAS Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:09. Oct. 2021 MNRAS 486, 796–814 (2019) doi:10.1093/mnras/stz783 Advance Access publication 2019 March 27 Exoplanetary atmosphere target selection in the era of comparative planetology J. S. Morgan ,1‹ E. Kerins,1‹ S. Awiphan,2 I. McDonald ,1 J.
    [Show full text]
  • THE 12Th PLANET the STAIRWAY to HEAVEN the WARS of GODS and MEN the LOST REALMS WHEN TIME BEGAN the COSMIC CODE
    INCLUDES A NEW AUTHOR'S P BESTSELLER! EVIDENCE OF EARTH’S TIAL ANCESTORS HARPER Now available in hardcover: U.S. $7.99 CAN. $8.99 THE LONG-AWAITED CONCLUSION TO ZECHARIA SITCHIN’s GROUNDBREAKING SERIES THE EARTH CHRONICLES ZECHARIA SITCHIN THE END DAYS Armageddon and Propfiffie.t of tlic Renirn . Available in paperback: THE EARTH CHRONICLES THE 12th PLANET THE STAIRWAY TO HEAVEN THE WARS OF GODS AND MEN THE LOST REALMS WHEN TIME BEGAN THE COSMIC CODE And the companion volumes: GENESIS REVISITED EAN DIVINE ENCOUNTERS . “ONE OF THE MOST IMPORTANT BOOKS ON EARTH’S ROOTS EVER WRITTEN.” East-West Magazine • How did the Nefilim— gold-seekers from a distant, alien planet— use cloning to create beings in their own image on Earth? •Why did these "gods" seek the destruc- tion of humankind through the Great Flood 13,000 years ago? •What happens when their planet returns to Earth's vicinity every thirty-six centuries? • Do Bible and Science conflict? •Are were alone? THE 12th PLANET "Heavyweight scholarship . For thousands of years priests, poets, and scientists have tried to explain how life began . Now a recognized scholar has come forth with a theory that is the most astonishing of all." United Press International SEP 2003 Avon Books by Zecharia Sitchin THE EARTH CHRONICLES Book I: The 12th Planet Book II: The Stairway to Heaven Book III: The Wars of Gods and Men Book IV: The Lost Realms Book V: When Time Began Book VI: The Cosmic Code Book VII: The End of Days Divine Encounters Genesis Revisited ATTENTION: ORGANIZATIONS AND CORPORATIONS Most Avon Books paperbacks are available at special quantity discounts for bulk purchases for sales promotions, premiums, or fund-raising.
    [Show full text]
  • Venus Exploration Themes
    Venus Exploration Themes VEXAG Meeting #11 November 2013 VEXAG (Venus Exploration Analysis Group) is NASA’s community‐based forum that provides science and technical assessment of Venus exploration for the next few decades. VEXAG is chartered by NASA Headquarters Science Mission Directorate’s Planetary Science Division and reports its findings to both the Division and to the Planetary Science Subcommittee of NASA’s Advisory Council, which is open to all interested scientists and engineers, and regularly evaluates Venus exploration goals, objectives, and priorities on the basis of the widest possible community outreach. Front cover is a collage showing Venus at radar wavelength, the Magellan spacecraft, and artists’ concepts for a Venus Balloon, the Venus In‐Situ Explorer, and the Venus Mobile Explorer. (Collage prepared by Tibor Balint) Perspective view of Ishtar Terra, one of two main highland regions on Venus. The smaller of the two, Ishtar Terra, is located near the north pole and rises over 11 km above the mean surface level. Courtesy NASA/JPL–Caltech. VEXAG Charter. The Venus Exploration Analysis Group is NASA's community‐based forum designed to provide scientific input and technology development plans for planning and prioritizing the exploration of Venus over the next several decades. VEXAG is chartered by NASA's Solar System Exploration Division and reports its findings to NASA. Open to all interested scientists, VEXAG regularly evaluates Venus exploration goals, scientific objectives, investigations, and critical measurement requirements, including especially recommendations in the NRC Decadal Survey and the Solar System Exploration Strategic Roadmap. Venus Exploration Themes: November 2013 Prepared as an adjunct to the three VEXAG documents: Goals, Objectives and Investigations; Roadmap; as well as Technologies distributed at VEXAG Meeting #11 in November 2013.
    [Show full text]
  • Rest of the Solar System” As We Have Covered It in MMM Through the Years
    As The Moon, Mars, and Asteroids each have their own dedicated theme issues, this one is about the “rest of the Solar System” as we have covered it in MMM through the years. Not yet having ventured beyond the Moon, and not yet having begun to develop and use space resources, these articles are speculative, but we trust, well-grounded and eventually feasible. Included are articles about the inner “terrestrial” planets: Mercury and Venus. As the gas giants Jupiter, Saturn, Uranus, and Neptune are not in general human targets in themselves, most articles about destinations in the outer system deal with major satellites: Jupiter’s Io, Europa, Ganymede, and Callisto. Saturn’s Titan and Iapetus, Neptune’s Triton. We also include past articles on “Space Settlements.” Europa with its ice-covered global ocean has fascinated many - will we one day have a base there? Will some of our descendants one day live in space, not on planetary surfaces? Or, above Venus’ clouds? CHRONOLOGICAL INDEX; MMM THEMES: OUR SOLAR SYSTEM MMM # 11 - Space Oases & Lunar Culture: Space Settlement Quiz Space Oases: Part 1 First Locations; Part 2: Internal Bearings Part 3: the Moon, and Diferent Drums MMM #12 Space Oases Pioneers Quiz; Space Oases Part 4: Static Design Traps Space Oases Part 5: A Biodynamic Masterplan: The Triple Helix MMM #13 Space Oases Artificial Gravity Quiz Space Oases Part 6: Baby Steps with Artificial Gravity MMM #37 Should the Sun have a Name? MMM #56 Naming the Seas of Space MMM #57 Space Colonies: Re-dreaming and Redrafting the Vision: Xities in
    [Show full text]