Microprocessor E158 Chip Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Build a Swtpc 6800
Southwest Technical Products Corporation 6800 Computer System The Southwest Technical Products 6800 computer system is based upon the Motorola MC6800 microprocessor unit (MPU) and its matching support devices. The 6800 system was chosen for our computer because this set of parts is currently in our opinion the "Benchmark Family" for microprocessor computer systems. It makes it possible for us to provide you with an outstanding computer system having a minimum of parts, but with outstanding versatility and ease of use. In addition to the outstanding hardware system, the Motorola 6800 has without question the most complete set of documentation yet made available for a microprocessor system. The 714 page Applications Manual, for example, contains material on programming techniques, system organization, input/output techniques, hardware characteristics, peripheral control techniques, and more. Also available is a Programmers Manual which details the various types of software available for the system and instructions for programming and using the unique interface system that is part of the 6800 system. The M6800 family of parts minimizes the number of, required components and support parts, provides extremely simple interfacing to external devices and has outstanding documentation. The MC6800 is an eight-bit parallel microprocessor with addressing capability of up to 45,536 words (BYTES) of data. The system is TTL compatible requiring only a single fine-volt power supply. All devices and memory in the 6800 computer family are connected to an 8-bit bi-directional data bus. In addition to this a 16-bit address bus is provided to specify memory location. This later bus is also used as a tool to specify the particular input/ output device to be selected when the 6800 family interface devices are used. -
Exorciser USER's GUIDE
M6809EXOR(D1) ®MOTOROLA M6809 EXORciser User's Guide MICROSYSTEMS M6809EXOR (Dl} SEPTEMBER 1979 M6809 EXORciser USER'S GUIDE The information in this document has been carefully checked and is believed to be entirely reliable. However, no res pons i bi 1ity is assumed for inaccuracies. Furthermore, Motorola reserves the right to make changes to any products herein to improve reliability, function, or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. EXORciser®, EXORdisk, and EXbug are trademarks of Motorola Inc. First Edition ©Copyright 1979 by Motorola Inc. TABLE OF CONTENTS Page CHAPTER 1 GENERAL INFORMATION 1.1 INTRODUCTION 1-1 1.2 FEATURES 1-1 1.3 SPECIFICATIONS 1-2 1.4 EQUIPMENT SUPPLIED 1-2 1.5 GENERAL DESCRIPTION 1-3 1.5.1 EXORciser Memory Parity 1-3 1.5.2 Dual Map Concepts 1-5 1.5.3 Second level Interrupt Feature 1-7 1.5.4 Dynamic System Bus 1-10 CHAPTER 2 INSTALLATION INSTRUCTIONS AND HARDWARE PREPARATION 2.1 INTRODUCTION 2-1 2.2 UNPACKING INSTRUCTIONS 2-1 2.3 INSPECTION 2-1 2.4 INSTALLATION INSTRUCTIONS 2-1 2.5 DATA TERMINAL SELECTION AND CONNECTIONS 2-2 2.5.1 RS-232C Interconnections 2-2 2.5.2 20mA Current loop Interconnections 2-2 2.6 PREPARATION OF SYSTEM MODULES 2-2 CHAPTER 3 OPERATING INSTRUCTIONS 3.1 INTRODUCTION 3-1 3.2 SWITCHES AND INDICATORS 3-1 3.2.1 Front Panel Switches and Indicators 3-1 3.2.2 Switches on the DEbug Module 3-2 3.3 INITIALIZATION 3-3 3.3.1 -
Lecture 1: Course Introduction G Course Organization G Historical Overview G Computer Organization G Why the MC68000? G Why Assembly Language?
Lecture 1: Course introduction g Course organization g Historical overview g Computer organization g Why the MC68000? g Why assembly language? Microprocessor-based System Design 1 Ricardo Gutierrez-Osuna Wright State University Course organization g Grading Instructor n Exams Ricardo Gutierrez-Osuna g 1 midterm and 1 final Office: 401 Russ n Homework Tel:775-5120 g 4 problem sets (not graded) [email protected] n Quizzes http://www.cs.wright.edu/~rgutier g Biweekly Office hours: TBA n Laboratories g 5 Labs Teaching Assistant g Grading scheme Mohammed Tabrez Office: 339 Russ [email protected] Weight (%) Office hours: TBA Quizes 20 Laboratory 40 Midterm 20 Final Exam 20 Microprocessor-based System Design 2 Ricardo Gutierrez-Osuna Wright State University Course outline g Module I: Programming (8 lectures) g MC68000 architecture (2) g Assembly language (5) n Instruction and addressing modes (2) n Program control (1) n Subroutines (2) g C language (1) g Module II: Peripherals (9) g Exception processing (1) g Devices (6) n PI/T timer (2) n PI/T parallel port (2) n DUART serial port (1) g Memory and I/O interface (1) g Address decoding (2) Microprocessor-based System Design 3 Ricardo Gutierrez-Osuna Wright State University Brief history of computers GENERATION FEATURES MILESTONES YEAR NOTES Asia Minor, Abacus 3000BC Only replaced by paper and pencil Mech., Blaise Pascal, Pascaline 1642 Decimal addition (8 decimal figs) Early machines Electro- Charles Babbage Differential Engine 1823 Steam powered (3000BC-1945) mech. Herman Hollerith, -
The Birth, Evolution and Future of Microprocessor
The Birth, Evolution and Future of Microprocessor Swetha Kogatam Computer Science Department San Jose State University San Jose, CA 95192 408-924-1000 [email protected] ABSTRACT timed sequence through the bus system to output devices such as The world's first microprocessor, the 4004, was co-developed by CRT Screens, networks, or printers. In some cases, the terms Busicom, a Japanese manufacturer of calculators, and Intel, a U.S. 'CPU' and 'microprocessor' are used interchangeably to denote the manufacturer of semiconductors. The basic architecture of 4004 same device. was developed in August 1969; a concrete plan for the 4004 The different ways in which microprocessors are categorized are: system was finalized in December 1969; and the first microprocessor was successfully developed in March 1971. a) CISC (Complex Instruction Set Computers) Microprocessors, which became the "technology to open up a new b) RISC (Reduced Instruction Set Computers) era," brought two outstanding impacts, "power of intelligence" and "power of computing". First, microprocessors opened up a new a) VLIW(Very Long Instruction Word Computers) "era of programming" through replacing with software, the b) Super scalar processors hardwired logic based on IC's of the former "era of logic". At the same time, microprocessors allowed young engineers access to "power of computing" for the creative development of personal 2. BIRTH OF THE MICROPROCESSOR computers and computer games, which in turn led to growth in the In 1970, Intel introduced the first dynamic RAM, which increased software industry, and paved the way to the development of high- IC memory by a factor of four. -
Professor Won Woo Ro, School of Electrical and Electronic Engineering Yonsei University the Intel® 4004 Microprocessor, Introdu
Professor Won Woo Ro, School of Electrical and Electronic Engineering Yonsei University The 1st Microprocessor The Intel® 4004 microprocessor, introduced in November 1971 An electronics revolution that changed our world. There were no customer‐ programmable microprocessors on the market before the 4004. It propelled software into the limelight as a key player in the world of digital electronics design. 4004 Microprocessor Display at New Intel Museum A Japanese calculator maker (Busicom) asked to design: A set of 12 custom logic chips for a line of programmable calculators. Marcian E. "Ted" Hoff Recognized the integrated circuit technology (of the day) had advanced enough to build a single chip, general purpose computer. Federico Faggin to turn Hoff's vision into a silicon reality. (In less than one year, Faggin and his team delivered the 4004, which was introduced in November, 1971.) The world's first microprocessor application was this Busicom calculator. (sold about 100,000 calculators.) Measuring 1/8 inch wide by 1/6 inch long, consisting of 2,300 transistors, Intel’s 4004 microprocessor had as much computing power as the first electronic computer, ENIAC. 2 inch 4004 and 12 inch Core™2 Duo wafer ENIAC, built in 1946, filled 3000‐cubic‐ feet of space and contained 18,000 vacuum tubes. The 4004 microprocessor could execute 60,000 operations per second Running frequency: 108 KHz Founders wanted to name their new company Moore Noyce. However the name sounds very much similar to “more noise”. "Only the paranoid survive". Moore received a B.S. degree in Chemistry from the University of California, Berkeley in 1950 and a Ph.D. -
6502 Introduction
6502 Introduction Philipp Koehn 18 September 2019 Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 1 some history Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 1971 2 • First microprocessor on an integrated circuit: Intel 4004 • 4-bit central processing unit, 12 bit address space (4KB) Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 1975 3 • MOS Technology 6502 • Dominant CPU in home computers for a decade (Atari, Apple II, Nintendo Entertainment System, Commodore PET) Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 1977 4 • Atari 2600 • Video game console: Pong, Pac Man, ... connected to TV Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 1980 5 • Commodore VIC20 • 1 MHz, 5KB RAM, BASIC, 3.5KB RAM, 176x184 3 bit color video Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 1982 6 • Commodore C64 • 64KB RAM, 320x200 4 bit color video Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 Commodore C64 7 • BASIC programming language, but serious programs written in assembly • No fancy stuff like multi-process, user accounts, virtual memory, etc. • Machine itself had no mass storage - had to buy tape drive, then floppy disk drive, machine was obsolete once hard drives came around Philipp Koehn Computer Systems Fundamentals: 6502 Introduction 18 September 2019 BASIC Demo 8 • Commands get executed (just like Python interpreter) -
Appendix A: Microprocessor Data Sheets
Appendix A: Microprocessor Data Sheets Intel8085 Zilog Z80 MOS Technology 6502 Motorola 6809 Microcontrollers (Single-chip Microcomputers) Intel 8086 ( & 80186 & 80286) Zilog Z8000 Motorola 68000 32-bit Microprocessors lnmos Transputer 184 Appendix A 185 Intel 8085 Followed on from the 8080, which was a two-chip equivalent of the 8085. Not used in any home computers, but was extremely popular in early (late 1970s) industrial control systems. A15-A8 A B c D E Same register AD7-ADO H L set is used in SP 8080 PC ALE Flags Multiplexed d ata bus and lower half of address bus (require 8212 to split data and address buses) Start addresses of Interrupt P/Os Service Routines: 8155- 3 ports, 256 bytes RAM RESET-()()()(J 8255 - 3 ports TRAP- 0024 8355 - 2 ports, 2K ROM RST5.5- 002C 8755 - 2 ports, 2K EPROM RST6.5 - ()(J34 RST7.5- <XJ3C INTR - from interrupting device Other 8251- USART 8202 - Dynamic RAM controller support 8253- CTC (3 counters) 8257 - DMA controller devices: 8271 - FDC 8257 - CRT controller Intel DMA Control System Character CPU buses de-multiplexed Video signal to CRT 186 Microcomputer Fault-finding and Design Zilog Z80 Probably the most popular 8-bit microprocessor. Used in home computers (Spectrum, Amstrad, Tandy), office computers and industrial controllers. A F A' F' B c B' C' D E D' E' H L H' L' 8 data Interrupt Memory lines vector I refresh R Index register IX Index register IY (to refresh dynamic RAMI Stack pointer Based on the Intel 8085, but possesses second set of registers. -
Programmable Digital Microcircuits - a Survey with Examples of Use
- 237 - PROGRAMMABLE DIGITAL MICROCIRCUITS - A SURVEY WITH EXAMPLES OF USE C. Verkerk CERN, Geneva, Switzerland 1. Introduction For most readers the title of these lecture notes will evoke microprocessors. The fixed instruction set microprocessors are however not the only programmable digital mi• crocircuits and, although a number of pages will be dedicated to them, the aim of these notes is also to draw attention to other useful microcircuits. A complete survey of programmable circuits would fill several books and a selection had therefore to be made. The choice has rather been to treat a variety of devices than to give an in- depth treatment of a particular circuit. The selected devices have all found useful ap• plications in high-energy physics, or hold promise for future use. The microprocessor is very young : just over eleven years. An advertisement, an• nouncing a new era of integrated electronics, and which appeared in the November 15, 1971 issue of Electronics News, is generally considered its birth-certificate. The adver• tisement was for the Intel 4004 and its three support chips. The history leading to this announcement merits to be recalled. Intel, then a very young company, was working on the design of a chip-set for a high-performance calculator, for and in collaboration with a Japanese firm, Busicom. One of the Intel engineers found the Busicom design of 9 different chips too complicated and tried to find a more general and programmable solu• tion. His design, the 4004 microprocessor, was finally adapted by Busicom, and after further négociation, Intel acquired marketing rights for its new invention. -
Microcomputer Associates, Inc
Bulk Rate Permit No. 243 Cupertino, CA 95014 MICROCOMPUTER ASSOCIATES, INC. Product Catalog* featuring VT-100 CRT Terminal VT -200 CRT Terminal with Tiny BASIC, Resident Assembler and Demon Single Board Computers and The newest generation microcomputer system with the exclusive on board DEMONTM debug monitor. In kit form, you can build it, plug it in JJOlT and talk to it in three hours or less ... for unheard of low prices! This is the fully assembled JOLpM 4K System. The JOLT CPU card includes the powerful DEMONTM Debug Monitor . • Catalog items and prices subject to change without notice. A READY control line provides for asynchronous operation with JOLT SYSTEM DESCRIPTION slow memory or I/O devices. The JOLT system consists of a set of modular microcomputer The address bus (AO-A 15). the data bus (00-07). the two phase boards which can be used singly or tied together to produce any clock (PIT. P2T). the reset line (·RESET). the interrupt lines ("IRZ. desired microcomputer system configuration. The minimum system AND *NMI). and the ready line (ROY) are all available at the edge is one CPU board. which alone constitutes a viable computer sys connector of the CPU card. The loading restrictions should be con tem complete with central processor. 1/0. interrupts. timer. read sidered when using the signal lines driven by the CPU for external write memory. and a complete software debug monitor in read system expansion. A more detailed description of the CPU inputs and outputs may only-memory. be found in the MCS6500 hardware manual available from MOS Additional boards in the JOLT system include a 4 K byte RAM. -
Computer Architectures an Overview
Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements. -
Dissertation Applications of Field Programmable Gate
DISSERTATION APPLICATIONS OF FIELD PROGRAMMABLE GATE ARRAYS FOR ENGINE CONTROL Submitted by Matthew Viele Department of Mechanical Engineering In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2012 Doctoral Committee: Advisor: Bryan D. Willson Anthony J. Marchese Robert N. Meroney Wade O. Troxell ABSTRACT APPLICATIONS OF FIELD PROGRAMMABLE GATE ARRAYS FOR ENGINE CONTROL Automotive engine control is becoming increasingly complex due to the drivers of emissions, fuel economy, and fault detection. Research in to new engine concepts is often limited by the ability to control combustion. Traditional engine-targeted micro controllers have proven difficult for the typical engine researchers to use and inflexible for advanced concept engines. With the advent of Field Programmable Gate Array (FPGA) based engine control system, many of these impediments to research have been lowered. This dissertation will talk about three stages of FPGA engine controller appli- cation. The most basic and widely distributed is the FPGA as an I/O coprocessor, tracking engine position and performing other timing critical low-level tasks. A later application of FPGAs is the use of microsecond loop rates to introduce feedback con- trol on the crank angle degree level. Lastly, the development of custom real-time computing machines to tackle complex engine control problems is presented. This document is a collection of papers and patents that pertain to the use of FPGAs for the above tasks. Each task is prefixed with a prologue section to give the history of the topic and context of the paper in the larger scope of FPGA based engine control. -
6809 the Design Philosophy by Terry Ritter and Joel Boney
The 6809 ing the performance of an unwieldy bureaucratic Part 1: Design Philosophy organization. And the computer makers clearly thought that processor time was valuable too; or Terry Ritter was a severely limited resource, worth as much as Joel Boney the market would bear. Motorola, Inc. Processor time was a limited resource. But 3501 Ed Blustein Blvd. some of us, a few small groups of technologists, Austin, TX 78721 are about to change that situation. And we hope we will also change how people look at computers, This is a story. It is a story of computers in and how professionals see them too. Computer general, specifically microcomputers, and of one time should be cheap; people time is 70 years and particular microprocessor - with revolutionary counting down. social change lurking in the background. The story The large computer, being a very expensive could well be imaginary, but it happens to be true. resource, quickly justified the capital required to In this 3 part series we will describer the design of investigate optimum use of that resource. Among what we feel is the best 8 bit machine so far made the principal results of these projects was the by human: the Motorola M6809. development of batch mode multiprocessing. The computer itself would save up the various tasks it Philosophy had to do, then change from one to the other at computer speeds. This minimized the wasted time A new day is breaking; after a long slow twi- between jobs and spawned the concept of an oper- light of design the sun is beginning to rise on the ating system.