THE ROLE OF DIURNAL, ANNUAL AND MILLENNIAL FREEZE-THAW CYCLES IN CONTROLLING ALPINE SLOPE INSTABILITY Norikazu Matsuoka1, Kazuomi Hirakawa2, Teiji Watanabe2, Wilfried Haeberli3 and Felix Keller4 1. Institute of Geoscience, University of Tsukuba, Ibaraki 305-8571, Japan, e-mail:
[email protected] 2. Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060, Japan 3. Department of Geography, University of Zurich, Zurich 8057, Switzerland 4. Academia Engiadina, Samedan 7503, Switzerland Abstract The instability of rock and debris slopes in the Swiss Alps was evaluated in light of the temporal and spatial scales of freeze-thaw processes. Diurnal freezing and thawing penetrate to centimeter-to-decimeter scale depths, producing rock debris mainly of pebble size or smaller on rock slopes and miniature patterned forms on debris slopes. Annual freeze-thaw cycles result in weathering and soil movement up to meter scale, supply- ing boulders to rock glaciers and developing solifluction lobes with risers of 30 cm or higher. The growth and decay of permafrost, originating from long-term climatic change, lead to freeze-thaw activity reaching meter-to- decameter scale depths. Permafrost melting can trigger cliff falls and debris flows in the thawing phase of mil- lennial freeze-thaw cycles. Introduction thaw cycles, as well as of diurnal and annual freeze- thaw cycles. Millennial freeze-thaw cycles can also Freeze-thaw action induces both rock weathering and operate in the permafrost zone as a result of melting mass wasting, destabilizing rock and debris slopes in and refreezing of the top and bottom of the permafrost high mountain regions.