Environmental Factors Affecting the Occurence of Periglacial

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Factors Affecting the Occurence of Periglacial Environmental factors aff ecting the occurrence of periglacial landforms in Finnish Lapland: a numerical approach Jan Hjort Department of Geography Faculty of Science University of Helsinki Academic dissertation To be presented, with the permission of the Faculty of Science of the University of Helsinki, for public criticism in the Auditorium XII of the Main Building (Unioninkatu 34) on May 6th, 2006, at 10 a.m. I Supervisors Professor Matti Seppälä Department of Geography University of Helsinki Finland and Dr Miska Luoto Finnish Environment Institute, Helsinki / Th ule Institute University of Oulu Finland Pre-Examiners Professor Bernd Etzelmüller Department of Physical Geography University of Oslo Norway and Professor Charles Harris School of Earth, Ocean and Planetary Sciences Cardiff University United Kingdom Offi cial Opponent Reader Julian Murton Department of Geography University of Sussex United Kingdom Copyright © Shaker Verlag 2006 ISBN 3-8322-5008-5 (paperback) ISSN 0945-0777 (paperback) ISBN 952-10-3080-1 (PDF) http://ethesis.helsinki.fi Shaker Verlag GmbH, Aachen II Contents Abstract VII Acknowledgements VIII List of Figures IX List of Tables XII List of Appendices XIII Abbreviations XIII Symbols XIV 1 INTRODUCTION 1 2 PERIGLACIAL PHENOMENA 5 2.1 Classifi cation of periglacial landforms 6 2.2 Description of periglacial landforms 9 2.2.1 Permafrost landforms 9 2.2.2 Thermokarst features 10 2.2.3 Patterned ground 10 2.2.4 Solifl uction and other slope phenomena 16 2.2.5 Periglacial weathering features 19 2.2.6 Nival phenomena 20 2.2.7 Aeolian processes and landforms 21 3 STUDY AREA 23 3.1 Location and topography 23 3.2 Bedrock and general geology 23 3.3 Weichselian glaciation, deglaciation and soil types 23 3.4 Geomorphology of the Báišduattar – Áilegas 25 3.5 Previous periglacial research in the study region 29 3.6 Past and present climate 30 3.7 Hydrology 32 3.8 Vegetation 32 4 MATERIALS AND METHODS 35 4.1 Modelling data 35 4.1.1 Resolution 35 4.1.2 Periglacial landforms 35 4.1.3 Predictor variables 37 4.1.4 Predictor variable selection and data split 44 4.2 Statistical modelling 44 4.2.1 Statistical formulation 44 4.2.2 Model calibration 46 4.2.3 Model evaluation 46 5 RESULTS 49 5.1 Predictor variables 49 5.2 Periglacial landforms in Báišduattar – Áilegas 49 5.2.1 Palsas 51 5.2.2 Convex non-sorted circles 53 5.2.3 Stony earth circles 53 5.2.4 Earth hummocks 56 5.2.5 Peat pounus 59 5.2.6 Stone pits 60 5.2.7 Sorted nets 61 5.2.8 Sorted stripes 62 5.2.9 Non-sorted solifl uction terraces 64 5.2.10 Sorted solifl uction sheets 64 5.2.11 Sorted solifl uction streams 66 5.2.12 Defl ations 66 V 5.3 Distribution and abundance models 67 5.3.1 Palsas 67 5.3.2 Convex non-sorted circles 71 5.3.3 Stony earth circles 74 5.3.4 Earth hummocks 75 5.3.5 Peat pounus 80 5.3.6 Stone pits 84 5.3.7 Sorted nets 86 5.3.8 Sorted stripes 88 5.3.9 Non-sorted solifl uction terraces 90 5.3.10 Sorted solifl uction sheets 91 5.3.11 Sorted solifl uction streams 94 5.3.12 Defl ations 95 5.3.13 Modelling results: a summary 97 6 DISCUSSION 101 6.1 Periglacial landforms: prevalence, distribution, activity and morphology 101 6.2 Environmental factors affecting periglacial landform occurrence 106 6.2.1 Palsas 106 6.2.2 Convex non-sorted circles 108 6.2.3 Stony earth circles 109 6.2.4 Earth hummocks 110 6.2.5 Peat pounus 111 6.2.6 Stone pits 112 6.2.7 Sorted nets 113 6.2.8 Sorted stripes 114 6.2.9 Non-sorted solifl uction terraces 115 6.2.10 Sorted solifl uction sheets 116 6.2.11 Sorted solifl uction streams 117 6.2.12 Defl ations 118 6.3 Data and methodological issues – advantages and shortcomings 119 6.3.1 Periglacial landform data 119 6.3.2 Predictor data 120 6.3.3 Statistical modelling 122 7 SUMMARY 125 8 CONCLUSIONS 129 REFERENCES 131 OTHER SOURCE MATERIAL 149 APPENDICES 151 VI ABSTRACT The conclusions about the determinants of earth surface processes and landform patterns are often derived from traditional fi eld survey methods. Recent developments in the spatial and numerical analysing techniques have improved the possibility to study different aspects of geomorphological phenomena in extensive regions. The objective of this research was to map and quantitatively analyse the occurrence of cryogenic phenomena in subarctic Finland in the zone of discontinuous perma- frost. More precisely, utilising a grid-based approach the distribution and abundance of periglacial landforms were modelled to identify important landscape scale environmental factors and potential methodological limitations. The study was performed using a comprehensive empirical data set of periglacial landforms from an area of 600 km2 at a 25-ha resolution. The utilised statistical methods were generalized linear modelling (GLM) and hierarchical partitioning (HP). GLMs were used to produce distribution and abundance models and HP to reveal independently the most likely causal variables. The GLM models were assessed utilising statistical evaluation measures, prediction maps, fi eld observations and the results of HP analyses. A total of 40 different landform types and subtypes were identifi ed. At lower altitudes with gentle slope angles occurred earth hummock, stone pit, peat pounu and palsa continuums and at higher altitudes with steeper slopes sorted stripe, solifl uction stream and solifl uction sheet sequences were prevalent. At present, the environmental conditions promote the formation of different cryoturba- tion and peat accumulation based non-sorted features, whereas most of the sorted landforms were probably formed before the climatic optimum over 8000 years ago. Topographical, soil property and vegetation variables were the primary correlates for the occur- rence and cover of active periglacial landforms on the landscape scale. From the pure topographical factors, mean slope angle and mean altitude were commonly in the fi nal models. Peat cover was the most important soil type variable because of its varying thermal properties and moisture holding capacity. Topographical wetness index was a crucial surrogate of environmental factor exhibiting the general soil moisture distribution. From vegetation variables, the shrub cover affected the distribution of several periglacial landforms. In the model evaluation, most of the GLMs were shown to be rather robust although the explana- tion power, prediction ability as well as the selected explanatory variables varied between the mod- els. The most robust distribution models were constructed with palsa, earth hummock, peat pounu, sorted solifl uction sheet and sorted solifl uction stream data. Earth hummock and peat pounu models obtained the best prediction and explanation ability in the abundance modelling, respectively. The great potential of the combination of a spatial grid system, terrain data and novel statistical techniques to map the occurrence of periglacial landforms was demonstrated in this study. GLM proved to be a useful modelling framework for testing the shapes of the response functions and signifi cances of the variables describing environmental gradients and the HP method helped to make better deductions of the important factors of earth surface processes. Hence, the numerical ap- proach presented in this study can be a useful addition to the current range of techniques available to researchers to map and monitor different geographical phenomena. However, the data related limita- tions and method-based weaknesses may bias the modelling results and the model outcomes should not be interpreted uncritically. Keywords: periglacial geomorphology, patterned ground, solifl uction, numerical analyses, generalized linear modelling, logistic regression, hierarchical partitioning, GIS, subarctic, Lapland, Finland Jan Hjort, Department of Geography P.O. Box 64, FIN-00014 University of Helsinki, Finland VII ACKNOWLEDGEMENTS I am grateful to my supervisors Professor Matti Seppälä (Department of Geography, University of Helsinki) and Dr Miska Luoto (Finnish Environment Institute, Helsinki; Thule Institute, University of Oulu) for providing me with the idea and opportunity to do this research. They also have always found time for discussion, advice, comments and constructive criticism throughout the study. In addition, Professors Bernd Etzelmüller and Charles Harris gave several valuable comments on the manuscript. Most of the GIS and statistical analyses as well as the writing were carried out at the Department of Geog- raphy, University of Helsinki, and I wish to express my thanks to all my colleagues there, especially IT Adviser Hilkka Ailio (computing issues and preparation of the layout), PhD student Janne Heiskanen (introduction to the biotope database), PhD student Tommi Sirviö (GIS advice) and IT Administrator Tom Blom (computing problems) as well as PhD student Barnaby Clark who greatly helped with correction of the English text. Kevo Subarctic Research Institute provided good facilities during the fi eld surveys, especially Saini Heino and Kaisu Vierma-Laine who kindly put me up after hard fi eld trips regardless of the day of the week or time. Furthermore, I want to thank Mikko Lantz for fi eld work companion during the summers of 2002 and 2003. I would like to thank the following persons from the Scott Polar Research Institute (SPRI), University of Cam- bridge: Archivist and Curator Robert Headland, Information Assistant Shirley Sawtell and Librarian Heather Lane, who all greatly helped me during the visit to SPRI in May 2005. I wish to express heartfelt special thanks to my wife, PhD student Paula Kuusisto-Hjort, who provided fi eld work companion during the summers of 2002 and 2003, commented on the manuscript at different stages and supported me with love and warmth at every step from the beginning of the study to the fi nishing of the manu- script.
Recommended publications
  • Faro Landscape Hazards
    Faro Landscape Hazards Geoscience Mapping for Climate Change Adaptation Planning This publication may be obtained from: Northern Climate ExChange Yukon Research Centre, Yukon College 500 College Drive P.O. Box 2799 Whitehorse, Yukon Y1A 5K4 867.668.8895 1.800.661.0504 yukoncollege.yk.ca/research Recommended citation: Benkert, B.E., Fortier, D., Lipovsky, P., Lewkowicz, A., Roy, L.-P., de Grandpré, I., Grandmont, K., Turner, D., Laxton, S., and Moote, K., 2015. Faro Landscape Hazards: Geoscience Mapping for Climate Change Adaptation Planning. Northern Climate ExChange, Yukon Research Centre, Yukon College. 130 p. and 2 maps. Front cover photograph: Aerial view of Faro looking southeast towards the Pelly River. Photo credit: archbould.com Disclaimer: The report including any associated maps, tables and figures (the “Information”) convey general observations only. The Information is based on an interpretation and extrapolation of discrete data points and is not necessarily indicative of actual conditions at any location. The Information cannot be used or relied upon for design or construction at any location without first conducting site-specific geotechnical investigations by a qualified geotechnical engineer to determine the actual conditions at a specific location (“Site-Specific Investigations”). The Information should only be used or relied upon as a guide to compare locations under consideration for such Site-Specific Investigations. Use of or reli- ance upon the Information for any other purpose is solely at the user’s own risk. Yukon College and the individual authors and contributors to the Information accept no liability for any loss or damage arising from the use of the Information.
    [Show full text]
  • New Insights Into the Drainage of Inundated Arctic Polygonal Tundra
    https://doi.org/10.5194/tc-2020-100 Preprint. Discussion started: 5 May 2020 c Author(s) 2020. CC BY 4.0 License. New insights into the drainage of inundated Arctic polygonal tundra using fundamental hydrologic principles Dylan R Harp1, Vitaly Zlotnik2, Charles J Abolt1, Brent D Newman1, Adam L Atchley1, Elchin Jafarov1, and Cathy J Wilson1 1Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87544 2Earth and Atmospheric Sciences Department, University of Nebraska, Lincoln, NE, 68588-0340 Correspondence: Dylan Harp ([email protected]) Abstract. The pathways and timing of drainage from inundated ice-wedge polygon centers in a warming climate have im- portant implications for carbon flushing, advective heat transport, and transitions from carbon dioxide to methane dominated emissions. This research helps to understand this process by providing the first in-depth analysis of drainage from a single polygon based on fundamental hydrogeological principles. We use a recently developed analytical solution to evaluate the 5 effects of polygon aspect ratios (radius to thawed depth) and hydraulic conductivity anisotropy (horizontal to vertical hydraulic conductivity) on drainage pathways and temporal depletion of ponded water heights of inundated ice-wedge polygon centers. By varying the polygon aspect ratio, we evaluate the effect of polygon size (width), inter-annual increases in active layer thick- ness, and seasonal increases in thaw depth on drainage. One of the primary insights from the model is that most inundated ice-wedge polygon drainage occurs along an annular region of the polygon center near the rims. This implies that inundated 10 polygons are most intensely flushed by drainage in an annular region along their horizontal periphery, with implications for transport of nutrients (such as dissolved organic carbon) and advection of heat towards ice wedge tops.
    [Show full text]
  • Cold-Climate Landform Patterns in the Sudetes. Effects of Lithology, Relief and Glacial History
    ACTA UNIVERSITATIS CAROLINAE 2000 GEOGRAPHICA, XXXV, SUPPLEMENTUM, PAG. 185–210 Cold-climate landform patterns in the Sudetes. Effects of lithology, relief and glacial history ANDRZEJ TRACZYK, PIOTR MIGOŃ University of Wrocław, Department of Geography, Wrocław, Poland ABSTRACT The Sudetes have the whole range of landforms and deposits, traditionally described as periglacial. These include blockfields and blockslopes, frost-riven cliffs, tors and cryoplanation terraces, solifluction mantles, rock glaciers, talus slopes and patterned ground and loess covers. This paper examines the influence, which lithology and structure, inherited relief and time may have had on their development. It appears that different rock types support different associations of cold climate landforms. Rock glaciers, blockfields and blockstreams develop on massive, well-jointed rocks. Cryogenic terraces, rock steps, patterned ground and heterogenic solifluction mantles are typical for most metamorphic rocks. No distinctive landforms occur on rocks breaking down through microgelivation. The variety of slope form is largely inherited from pre- Pleistocene times and includes convex-concave, stepped, pediment-like, gravitational rectilinear and concave free face-talus slopes. In spite of ubiquitous solifluction and permafrost creep no uniform characteristic ‘periglacial’ slope profile has been created. Mid-Pleistocene trimline has been identified on nunataks in the formerly glaciated part of the Sudetes and in their foreland. Hence it is proposed that rock-cut periglacial relief of the Sudetes is the cumulative effect of many successive cold periods during the Pleistocene and the last glacial period alone was of relatively minor importance. By contrast, slope cover deposits are usually of the Last Glacial age. Key words: cold-climate landforms, the Sudetes 1.
    [Show full text]
  • Chapter 7 Seasonal Snow Cover, Ice and Permafrost
    I Chapter 7 Seasonal snow cover, ice and permafrost Co-Chairmen: R.B. Street, Canada P.I. Melnikov, USSR Expert contributors: D. Riseborough (Canada); O. Anisimov (USSR); Cheng Guodong (China); V.J. Lunardini (USA); M. Gavrilova (USSR); E.A. Köster (The Netherlands); R.M. Koerner (Canada); M.F. Meier (USA); M. Smith (Canada); H. Baker (Canada); N.A. Grave (USSR); CM. Clapperton (UK); M. Brugman (Canada); S.M. Hodge (USA); L. Menchaca (Mexico); A.S. Judge (Canada); P.G. Quilty (Australia); R.Hansson (Norway); J.A. Heginbottom (Canada); H. Keys (New Zealand); D.A. Etkin (Canada); F.E. Nelson (USA); D.M. Barnett (Canada); B. Fitzharris (New Zealand); I.M. Whillans (USA); A.A. Velichko (USSR); R. Haugen (USA); F. Sayles (USA); Contents 1 Introduction 7-1 2 Environmental impacts 7-2 2.1 Seasonal snow cover 7-2 2.2 Ice sheets and glaciers 7-4 2.3 Permafrost 7-7 2.3.1 Nature, extent and stability of permafrost 7-7 2.3.2 Responses of permafrost to climatic changes 7-10 2.3.2.1 Changes in permafrost distribution 7-12 2.3.2.2 Implications of permafrost degradation 7-14 2.3.3 Gas hydrates and methane 7-15 2.4 Seasonally frozen ground 7-16 3 Socioeconomic consequences 7-16 3.1 Seasonal snow cover 7-16 3.2 Glaciers and ice sheets 7-17 3.3 Permafrost 7-18 3.4 Seasonally frozen ground 7-22 4 Future deliberations 7-22 Tables Table 7.1 Relative extent of terrestrial areas of seasonal snow cover, ice and permafrost (after Washburn, 1980a and Rott, 1983) 7-2 Table 7.2 Characteristics of the Greenland and Antarctic ice sheets (based on Oerlemans and van der Veen, 1984) 7-5 Table 7.3 Effect of terrestrial ice sheets on sea-level, adapted from Workshop on Glaciers, Ice Sheets and Sea Level: Effect of a COylnduced Climatic Change.
    [Show full text]
  • Modeling the Role of Preferential Snow Accumulation in Through Talik OPEN ACCESS Development and Hillslope Groundwater flow in a Transitional
    Environmental Research Letters LETTER • OPEN ACCESS Recent citations Modeling the role of preferential snow - Shrub tundra ecohydrology: rainfall interception is a major component of the accumulation in through talik development and water balance hillslope groundwater flow in a transitional Simon Zwieback et al - Development of perennial thaw zones in boreal hillslopes enhances potential permafrost landscape mobilization of permafrost carbon Michelle A Walvoord et al To cite this article: Elchin E Jafarov et al 2018 Environ. Res. Lett. 13 105006 View the article online for updates and enhancements. This content was downloaded from IP address 192.12.184.6 on 08/07/2020 at 18:02 Environ. Res. Lett. 13 (2018) 105006 https://doi.org/10.1088/1748-9326/aadd30 LETTER Modeling the role of preferential snow accumulation in through talik OPEN ACCESS development and hillslope groundwater flow in a transitional RECEIVED 27 March 2018 permafrost landscape REVISED 26 August 2018 Elchin E Jafarov1 , Ethan T Coon2, Dylan R Harp1, Cathy J Wilson1, Scott L Painter2, Adam L Atchley1 and ACCEPTED FOR PUBLICATION Vladimir E Romanovsky3 28 August 2018 1 Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America PUBLISHED 2 15 October 2018 Climate Change Science Institute and Environmental Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America 3 Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America Original content from this work may be used under E-mail: [email protected] the terms of the Creative Commons Attribution 3.0 Keywords: permafrost, hydrology, modeling, ATS, talik licence. Any further distribution of this work must maintain attribution to the Abstract author(s) and the title of — — the work, journal citation Through taliks thawed zones extending through the entire permafrost layer represent a critical and DOI.
    [Show full text]
  • Periglacial Processes, Features & Landscape Development 3.1.4.3/4
    Periglacial processes, features & landscape development 3.1.4.3/4 Glacial Systems and landscapes What you need to know Where periglacial landscapes are found and what their key characteristics are The range of processes operating in a periglacial landscape How a range of periglacial landforms develop and what their characteristics are The relationship between process, time, landforms and landscapes in periglacial settings Introduction A periglacial environment used to refer to places which were near to or at the edge of ice sheets and glaciers. However, this has now been changed and refers to areas with permafrost that also experience a seasonal change in temperature, occasionally rising above 0 degrees Celsius. But they are characterised by permanently low temperatures. Location of periglacial areas Due to periglacial environments now referring to places with permafrost as well as edges of glaciers, this can account for one third of the Earth’s surface. Far northern and southern hemisphere regions are classed as containing periglacial areas, particularly in the countries of Canada, USA (Alaska) and Russia. Permafrost is where the soil, rock and moisture content below the surface remains permanently frozen throughout the entire year. It can be subdivided into the following: • Continuous (unbroken stretches of permafrost) • extensive discontinuous (predominantly permafrost with localised melts) • sporadic discontinuous (largely thawed ground with permafrost zones) • isolated (discrete pockets of permafrost) • subsea (permafrost occupying sea bed) Whilst permafrost is not needed in the development of all periglacial landforms, most periglacial regions have permafrost beneath them and it can influence the processes that create the landforms. Many locations within SAMPLEextensive discontinuous and sporadic discontinuous permafrost will thaw in the summer months.
    [Show full text]
  • Hazard Mapping for Infrastructure Planning in the Arctic
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-2021 Hazard Mapping for Infrastructure Planning in the Arctic Christopher I. Amaddio Follow this and additional works at: https://scholar.afit.edu/etd Part of the Geotechnical Engineering Commons Recommended Citation Amaddio, Christopher I., "Hazard Mapping for Infrastructure Planning in the Arctic" (2021). Theses and Dissertations. 4938. https://scholar.afit.edu/etd/4938 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. HAZARD MAPPING FOR INSTRASTRUCTURE PLANNING IN THE ARCTIC THESIS Christopher I. Amaddio, 1st Lt, USAF AFIT-ENV-MS-21-M-201 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, the Department of Defense, or the United States Government. HAZARD MAPPING FOR INFRASTRUCTURE PLANNING IN THE ARCTIC THESIS Presented to the Faculty Department of Engineering Management Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering Management Christopher I. Amaddio, BS 1st Lt, USAF February 2021 DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
    [Show full text]
  • Permafrost Soils and Carbon Cycling
    SOIL, 1, 147–171, 2015 www.soil-journal.net/1/147/2015/ doi:10.5194/soil-1-147-2015 SOIL © Author(s) 2015. CC Attribution 3.0 License. Permafrost soils and carbon cycling C. L. Ping1, J. D. Jastrow2, M. T. Jorgenson3, G. J. Michaelson1, and Y. L. Shur4 1Agricultural and Forestry Experiment Station, Palmer Research Center, University of Alaska Fairbanks, 1509 South Georgeson Road, Palmer, AK 99645, USA 2Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA 3Alaska Ecoscience, Fairbanks, AK 99775, USA 4Department of Civil and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA Correspondence to: C. L. Ping ([email protected]) Received: 4 October 2014 – Published in SOIL Discuss.: 30 October 2014 Revised: – – Accepted: 24 December 2014 – Published: 5 February 2015 Abstract. Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environ- ment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enor- mous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region’s soil or- ganic carbon (SOC) stocks to changing climatic conditions. In this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile.
    [Show full text]
  • Tundra Polygons. Photographic Interpretation and Field Studies in North-Norwegian Polygon Areas
    Tundra polygons. Photographic interpretation and field studies in North-Norwegian polygon areas. By Harald Svensson Introduction. When working with aerial photos, the interpreter very soon realizes that the vegetation adjusts itself very well to differences in the ground conditions, which is in this way registered in photography. This fact constituted one of the starting points when the author, with the help of aerial photos, began the search for large-scale patterned ground of the tundra polygon shape, which earlier had not been identified in Scandinavia.1 In Arctic regions, recent tundra polygons can be clearly distinguished on aerial photographs which is a well-known fact derived from numerous investigations (amongst others, Troll 1944, Washburn 1950, Black 1952, Andreev 1955, Hopkins, Karlstrom et al 1955). The fact that there are considerable changes in the soil caused by the frost (cf. Figs. 1, 2 and 3) supports the hypothesis that, if a polygonal pattern of the tundra type developed in an area and this, at a later date in a milder climate, came to lic outside the tundra zone, it should be possible to trace fossil polygons or fragments of such with the help of the adjustment of the vegetation to the ground conditions. This idea has been followed up in order to in vestigate the correctness of the hypothesis and in order to check the possibility of this method. 1) In vertical sections and gravel-pits, however, fossil periglacial formations have been observed and studied particularly in Denmark and Southern Sweden (Norvang and Johnsson). As regards Swedish investigations of patterned ground reference is made to the surveys by Rapp and Rudberg (1960) and J.
    [Show full text]
  • A Differential Frost Heave Model: Cryoturbation-Vegetation Interactions
    A Differential Frost Heave Model: Cryoturbation-Vegetation Interactions R. A. Peterson, D. A. Walker, V. E. Romanovsky, J. A. Knudson, M. K. Raynolds University of Alaska Fairbanks, AK 99775, USA W. B. Krantz University of Cincinnati, OH 45221, USA ABSTRACT: We used field observations of frost-boil distribution, soils, and vegetation to attempt to vali- date the predictions of a Differential Frost Heave (DFH) model along the temperature gradient in northern Alaska. The model successfully predicts order of magnitude heave and spacing of frost boils, and can account for the circular motion of soils within frost boils. Modification of the model is needed to account for the ob- served variation in frost boil systems along the climate gradient that appear to be the result of complex inter- actions between frost heave and vegetation. 1 INTRODUCTION anced by degrading geological processes such as soil creep. Washburn listed 19 possible mechanisms re- This paper discusses a model for the development sponsible for the formation of patterned ground of frost boils due to differential frost heave. The in- (Washburn 1956). The model presented here ex- teractions between the physical processes of frost plains the formation of patterned ground by differen- heave and vegetation characteristics are explored as tial frost heave. DFH is also responsible, at least in a possible controlling mechanism for the occurrence part, for the formation of sorted stone circles in of frost boils on the Alaskan Arctic Slope. Spitsbergen (Hallet et al 1988). A recent model due to Kessler et al (2001) for the genesis and mainte- Frost boils are a type of nonsorted circle, “a pat- nance of stone circles integrates DFH with soil con- terned ground form that is equidimensional in sev- solidation, creep, and illuviation.
    [Show full text]
  • Frost Weathering and Rock Platform Erosion on Periglaciallake Shorelines: a Test of a Hypothesis
    Frost weathering and rock platform erosion on periglaciallake shorelines: a test of a hypothesis RICHARD A. SHAKESBY & JOHN A. MATIHEWS Shakesby, R. A. & Matthews, J. A.: Frost weathering and rock platform erosion on periglacial lake shorelines: a test of a hypothesis. Norsk Geologisk Tidsskrift, Vol. 67, pp. 197-203. Oslo 1987. ISSN 0029-196X. Matthews et al. (1986) hypothesised that rock platforms around a short-lived ice-dammed lake margin in Jotunheimen, southem Norway, bad been rapidly eroded mainly through frost weathering associated with lake-ice development. They proposed a general model accounting for the development of the rock platforms in terms of deep penetration of the annua! freeze-thaw cycle, the movement of unfrozen lake water towards the freezing plane, and the growth of segregation ice in bedrock fissures below lake leve!. This paper presents a test of this hypothesis by observations of the shoreline of the present-day lake, which has been maintained at a lower, stable leve! since about A.D. 1826 when the ice dam was removed. The presence of cliff and platform development at the present lake shore supports and improves the hypothesis. For the modem platform, width measurements (mean 3.6 m, range 1.5-5.75 m) are similar to those for the relict platform, whereas calculated erosion rates (mean 2.2 cm/year, range 0.9-3.6 cm/ year) are overall slightly lower. The depth of water (0.9 m) at the cliff-platformjunction suggested for the formation of the relict platform is modified to 0.6 m in the light of the present results.
    [Show full text]
  • Frost Boils, Soil Ice Content and Apparent Thermal Diffusivity
    Frost boils, soil ice content and apparent thermal diffusivity P. P. Overduin Water and Environment Research Center, University of Alaska Fairbanks, Fairbanks, Alaska, USA C.-L. Ping Palmer Research Center, University of Alaska Fairbanks, Palmer, Alaska, USA D. L. Kane Water and Environment Research Center, University of Alaska Fairbanks, Fairbanks, Alaska, USA ABSTRACT: Cryoturbation in continuous permafrost regions often results in a visually striking mixing of soil horizons or materials. We are studying frost boils that formed in lacustrine sediments in the Galbraith Lake area, north of Alaska's Brooks Range, and the heat transfer and phase change dynamics that maintain these features through seasonal cycles. These frost boils are distinctly visible at the ground surface, and are silty-clay upwellings that penetrate the surrounding organic soil. Sensors were installed in a vertical plane from the frost boil’s center outward to measure soil temperature, thermal diffusivity, liquid water content and thermal conductivity. The temperature field, water content and thermal properties during freezing and the concomitant changes in ice content are examined and discussed with respect to frost boil mechanics. Prelimi- nary data suggest that ice content changes and differential snow cover dynamics are important in the mainte- nance of the frost boil structure over many freeze-thaw cycles. 1 INTRODUCTION rizons is directed radially outward during freezing. A frost boil is a roughly radially symmetric disconti- During subsequent thawing, however, consolidation nuity in soil horizons and surface characteristics. occurs vertically. The cumulative effect over a num- Frost boils are often associated with sorting of soil ber of freeze-thaw cycles is an upwelling of material materials based on grain size (Washburn 1956).
    [Show full text]