PERMAFROST Bob Carson June 2007

Total Page:16

File Type:pdf, Size:1020Kb

PERMAFROST Bob Carson June 2007 PERMAFROST Bob Carson June 2007 LAKE LINNEVATNET THE ACTIVE LAYER IS FROZEN ACTIVE LAYER PERMAFROST YUKON TERMS • PERMAFROST • PERIGLACIAL • \ • PATTERNED GROUND • POLYGONS • PALS • PINGO • ROCK GLACIER • THERMOKARST YAKIMA HILLS PROCESSES • FREEZE-THAW • FROST CRACK • FROST SHATTER • FROST HEAVE • FROST SHOVE • FROST SORT • CREEP • SOLIFLUCTION • NIVATION BEARTOOTH MOUNTAINS FROST CRACK • LOW-TEMPERATURE CONTRACTION ALASKA PHOTO BY RUTH SCHMIDT FROST SHATTER • WATER EXPANDS DURING FREEZING VATNAJOKULL KHARKHIRAA UUL FROST HEAVE FROST PUSH vs. FROST PULL CAIRNGORM FROST SHOVE GREENLAND PHOTO BY W.E. DAVIES FROST SORT SWEDISH LAPLAND PHOTO BY JAN BOELHOUWERS C R E E P SHARPE 1938 SOLIFLUCTION SOLIFLUCTION LOBES HANGAY NURUU NIVATION NIVATION HOLLOWS PALOUSE HILLS LANDFORMS WITH ICE ALASKA PHOTO BY SKIP WALKER AUFEIS KHARKHIRRA UUL HANGAY NURUU ICE WEDGES sis.agr.gc.ca/.../ground ICE-WEDGE POLYGONS res.agr.canada PALSEN HANGAY NURUU PALSEN FIELD OGILVIE MOUNTAINS PINGOES BEAUFORT COAST ALASKA PHOTO BY H.J.A. Berendsen ougseurope.org/rockon/surface/img PINGOES IN CANADIAN ARCTIC www.rekel.nl www.mbari.org www.arctic.uoguelph.ca VICTORIA ISLAND PHOTO BY A. L. WASHBURN ROCK GLACIERS GALENA CREEK ROCK GLACIERS GALENA CREEK ROCK GLACIERS GRAYWOLF RIDGE THERMOKARST YUKON THERMOKARST ALASKA ICE-WEDGE TRENCH YUKON ICE-WEDGE TRENCH ALASKA PHOTO BY JOE MOORE BEADED DRAINAGE ALASKA PHOTO BY RUTH SCHMIDT THAW LAKES PRUDOE BAY THAW LAKES ALASKA PHOTO BY ART REMPEL MORE PERIGLACIAL LANDFORMS SPITSBERGEN PHOTO BY BEN SCHUPACK WHITMAN ‘07 BLOCK FIELDS RINGING ROCKS BLOCK SLOPES BLOCK FIELD TALUS BLOCK SLOPE ELKHORN MOUNTAINS BLOCK STREAMS SAN FRANCISCO MOUNTAINS 11 June 2007 BLOCK STREAMS HANGAY NURUU CRYOPLANATION TERRACES HANGAY NURUU CRYOPLANATION TERRACES NIVATION TOR SOLIFLUCTION HANGAY NURUU PATTERNED GROUND: COMPONENTS FINES STONES HANGAY NURUU STONES: PEBBLES COBBLES BOULDERS FINES: CLAY, SILT, SAND PATTERNED GROUND: HANGAY COMPONENTS NURUU PATTERNED GROUND: CLASSIFICATION • SLOPE: HORIZONTAL± vs. SLOPING • SORTING: SORTED vs. NONSORTED KHARKHIRAA UUL BEARTOOTH MOUNTAINS SORTED STONE SLOPES STRIPES YAKIMA HILLS NONSORTED STONE STRIPES SEWARD PENINSULA PHOTO BY RUTH SCHMIDT STONE STEPS = TERRACETTES • GEOLOGIC? MASS WASTING? • BIOLOGIC? LARGE MAMMALS? IMNAHA PAT O’HARA MOUNTAIN DARHAD DEPRESSION WALLULA GAP TUCANNON VALLEY HORIZONTAL± GROUND NON-SORTED CIRCLES AMMASSALIK KHARKHIRAA UUL SORTED CIRCLE COTOPAXI SVALBARD PHOTO BY BERNARD HALLET YAKIMA HILLS SORTED POLYGONS BEARTOTH PASS BEARTOOTH PASS NON-SORTED POLYGONS GREENLAND PHOTO BY W.E. DAVIES MIMA PRAIRIE MIMA PRAIRIE BEN SHUPACK WHITMAN ’07 THANK YOU! ON SPITSBERGEN .
Recommended publications
  • View of Theoretical Approaches 51
    University of Alberta Caribou Hunting at Ice Patches: Seasonal Mobility and Long-term Land-Use in the Southwest Yukon By Vandy E. Bowyer A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Anthropology © Vandy E. Bowyer Spring 2011 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. In memory of Tagish ABSTRACT Recently documented ice patch sites in the southwest Yukon are ideal for evaluating precontact hunter-gatherer land-use patterns in the western subarctic. Located in the alpine of the mountainous regions of the boreal forest, ice patches are associated with well preserved hunting equipment, caribou (Rangifer tarandus) dung and an abundance of faunal remains dating to over 8000 years ago. However, current models are inadequate for explaining caribou hunting at ice patches as they tend to emphasize large-scale communal hunts associated with latitudinal movements of caribou. Much less is known about the alititudinal movment of caribou and the associated hunting forays to ice patches in the alpine.
    [Show full text]
  • The Pennsylvania State University the Graduate School College of Earth and Mineral Sciences a RECORD of COUPLED HILLSLOPE and CH
    The Pennsylvania State University The Graduate School College of Earth and Mineral Sciences A RECORD OF COUPLED HILLSLOPE AND CHANNEL RESPONSE TO PLEISTOCENE PERIGLACIAL EROSION IN A SANDSTONE HEADWATER VALLEY, CENTRAL PENNSYLVANIA A Thesis in Geosciences by Joanmarie Del Vecchio © 2017 Joanmarie Del Vecchio Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science December 2017 The thesis of Joanmarie Del Vecchio was reviewed and approved* by the following: Roman A. DiBiase Assistant Professor of Geosciences Thesis Advisor Li Li Associate Professor of Civil and Environmental Engineering Susan L. Brantley Professor of Geosciences Tim Bralower Professor of Geosciences Interim Head, Department of Geosciences *Signatures are on file in the Graduate School. ii Abstract Outside of the Last Glacial Maximum ice extent, landscapes in the central Valley and Ridge physiographic province of Appalachia preserve soils and thick colluvial deposits indicating extensive periglacial landscape modification. The preservation of periglacial landforms in the present interglacial suggests active hillslope sediment transport in cold climates followed by limited modification in the Holocene. However, the timing and extent of these processes are poorly constrained, and it is unclear whether, and how much, this signature is due to LGM or older periglaciations. Here, we pair geomorphic mapping with in situ cosmogenic 10Be and 26Al measurements of surface material and buried clasts to estimate the residence time and depositional history of colluvium within Garner Run, a 1 km2 sandstone headwater valley in central Appalachia containing relict Pleistocene periglacial features including solifluction lobes, boulder fields, and thick colluvial footslope deposits. 10Be concentrations of stream sediment and hillslope regolith indicate slow erosion rates (6.3 m ± 0.5 m m.y.-1) over the past 38-140 kyr.
    [Show full text]
  • High-Mountain Permafrost in the Austrian Alps (Europe)
    HIGH-MOUNTAIN PERMAFROST IN THE AUSTRIAN ALPS (EUROPE) Gerhard Karl Lieb Institute of Geography University of Graz Heinrichstrasse 36 A-8010 Graz e-mail: [email protected] Abstract Permafrost research in the Austrian Alps (Eastern Alps) is based on a variety of methods, including at large scales, the measurement of the temperature of springs and of the base of winter snow cover, and at small scales, mainly an inventory of some 1450 rock glaciers. Taking all the information available into consideration, the lower limit of discontinuous permafrost is situated near 2500 m in most of the Austrian Alps. These results can be used for modelling the permafrost distribution within a geographical information system. Detailed investi- gations were carried out in the Doesen Valley (Hohe Tauern range) using additional methods, including several geophysical soundings. In this way, realistic estimates of certain permafrost characteristics and the volume of a large active rock glacier (some 15x106m3) were possible. This rock glacier has been chosen as a monitoring site to observe the effects of past and future climatic change. Introduction snow cover (BTS) and geophysical soundings, such as seismic, geoelectric, electromagnetic and ground pene- Although mountain permafrost in the Austrian Alps trating radar surveys have been published (survey and has caused construction problems and damage to buil- references in Lieb, 1996). The best results for mapping dings at several high-altitude locations, specific investi- the mere existence of permafrost were obtained by mea- gations of permafrost did not start until 1980. Since suring spring temperatures and BTS, both procedures then, studies of the distribution and certain characteris- being easily applicable and providing quite accurate tics of permafrost have been carried out at a number of interpretation.
    [Show full text]
  • Late Wisconsin Climate Inferences from Rock Glaciers in South-Central
    LateWisconsin climatic inlerences from rock glaciers in south-centraland west-central New Mexico andeast-central Arizona byJohn W. Blagbrough, P0 Box8063, Albuquerque, NewMexico 87198 Abstract Inactive rock glaciersof late Wisconsin age occur at seven sites in south-central and west-central New Mexico and in east-centralArizona. They are at the base of steep talus in the heads of canyons and ravines and have surfacefeatures indicating they are ice-cemented (permafrost) forms that moved by the flow of interstitial ice. The rock glaciersindicate zones of alpine permafrost with lower levels that rise from approximately 2,400m in the east region to 2,950 m in the west. Within the zones the mean annual temperaturewas below freezing, and the climatewas marked by much diurnal freezing and thawing resulting in the production of large volumes of talus in favorableterrain. The snow cover was thin and of short duration, which fa- vored ground freezing and cryofraction. The rock glaciers in the east region occur near the late Wisconsin 0'C air isotherm and implv that the mean annual temperature was depressedapproximately 7 to 8'C during a periglacial episodein the late Wisconsin.A dry continental climate with a seasonaldistribution of precipitation similar to that of the present probably prevailed, and timberline former timberlines. may have been depresseda minimum of 1,240m. The rise in elevation of the rock glaciersfrom east to west acrossthe region is attributed to greater snowfall in west-centralNew Mexico and east-centralArizona, which reducedthe inten- sity and depth of ground freezing near the late Wisconsin 0"C air isotherm.
    [Show full text]
  • Cold-Climate Landform Patterns in the Sudetes. Effects of Lithology, Relief and Glacial History
    ACTA UNIVERSITATIS CAROLINAE 2000 GEOGRAPHICA, XXXV, SUPPLEMENTUM, PAG. 185–210 Cold-climate landform patterns in the Sudetes. Effects of lithology, relief and glacial history ANDRZEJ TRACZYK, PIOTR MIGOŃ University of Wrocław, Department of Geography, Wrocław, Poland ABSTRACT The Sudetes have the whole range of landforms and deposits, traditionally described as periglacial. These include blockfields and blockslopes, frost-riven cliffs, tors and cryoplanation terraces, solifluction mantles, rock glaciers, talus slopes and patterned ground and loess covers. This paper examines the influence, which lithology and structure, inherited relief and time may have had on their development. It appears that different rock types support different associations of cold climate landforms. Rock glaciers, blockfields and blockstreams develop on massive, well-jointed rocks. Cryogenic terraces, rock steps, patterned ground and heterogenic solifluction mantles are typical for most metamorphic rocks. No distinctive landforms occur on rocks breaking down through microgelivation. The variety of slope form is largely inherited from pre- Pleistocene times and includes convex-concave, stepped, pediment-like, gravitational rectilinear and concave free face-talus slopes. In spite of ubiquitous solifluction and permafrost creep no uniform characteristic ‘periglacial’ slope profile has been created. Mid-Pleistocene trimline has been identified on nunataks in the formerly glaciated part of the Sudetes and in their foreland. Hence it is proposed that rock-cut periglacial relief of the Sudetes is the cumulative effect of many successive cold periods during the Pleistocene and the last glacial period alone was of relatively minor importance. By contrast, slope cover deposits are usually of the Last Glacial age. Key words: cold-climate landforms, the Sudetes 1.
    [Show full text]
  • Mineral Element Stocks in the Yedoma Domain
    Discussions https://doi.org/10.5194/essd-2020-359 Earth System Preprint. Discussion started: 8 December 2020 Science c Author(s) 2020. CC BY 4.0 License. Open Access Open Data Mineral element stocks in the Yedoma domain: a first assessment in ice-rich permafrost regions Arthur Monhonval1, Sophie Opfergelt1, Elisabeth Mauclet1, Benoît Pereira1, Aubry Vandeuren1, Guido Grosse2,3, Lutz Schirrmeister2, Matthias Fuchs2, Peter Kuhry4, Jens Strauss2 5 1Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium 2Permafrost Research Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany 3Institute of Geosciences, University of Potsdam, Potsdam, Germany 4Department of Physical Geography, Stockholm University, Stockholm, Sweden 10 Correspondence to: Arthur Monhonval ([email protected]) Abstract With permafrost thaw, significant amounts of organic carbon (OC) previously stored in frozen deposits are unlocked and 15 become potentially available for microbial mineralization. This is particularly the case in ice-rich regions such as the Yedoma domain. Excess ground ice degradation exposes deep sediments and their OC stocks, but also mineral elements, to biogeochemical processes. Interactions of mineral elements and OC play a crucial role for OC stabilization and the fate of OC upon thaw, and thus regulate carbon dioxide and methane emissions. In addition, some mineral elements are limiting nutrients for plant growth or microbial metabolic activity. A large ongoing effort is to quantify OC stocks and their lability in permafrost 20 regions, but the influence of mineral elements on the fate of OC or on biogeochemical nutrient cycles has received less attention. The reason is that there is a gap of knowledge on the mineral element content in permafrost regions.
    [Show full text]
  • Rocky Mountain National Park Lawn Lake Flood Interpretive Area (Elevation 8,640 Ft)
    1 NCSS Conference 2001 Field Tour -- Colorado Rocky Mountains Wednesday, June 27, 2001 7:00 AM Depart Ft. Collins Marriott 8:30 Arrive Rocky Mountain National Park Lawn Lake Flood Interpretive Area (elevation 8,640 ft) 8:45 "Soil Survey of Rocky Mountain National Park" - Lee Neve, Soil Survey Project Leader, Natural Resources Conservation Service 9:00 "Correlation and Classification of the Soils" - Thomas Hahn, Soil Data Quality Specialist, MLRA Office 6, Natural Resources Conservation Service 9:15-9:30 "Interpretive Story of the Lawn Lake Flood" - Rocky Mountain National Park Interpretive Staff, National Park Service 10:00 Depart 10:45 Arrive Alpine Visitors Center (elevation 11,796 ft) 11:00 "Research Needs in the National Parks" - Pete Biggam, Soil Scientist, National Park Service 11:05 "Pedology and Biogeochemistry Research in Rocky Mountain National Park" - Dr. Eugene Kelly, Colorado State University 11:25 - 11:40 "Soil Features and Geologic Processes in the Alpine Tundra"- Mike Petersen and Tim Wheeler, Soil Scientists, Natural Resources Conservation Service Box Lunch 12:30 PM Depart 1:00 Arrive Many Parks Curve Interpretive Area (elevation 9,620 ft.) View of Valleys and Glacial Moraines, Photo Opportunity 1:30 Depart 3:00 Arrive Bobcat Gulch Fire Area, Arapaho-Roosevelt National Forest 3:10 "Fire History and Burned Area Emergency Rehabilitation Efforts" - Carl Chambers, U. S. Forest Service 3:40 "Involvement and Interaction With the Private Sector"- Todd Boldt; District Conservationist, Natural Resources Conservation Service 4:10 "Current Research on the Fire" - Colorado State University 4:45 Depart 6:00 Arrive Ft. Collins Marriott 2 3 Navigator’s Narrative Tim Wheeler Between the Fall River Visitors Center and the Lawn Lake Alluvial Debris Fan: This Park, or open grassy area, is called Horseshoe Park and is the tail end of the Park’s largest valley glacier.
    [Show full text]
  • Glacial Processes and Landforms
    Glacial Processes and Landforms I. INTRODUCTION A. Definitions 1. Glacier- a thick mass of flowing/moving ice a. glaciers originate on land from the compaction and recrystallization of snow, thus are generated in areas favored by a climate in which seasonal snow accumulation is greater than seasonal melting (1) polar regions (2) high altitude/mountainous regions 2. Snowfield- a region that displays a net annual accumulation of snow a. snowline- imaginary line defining the limits of snow accumulation in a snowfield. (1) above which continuous, positive snow cover 3. Water balance- in general the hydrologic cycle involves water evaporated from sea, carried to land, precipitation, water carried back to sea via rivers and underground a. water becomes locked up or frozen in glaciers, thus temporarily removed from the hydrologic cycle (1) thus in times of great accumulation of glacial ice, sea level would tend to be lower than in times of no glacial ice. II. FORMATION OF GLACIAL ICE A. Process: Formation of glacial ice: snow crystallizes from atmospheric moisture, accumulates on surface of earth. As snow is accumulated, snow crystals become compacted > in density, with air forced out of pack. 1. Snow accumulates seasonally: delicate frozen crystal structure a. Low density: ~0.1 gm/cu. cm b. Transformation: snow compaction, pressure solution of flakes, percolation of meltwater c. Freezing and recrystallization > density 2. Firn- compacted snow with D = 0.5D water a. With further compaction, D >, firn ---------ice. b. Crystal fabrics oriented and aligned under weight of compaction 3. Ice: compacted firn with density approaching 1 gm/cu. cm a.
    [Show full text]
  • Chapter 7 Seasonal Snow Cover, Ice and Permafrost
    I Chapter 7 Seasonal snow cover, ice and permafrost Co-Chairmen: R.B. Street, Canada P.I. Melnikov, USSR Expert contributors: D. Riseborough (Canada); O. Anisimov (USSR); Cheng Guodong (China); V.J. Lunardini (USA); M. Gavrilova (USSR); E.A. Köster (The Netherlands); R.M. Koerner (Canada); M.F. Meier (USA); M. Smith (Canada); H. Baker (Canada); N.A. Grave (USSR); CM. Clapperton (UK); M. Brugman (Canada); S.M. Hodge (USA); L. Menchaca (Mexico); A.S. Judge (Canada); P.G. Quilty (Australia); R.Hansson (Norway); J.A. Heginbottom (Canada); H. Keys (New Zealand); D.A. Etkin (Canada); F.E. Nelson (USA); D.M. Barnett (Canada); B. Fitzharris (New Zealand); I.M. Whillans (USA); A.A. Velichko (USSR); R. Haugen (USA); F. Sayles (USA); Contents 1 Introduction 7-1 2 Environmental impacts 7-2 2.1 Seasonal snow cover 7-2 2.2 Ice sheets and glaciers 7-4 2.3 Permafrost 7-7 2.3.1 Nature, extent and stability of permafrost 7-7 2.3.2 Responses of permafrost to climatic changes 7-10 2.3.2.1 Changes in permafrost distribution 7-12 2.3.2.2 Implications of permafrost degradation 7-14 2.3.3 Gas hydrates and methane 7-15 2.4 Seasonally frozen ground 7-16 3 Socioeconomic consequences 7-16 3.1 Seasonal snow cover 7-16 3.2 Glaciers and ice sheets 7-17 3.3 Permafrost 7-18 3.4 Seasonally frozen ground 7-22 4 Future deliberations 7-22 Tables Table 7.1 Relative extent of terrestrial areas of seasonal snow cover, ice and permafrost (after Washburn, 1980a and Rott, 1983) 7-2 Table 7.2 Characteristics of the Greenland and Antarctic ice sheets (based on Oerlemans and van der Veen, 1984) 7-5 Table 7.3 Effect of terrestrial ice sheets on sea-level, adapted from Workshop on Glaciers, Ice Sheets and Sea Level: Effect of a COylnduced Climatic Change.
    [Show full text]
  • Periglacial Processes, Features & Landscape Development 3.1.4.3/4
    Periglacial processes, features & landscape development 3.1.4.3/4 Glacial Systems and landscapes What you need to know Where periglacial landscapes are found and what their key characteristics are The range of processes operating in a periglacial landscape How a range of periglacial landforms develop and what their characteristics are The relationship between process, time, landforms and landscapes in periglacial settings Introduction A periglacial environment used to refer to places which were near to or at the edge of ice sheets and glaciers. However, this has now been changed and refers to areas with permafrost that also experience a seasonal change in temperature, occasionally rising above 0 degrees Celsius. But they are characterised by permanently low temperatures. Location of periglacial areas Due to periglacial environments now referring to places with permafrost as well as edges of glaciers, this can account for one third of the Earth’s surface. Far northern and southern hemisphere regions are classed as containing periglacial areas, particularly in the countries of Canada, USA (Alaska) and Russia. Permafrost is where the soil, rock and moisture content below the surface remains permanently frozen throughout the entire year. It can be subdivided into the following: • Continuous (unbroken stretches of permafrost) • extensive discontinuous (predominantly permafrost with localised melts) • sporadic discontinuous (largely thawed ground with permafrost zones) • isolated (discrete pockets of permafrost) • subsea (permafrost occupying sea bed) Whilst permafrost is not needed in the development of all periglacial landforms, most periglacial regions have permafrost beneath them and it can influence the processes that create the landforms. Many locations within SAMPLEextensive discontinuous and sporadic discontinuous permafrost will thaw in the summer months.
    [Show full text]
  • Ground Ice Stratigraphy and Late-Quaternary Events, South-West Banks Island, Canadian Arctic H.M
    Climate and Permafrost 81 Ground ice stratigraphy and late-Quaternary events, south-west Banks Island, Canadian Arctic H.M. FRENCH Departments of Geography and Geology, University of Ottawa, Ottawa, Ontario, Canada KIN6N5 D.G. HARRY Department of Geography, University of Ottawa, Ottawa, Ontario, Canada KIN6N5 AND M. J. CLARK Department of Geography, University of Southampton, Southampton 5095NH, U.K. The stratigraphic study of pingos and ice wedges on south-west Banks Island indicates a period of continuous permafrost aggradation in late Quaternary times interrupted by a temporary period of deeper seasonal thaw in the mid-Holocene. Both epigenetic and small syngenetic ice wedges are exposed in coastal bluffs south-east of Sachs Harbour. Within the Sachs and Kellett River catchments, radiocarbon dating suggests that a number of collapsed and partially eroded pingos are relict features related to a period of climatic deterioration which commenced approximately 4000 years B.P. The stratigraphic study of ground ice is thought to be a useful method of geomorphological and paleo- environmental reconstruction, especially in areas which have experienced extended histories of cold, non-glacial conditions. L'etude stratigraphique de pingos et coins de glace dam la partie sud-ouest de I'ile Banks rCvele I'existence d'une phiode d'expansion du pergelis01 continu a la fin du Quaternaire interrompue par une periode passagtre de dCgel saisonnier plus important au milieu de 1'Holoctne. Des coins de glace CpigCnttique et de petits coins de glace syngenttique sont exposts dans les falaises cbtikres au sud-est de Sachs Harbour. Dans les bassins versants des rivihes Sachs et Kellett, la datation au radiocarbone suggtre qu'un certain nombre de pingos effondrks et en partie Crodts sont des vestiges d'une periode de dttkrioration des conditions climatiques qui a commenck il y a environ 4 000 ans.
    [Show full text]
  • Mineral Element Stocks in the Yedoma Domain: a First Assessment in Ice-Rich Permafrost Regions” by Arthur Monhonval Et Al
    Interactive comment on “Mineral element stocks in the Yedoma domain: a first assessment in ice-rich permafrost regions” by Arthur Monhonval et al. Anonymous Referee #2 Received and published: 4 January 2021 RC= Reviewer comment ; AR= Authors response RC: I appreciate the efforts from the authors. I understand the authors created a valuable dataset for the mineral elements in the yedoma regions, and they also tried to calculated the storage of these elements. I have some comments for the authors to improve the quality of the manuscripts. We thank the reviewer for the valuable comments and suggestions to improve the manuscript. We have revised the manuscript accordingly. Please find the details in the responses to the following comments. RC1: When the authors introduce the stocks or storage, it is necessary to clarify the depth or thickness of yedoma. At least, the authors should explain the characteristics of yedoma. This is important because the potential readers will be confused about the depth and height in the dataset. AR : We agree that the choice of the thickness used to upscale to the whole Yedoma domain was not clear in the manuscript. Here, mineral element stocks are compared with C stocks using identical Yedoma domain deposits parameters (including thicknesses) like in Strauss et al., 2013 for deep permafrost carbon pool of the Yedoma region, i.e., a mean thickness of 19.6 meters deep in Yedoma deposits and 5.5 meters deep in Alas deposits. We have revised the manuscript to include that information (L 282):” Thickness used for mineral element stock estimations in Yedoma domain deposits are based on mean profile depths of the sampled Yedoma (n=19) and Alas (n=10) deposits (Table 3; Strauss et al., 2013).
    [Show full text]