Frost-Weathering Model 5.2 Soil Production Function J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Contemporary Periglacial Processes in the Swiss Alps: Seasonal, Inter-Annual and Long-Term Variations
Permafrost, Phillips, Springman & Arenson (eds) © 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Contemporary periglacial processes in the Swiss Alps: seasonal, inter-annual and long-term variations N. Matsuoka & A. Ikeda Institute of Geoscience, University of Tsukuba, Ibaraki, Japan K. Hirakawa & T. Watanabe Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, Japan ABSTRACT: Comprehensive monitoring of periglacial weathering and mass wasting has been undertaken near the lower limit of the mountain permafrost belt. Seven years of monitoring highlight both seasonal and inter- annual variations. On the seasonal scale, three types of movements are identified: (A) small magnitude events associated with diurnal freeze-thaw cycles, (B) larger events during early seasonal freezing and (C) sporadic events originating from refreezing of meltwater during seasonal thawing. Type A produces pebbles or smaller fragments from rockwalls and shallow (Ͻ10 cm) frost creep on debris slopes. Types B and C are responsible for larger debris production and deeper (Ͻ50 cm) frost creep/gelifluction. Some of these events contribute to perma- nent opening of rock joints and advance of solifluction lobes. Sporadic large boulder falls enhance inter-annual variation in rockwall retreat rates. On some debris slopes, prolonged snow melting occasionally triggers rapid soil flow, which causes inter-annual variation in rates of soil movement. 1 INTRODUCTION 9º40'E 10º00'E Piz Kesch Real-time monitoring of periglacial slope processes is 3418 Switzerland useful to predict ongoing slope instability problems in Inn alpine regions. Such a prediction, however, needs long- Piz d'Err Piz Ot term variations in slope processes caused by climate 3378 3246 Samedan Italia change to be distinguished from inter-annual scale vari- A 30'E 30'E º St. -
Cryogenic Displacement and Accumulation of Biogenic Methane in Frozen Soils
atmosphere Article Cryogenic Displacement and Accumulation of Biogenic Methane in Frozen Soils Gleb Kraev 1,*, Ernst-Detlef Schulze 2, Alla Yurova 3,4, Alexander Kholodov 5,6, Evgeny Chuvilin 7 and Elizaveta Rivkina 6 1 Centre of Forest Ecology and Productivity, Russian Academy of Sciences, Moscow 117997, Russia 2 Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena 07745, Germany; [email protected] 3 Institute of Earth Sciences, Saint Petersburg State University, Saint Petersburg 199034, Russia; [email protected] 4 Nansen Centre, Saint Petersburg 199034, Russia 5 Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775-9320, USA; [email protected] 6 Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino 142290, Russia; [email protected] 7 Faculty of Geology, Lomonosov Moscow State University, Moscow 119992, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-499-743-0026 Received: 28 March 2017; Accepted: 9 June 2017; Published: 15 June 2017 Abstract: Evidences of highly localized methane fluxes are reported from the Arctic shelf, hot spots of methane emissions in thermokarst lakes, and are believed to evolve to features like Yamal crater on land. The origin of large methane outbursts is problematic. Here we show, that the biogenic methane (13C ≤ −71 ) which formed before and during soil freezing is presently held in the permafrost. Field and experimentalh observations show that methane tends to accumulate at the permafrost table or in the coarse-grained lithological pockets surrounded by the sediments less-permeable for gas. Our field observations, radiocarbon dating, laboratory tests and theory all suggest that depending on the soil structure and freezing dynamics, this methane may have been displaced downwards tens of meters during freezing and has accumulated in the lithological pockets. -
The Modelling of Freezing Process in Saturated Soil Based on the Thermal-Hydro-Mechanical Multi-Physics Field Coupling Theory
water Article The Modelling of Freezing Process in Saturated Soil Based on the Thermal-Hydro-Mechanical Multi-Physics Field Coupling Theory Dawei Lei 1,2, Yugui Yang 1,2,* , Chengzheng Cai 1,2, Yong Chen 3 and Songhe Wang 4 1 State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221008, China; [email protected] (D.L.); [email protected] (C.C.) 2 School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China 3 State Key Laboratory of Coal Resource and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China; [email protected] 4 Institute of Geotechnical Engineering, Xi’an University of Technology, Xi’an 710048, China; [email protected] * Correspondence: [email protected] Received: 2 September 2020; Accepted: 22 September 2020; Published: 25 September 2020 Abstract: The freezing process of saturated soil is studied under the condition of water replenishment. The process of soil freezing was simulated based on the theory of the energy and mass conservation equations and the equation of mechanical equilibrium. The accuracy of the model was verified by comparison with the experimental results of soil freezing. One-side freezing of a saturated 10-cm-high soil column in an open system with different parameters was simulated, and the effects of the initial void ratio, hydraulic conductivity, and thermal conductivity of soil particles on soil frost heave, freezing depth, and ice lenses distribution during soil freezing were explored. During the freezing process, water migrates from the warm end to the frozen fringe under the actions of the temperature gradient and pore pressure. -
Study on the Mechanical Criterion of Ice Lens Formation Based on Pore Size Distribution
applied sciences Article Study on the Mechanical Criterion of Ice Lens Formation Based on Pore Size Distribution Yuhang Liu 1,2, Dongqing Li 1 , Lei Chen 1,2 and Feng Ming 1,* 1 State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; [email protected] (Y.L.); [email protected] (D.L.); [email protected] (L.C.) 2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected] Received: 5 November 2020; Accepted: 9 December 2020; Published: 16 December 2020 Abstract: Ice lens is the key factor which determines the frost heave in engineering construction in cold regions. At present, several theories have been proposed to describe the formation of ice lens. However, most of these theories analyzed the ice lens formation from a macroscopic view and ignored the influence of microscopic pore sizes and structures. Meanwhile, these theories lacked the support of measured data. To solve this problem, the microscopic crystallization stress was converted into the macro mean stress through the principle of statistics with the consideration of pore size distribution. The mean stress was treated as the driving force of the formation of ice lens and induced into the criterion of ice lens formation. The influence of pore structure and unfrozen water content on the mean stress was analyzed. The results indicate that the microcosmic crystallization pressure can be converted into the macro mean stress through the principle of statistics. Larger mean stress means the ice lens will be formed easier in the soil. -
Periglacial Processes, Features & Landscape Development 3.1.4.3/4
Periglacial processes, features & landscape development 3.1.4.3/4 Glacial Systems and landscapes What you need to know Where periglacial landscapes are found and what their key characteristics are The range of processes operating in a periglacial landscape How a range of periglacial landforms develop and what their characteristics are The relationship between process, time, landforms and landscapes in periglacial settings Introduction A periglacial environment used to refer to places which were near to or at the edge of ice sheets and glaciers. However, this has now been changed and refers to areas with permafrost that also experience a seasonal change in temperature, occasionally rising above 0 degrees Celsius. But they are characterised by permanently low temperatures. Location of periglacial areas Due to periglacial environments now referring to places with permafrost as well as edges of glaciers, this can account for one third of the Earth’s surface. Far northern and southern hemisphere regions are classed as containing periglacial areas, particularly in the countries of Canada, USA (Alaska) and Russia. Permafrost is where the soil, rock and moisture content below the surface remains permanently frozen throughout the entire year. It can be subdivided into the following: • Continuous (unbroken stretches of permafrost) • extensive discontinuous (predominantly permafrost with localised melts) • sporadic discontinuous (largely thawed ground with permafrost zones) • isolated (discrete pockets of permafrost) • subsea (permafrost occupying sea bed) Whilst permafrost is not needed in the development of all periglacial landforms, most periglacial regions have permafrost beneath them and it can influence the processes that create the landforms. Many locations within SAMPLEextensive discontinuous and sporadic discontinuous permafrost will thaw in the summer months. -
Frost Heave Due to Ice Lens Formation in Freezing Soils 1
Nordic Hydrolgy, 26, 1995, 125-146 No pd11 m,ty ix ~rproduredby .my proce\\ w~thoutcomplete leference Frost Heave due to Ice Lens Formation in Freezing Soils 1. Theory and Verification D. Sheng, K. Axelsson and S. Knutsson Department of Civil Engineering, Lulei University of Technology, Sweden A frost heave model which simulates formation of ice lenses is developed for saturated salt-free soils. Quasi-steady state heat and mass flow is considered. Special attention is paid to the transmitted zone, i.e. the frozen fringe. The permeability of the frozen fringe is assumed to vary exponentially as a function of temperature. The rates of water flow in the frozen fringe and in the unfrozen soil are assumed to be constant in space but vary with time. The pore water pres- sure in the frozen fringe is integrated from the Darcy law. The ice pressure in the frozen fringe is detcrmined by the generalized Clapeyron equation. A new ice lens is assumed to form in the liozen fringe when and where the effective stress approaches zero. The neutral stress is determined as a simple function of the un- frozen water content and porosity. The model is implemented on an personal computer. The simulated heave amounts and heaving rates are compared with expcrimental data, which shows that the model generally gives reasonable esti- mation. Introduction The phenomenon of frost heave has been studied both experimentally and theoreti- cally for decades. Experimental observations suggest that frost heave is caused by ice lensing associated with thermally-induced water migration. Water migration can take place at temperatures below the freezing point, by flowing via the unfrozen wa- ter film adsorbed around soil particles. -
Permafrost Soils and Carbon Cycling
SOIL, 1, 147–171, 2015 www.soil-journal.net/1/147/2015/ doi:10.5194/soil-1-147-2015 SOIL © Author(s) 2015. CC Attribution 3.0 License. Permafrost soils and carbon cycling C. L. Ping1, J. D. Jastrow2, M. T. Jorgenson3, G. J. Michaelson1, and Y. L. Shur4 1Agricultural and Forestry Experiment Station, Palmer Research Center, University of Alaska Fairbanks, 1509 South Georgeson Road, Palmer, AK 99645, USA 2Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA 3Alaska Ecoscience, Fairbanks, AK 99775, USA 4Department of Civil and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA Correspondence to: C. L. Ping ([email protected]) Received: 4 October 2014 – Published in SOIL Discuss.: 30 October 2014 Revised: – – Accepted: 24 December 2014 – Published: 5 February 2015 Abstract. Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environ- ment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enor- mous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region’s soil or- ganic carbon (SOC) stocks to changing climatic conditions. In this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. -
Ice Segregation As an Origin for Lenses of Non-Glacial Ice in "Ice-Cemented" Rock Glaciers
Journal of Glaciology, VoI. 27, No. 97, .g8. ICE SEGREGATION AS AN ORIGIN FOR LENSES OF NON-GLACIAL ICE IN "ICE-CEMENTED" ROCK GLACIERS By WILLIAM J. WAYNE (Department of Geology, University of Nebraska, Lincoln, Nebraska 68588, D.S.A.) 0 ABSTRACT. In order to flow with the gradients observed (100 to 15 ) rock glaciers cannot be simply ice-cemented rock debris, but probably contain masses or lenses of debris-free ice. The nature and origin of the ice in rock glaciers that are in no way connected to ice glaciers has not been adequately explained. Rock glaciers and tal us above them are permeable. Water from snow-melt and rain flows through the lower part of the debris on top of the bedrock floor. In the headward part of a rock glacier, where the total thick ness is not great, if this groundwater flow is able to maintain water pressure against the base of an aggrading permafrost, segregation of ice lenses should take place. Ice segregation on a large scale would produce lenses of clear ice of sufficient size to permit the streams or lobes of rock debris to flow with gradients comparable to those of glaciers. It would also account for the substantial loss in volume that takes place when a rock glacier stabilizes and collapses. RESUME. La segregation de la glace a l'origine des lentilles de glace d'origine non glaciaire dans les glaciers rocheux soudis par la glace. Pour qu'ils puissent s'ecouler sur les pentes ou on les observe (100 a 150), les glaciers rocheux ne peuvent pas etre simplement constitues de debris rocheux soudes par la glace, mais contient probablement des blocs ou des lentilles de glace depourvus de sediments. -
The International Structure of a Pala and a Peat Plateau in The
Document generated on 10/03/2021 5:54 p.m. Géographie physique et Quaternaire The international structure of a pala and a peat plateau in the Rivière Boniface region, Québec: Interferences on the formation of ice segregation mounds La structure interne d’une palse et d’un plateau palsique dans la région de la rivière Boniface (Québec) : implications générales pour la formation des buttes à glace de ségrégation. Die innere Struktur von einer Palse und einem Torfplateau in der Rivière Boniface-Region, Québec: Schlussfolgerungen über die Bildung von Eisabsonderungshügeln. Michel Allard and Luc Rousseau Volume 53, Number 3, 1999 Article abstract The internal structure of a 5.7 m high palsa was studied through a pattern of URI: https://id.erudit.org/iderudit/004760ar closely spaced drill holes in permafrost along two orthogonal section lines. DOI: https://doi.org/10.7202/004760ar Holes were also drilled on a 1.3 m high peat plateau along a topographic transect for comparison purposes. The morphology of the palsa closely reflects See table of contents the shape of the ice-rich core heaved by the growth of thick ice lenses in thick marine clay silts of the Tyrrell Sea. During and since palsa growth, the sand and peat covering was deformed by gelifluction and sliding and was also partly Publisher(s) eroded by overland flow and wind. Palsa growth was accompanied by the formation of numerous ice-filled fault planes in the frozen sediments. The peat Les Presses de l'Université de Montréal plateau was heaved to a lower height through the formation of thin ice lenses in an underlying layer of sandy silt only 1.4 m thick; this sediment is believed ISSN to be of intertidal origin. -
A Differential Frost Heave Model: Cryoturbation-Vegetation Interactions
A Differential Frost Heave Model: Cryoturbation-Vegetation Interactions R. A. Peterson, D. A. Walker, V. E. Romanovsky, J. A. Knudson, M. K. Raynolds University of Alaska Fairbanks, AK 99775, USA W. B. Krantz University of Cincinnati, OH 45221, USA ABSTRACT: We used field observations of frost-boil distribution, soils, and vegetation to attempt to vali- date the predictions of a Differential Frost Heave (DFH) model along the temperature gradient in northern Alaska. The model successfully predicts order of magnitude heave and spacing of frost boils, and can account for the circular motion of soils within frost boils. Modification of the model is needed to account for the ob- served variation in frost boil systems along the climate gradient that appear to be the result of complex inter- actions between frost heave and vegetation. 1 INTRODUCTION anced by degrading geological processes such as soil creep. Washburn listed 19 possible mechanisms re- This paper discusses a model for the development sponsible for the formation of patterned ground of frost boils due to differential frost heave. The in- (Washburn 1956). The model presented here ex- teractions between the physical processes of frost plains the formation of patterned ground by differen- heave and vegetation characteristics are explored as tial frost heave. DFH is also responsible, at least in a possible controlling mechanism for the occurrence part, for the formation of sorted stone circles in of frost boils on the Alaskan Arctic Slope. Spitsbergen (Hallet et al 1988). A recent model due to Kessler et al (2001) for the genesis and mainte- Frost boils are a type of nonsorted circle, “a pat- nance of stone circles integrates DFH with soil con- terned ground form that is equidimensional in sev- solidation, creep, and illuviation. -
Cryolithogenesis Ground Ice Content of Frost Mounds In
EARTH’S CRYOSPHERE SCIENTIFIC JOURNAL Kriosfera Zemli, 2019, vol. XXIII, No. 2, pp. 25–32 http://www.izdatgeo.ru CRYOLITHOGENESIS DOI: 10.21782/EC2541-9994-2019-2(25-32) GROUND ICE CONTENT OF FROST MOUNDS IN THE NADYM RIVER BASIN N.M. Berdnikov1, A.G. Gravis1, D.S. Drozdov1–4, O.E. Ponomareva1,2, N.G. Moskalenko1, Yu.N. Bochkarev1,5 1 Earth Cryosphere Institute, Tyumen Scientifi c Centre SB RAS, P/O box 1230, Tyumen, 625000, Russia; [email protected] 2 Russian State Geological Prospecting University (MGRI–RSGPU), 23, Miklukho-Maclay str., Moscow, 117997, Russia 3 Tyumen State Oil and Gas University, 56, Volodarskogo str., Tyumen, 625000, Russia 4 Тyumen State University, 6, Volodarskogo str., Tyumen, 625003, Russia 5 Lomonosov Moscow State University, Faculty of Geography, 1, Leninskie Gory, Moscow, 119991, Russia The “classical type” ice-cored frost mounds (palsas) are widespread in the northern taiga of Western Si- beria. Besides, morphologically diff erent forms of permafrost hummocky landforms are developed, diff erentiat- ing from the “classical” frost mounds by size and fl atter top surface. Using core samples from ten-meter deep boreholes, we have analyzed the total thickness of segregated ice and the contribution of ice inclusions to the total soil ice content, to determine the origin of such fl at-topped mounds. A good correlation has been revealed between surface elevations and volumetric ice content of sediments composing fl at-topped peat mounds, whose ice content is found to be higher than in the intermound depressions. These facts indicate the local nature of ice segregation and therefore suggest that the investigated landforms were formed by the frost heave processes, rather than being remnant permafrost landforms. -
Frost Weathering and Rock Platform Erosion on Periglaciallake Shorelines: a Test of a Hypothesis
Frost weathering and rock platform erosion on periglaciallake shorelines: a test of a hypothesis RICHARD A. SHAKESBY & JOHN A. MATIHEWS Shakesby, R. A. & Matthews, J. A.: Frost weathering and rock platform erosion on periglacial lake shorelines: a test of a hypothesis. Norsk Geologisk Tidsskrift, Vol. 67, pp. 197-203. Oslo 1987. ISSN 0029-196X. Matthews et al. (1986) hypothesised that rock platforms around a short-lived ice-dammed lake margin in Jotunheimen, southem Norway, bad been rapidly eroded mainly through frost weathering associated with lake-ice development. They proposed a general model accounting for the development of the rock platforms in terms of deep penetration of the annua! freeze-thaw cycle, the movement of unfrozen lake water towards the freezing plane, and the growth of segregation ice in bedrock fissures below lake leve!. This paper presents a test of this hypothesis by observations of the shoreline of the present-day lake, which has been maintained at a lower, stable leve! since about A.D. 1826 when the ice dam was removed. The presence of cliff and platform development at the present lake shore supports and improves the hypothesis. For the modem platform, width measurements (mean 3.6 m, range 1.5-5.75 m) are similar to those for the relict platform, whereas calculated erosion rates (mean 2.2 cm/year, range 0.9-3.6 cm/ year) are overall slightly lower. The depth of water (0.9 m) at the cliff-platformjunction suggested for the formation of the relict platform is modified to 0.6 m in the light of the present results.