Solifluction Processes in an Area of Seasonal Ground Freezing

Total Page:16

File Type:pdf, Size:1020Kb

Solifluction Processes in an Area of Seasonal Ground Freezing PERMAFROST AND PERIGLACIAL PROCESSES Permafrost and Periglac. Process. 19: 31–47 (2008) Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/ppp.609 Solifluction Processes in an Area of Seasonal Ground Freezing, Dovrefjell, Norway Charles Harris ,1* Martina Kern-Luetschg ,1 Fraser Smith 2 and Ketil Isaksen 3 1 School of Earth Ocean and Planetary Sciences, Cardiff University, Cardiff, UK 2 School of Engineering, University of Dundee, Dundee, UK 3 Norwegian Meteorological Institute, Blindern, Oslo, Norway ABSTRACT Continuous monitoring of soil temperatures, frost heave, thaw consolidation, pore water pressures and downslope soil movements are reported from a turf-banked solifluction lobe at Steinhøi, Dovrefjell, Norway from August 2002 to August 2006. Mean annual air temperatures over the monitored period were slightly below 08C, but mean annual ground surface temperatures were around 28C warmer, due to the insulating effects of snow cover. Seasonal frost penetration was highly dependent on snow thickness, and at the monitoring location varied from 30–38 cm over the four years. The shallow annual frost penetration suggests that the site may be close to the limit of active solifluction in this area. Surface solifluction rates over the period 2002–06 ranged from 0.5 cm yrÀ1 at the rear of the lobe tread to 1.6 cm yrÀ1 just behind the lobe front, with corresponding soil transport rates of 6 cm3 cmÀ1 yrÀ1 and 46 cm3 cmÀ1 yrÀ1. Pore water pressure measurements indicated seepage of snowmelt beneath seasonally frozen soil in spring with artesian pressures beneath the confining frozen layer. Soil thawing was associated with surface settlement and downslope soil displacements, but following clearance of the frozen ground, later soil surface settlement was accompanied by retrograde movement. Summer rainfall events caused brief increases in pore pressure, but no further soil movement. Surface displacements exceeded maximum potential frost creep values and it is concluded that gelifluction was an important component of slow near-surface mass movements at this site. Temporal and spatial variations in solifluction rates across the area are likely to be considerable and strongly influenced by snow distribution. Copyright # 2008 John Wiley & Sons, Ltd. KEY WORDS: solifluction; frost heave; thaw settlement; seasonally frozen ground; pore pressures INTRODUCTION of soil temperatures, frost heave, thaw consolidation, pore water pressures and downslope soil movement In this paper we report field measurements of solifluc- has allowed us to analyse the mass movement tion at Steinhøi, Dovrefjell, Norway (latitude 628 150 processes associated with soil freezing and thawing. 2800 N, longitude 098 510 5800 E, altitude 1396 m, An instrument package was developed for this Figure 1), where seasonal ground freezing and purpose during full-scale laboratory simulation thawing are from the surface downwards and where studies (Harris et al., 1996), and an equivalent permafrost is absent. Detailed continuous monitoring weather-proofed version was installed on a prominent solifluction lobe at Steinhøi in August 2001 (see Harris et al., 2007, for details). A lightning strike in * Correspondence to: Charles Harris, School of Earth Ocean and Planetary Sciences, Cardiff University, Cardiff CF10 3YE, November 2001 caused instrument failure which UK. E-mail: [email protected] was not repaired until 11 July 2002, and therefore data Received 17 September 2007 Revised 18 December 2007 Copyright # 2008 John Wiley & Sons, Ltd. Accepted 18 December 2007 32 C. Harris et al. Figure 1 Location of the Steinhøi solifluction monitoring station. only from the four year period from summer 2002 to The role of high soil moisture content in promoting summer 2006 are presented. The study is focused on gelifluction has been emphasised in many field studies processes rather than regional soil displacement rates. (e.g. Benedict, 1970; Washburn, 1979; Harris, 1981; Given the range of surface gradients, snow conditions, Jaesche et al., 2003; Kinnard and Lewkowicz, 2005) drainage, etc., within the Steinhøi area, coupled with and several authors have reported moisture contents annual climatic variability, it is likely that rates of close to the Liquid Limit (e.g. Washburn, 1967; Smith, solifluction are spatially and temporally highly 1988; Kinnard and Lewkowicz, 2005). During variable (see for instance, Washburn, 1999). laboratory simulations Harris et al. (1995, 1997, Although Andersson (1906) did not exclude non- 2003, 2008) demonstrated very low shear strengths periglacial environments in his original definition, the that persisted for only short periods immediately term solifluction has been widely used to describe behind the thaw front when void ratios were high. slow periglacial mass movement caused by frost creep Subsequent thaw consolidation rapidly lowered and gelifluction (e.g. Ballantyne and Harris, 1994; both void ratio and moisture content, and led to a French, 2007; Matsuoka, 1998, 2001). Gelifluction rapid increase in soil strength. The mobilised and frost creep apparently operate in tandem, since frictional strength of these thawing ice-rich soils both result directly from frost heave and thaw was largely a function of pore water pressure. High settlement. Where freezing and thawing are shallow pore pressures and low effective stress values were and of short duration, creep movements dominate (e.g. recorded in the laboratory experiments for short Matsuoka, 2005), while gelifluction occurs during periods (often only a few hours) immediately behind seasonal thawing of ice-rich soil (Washburn, 1967; the thaw front. Harris and Davies, 2000; Harris, 2007; Matsuoka, Continuous monitoring in the Alps allowed Jaesche 2001). Recent laboratory studies have shown that et al. (2003) to observe soil movements that lasted gelifluction is best considered as elasto-plastic several days at given depths in a thawing soil, while deformation that might be described as accelerated Kinnard and Lewkowicz (2005) in southwest Yukon pre-failure creep rather than viscous flow (Harris observed repeated discrete periods of displacement et al., 2003). rather than slow incremental strains. Similarly, Copyright # 2008 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 19: 31–47 (2008) DOI: 10.1002/ppp Solifluction Processes, Dovrefjell, Norway 33 Matsumoto and Ishikawa (2002) demonstrated that, on mantled by Weichselian till with clasts up to boulder a gelifluction lobe in Sweden, soil movement was size set in a frost-susceptible matrix of silt and concentrated in two periods when ice-rich parts of the soil fine sand. Solifluction processes have reworked profile, firstly near the surface and secondly at a depth of the till, and excavation during installation of instru- around 20 cm, were in the process of thawing. mentation some 15 m upslope from the lobe front The aim of the present paper is to describe con- revealed 1–1.2 m of reworked till overlying bedrock tinuous field data collected from a slope where and containing thin organic layers that likely extend solifluction processes are active, in order that the from the lobe front and represent palaeo-surfaces influence of soil thermal conditions, frost heave/thaw buried by frontal advance (e.g. Matthews et al., 1986, settlement and hydraulic conditions may be explored. 2005). Soil grain size distribution was measured from five samples collected at 10 cm depth intervals SITE DESCRIPTION to a maximum depth of 60 cm. Clay contents were less than 4% except for the sample from The site lies above the treeline on the southern flanks 50–60 cm which showed 13%. Silt contents rang- of Steinhøi (Figure 1). It consists of a well-developed ed from 16% to 38%. Occasional large clasts were not turf-banked solifluction lobe with a tread length of included in grain-size determinations. The soil has low approximately 30 m and riser height around 1.5 m. plasticity (Plasticity Index 5%) with Plastic Limit 27% (Figure 2). Turf-banked lobes are widespread across and Liquid Limit 32%. this slope. Bedrock comprises grey Proterozoic and The nearest meteorological station at Fokstugu Cambrian phyllite, biotite-phyllite and shale and (972 m), on Dovrefjell, has a mean annual air forms part of the early Ordovician Gula-nappe temperature of À0.18C (1961–90) and mean annual (Geological Survey of Norway, 2002). The area is precipitation of 435 mm. Hourly air temperatures Figure 2 The Steinhøi monitored solifluction lobe showing the frost heave frame, with the LVDT fixed base triangle in the foreground and logger box and solar panel in the background. The apex of the LVDT triangle is attached to a footplate embedded in the ground surface (see Harris et al., 2007, for details). Thermistors measuring air temperatures are shielded with white plastic tubing and attached to the solar panel pole. The station is fenced against large animals. Copyright # 2008 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 19: 31–47 (2008) DOI: 10.1002/ppp 34 C. Harris et al. measured 2 m above the ground surface at Steinhøi of 80 cm (Figure 3). Thermistors, shielded by 2 cm during 2003, 2004 and 2005 show annual means of diameter white plastic tubing, were also mounted on À0.18C, À0.88C and À0.18C, but mean ground the pole supporting the solar panel at heights of 50, surface temperatures were more than 28C higher, 100 and 200 cm. Temperature measurement errors are due largely to the insulating effect of winter snow. estimated to be up to Æ0.48C. The 10 cm thermistor Storms are common in winter, accompanied by strong proved unreliable, and data from this depth were not winds, and redistribution of snow by deflation leads to used. considerable spatial variation in snow thickness. Pore Water Pressure INSTRUMENTATION A vertical array of five Druck PDCR81 pore pressure transducers was installed at 10 cm depth intervals Instrumentation was designed to monitor three key between 20 and 60 cm. Transducers were filled with elements: ground surface movements (frost heave, low viscosity silicon oil and had a range of 350 mb, thaw settlement and downslope solifluction), ground combined non-linearity and hysteresis of Æ0.2% and and air temperatures, and pore water pressures.
Recommended publications
  • SECTION 3 Erosion Control Measures
    SECTION 3 Erosion Control Measures 1. SEEDING When • Bare soil is exposed to erosive forces from wind and or water. Why • A cost effective way to prevent erosion by protecting the soil from raindrop impact, flowing water and wind. • Vegetation binds soil particles together with a dense root system, increasing infiltration thereby reducing runoff volume and velocity. Where • On all disturbed areas except where non-vegetative stabilization measures are being used or where seeding would interfere with agricultural activity. Scheduling • During the recommended temporary and permanent seeding dates outlined below. • Dormant seeding is acceptable. How 1. Site Assessment. Determine site physical characteristics including available sunlight, slope, adjacent topography, local climate, proximity to sensitive areas or natural plant communities, and soil characteristics such as natural drainage class, texture, fertility and pH. 2. Seed Selection. Use seed with acceptable purity and germination tests that are viable for the planned seeding date. Seed that has become wet, moldy or otherwise damaged is unacceptable. Select seed depending on, location and intended purpose. A mixture of native species for permanent cover may provide some advantages because they have coevolved with native wildlife and other plants and typically play an important function in the ecosystem. They are also adapted to the local climate and soil if properly selected for site conditions; can dramatically reduce fertilizer, lime and maintenance requirements; and provide a deeper root structure. When re- vegetating natural areas, introduced species may spread into adjacent natural areas, native species should be used. Noxious or aquatic nuisance species shall not be used (see list below). If seeding is a temporary soil erosion control measure select annual, non-aggressive species such as annual rye, wheat, or oats.
    [Show full text]
  • The Pennsylvania State University the Graduate School College of Earth and Mineral Sciences a RECORD of COUPLED HILLSLOPE and CH
    The Pennsylvania State University The Graduate School College of Earth and Mineral Sciences A RECORD OF COUPLED HILLSLOPE AND CHANNEL RESPONSE TO PLEISTOCENE PERIGLACIAL EROSION IN A SANDSTONE HEADWATER VALLEY, CENTRAL PENNSYLVANIA A Thesis in Geosciences by Joanmarie Del Vecchio © 2017 Joanmarie Del Vecchio Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science December 2017 The thesis of Joanmarie Del Vecchio was reviewed and approved* by the following: Roman A. DiBiase Assistant Professor of Geosciences Thesis Advisor Li Li Associate Professor of Civil and Environmental Engineering Susan L. Brantley Professor of Geosciences Tim Bralower Professor of Geosciences Interim Head, Department of Geosciences *Signatures are on file in the Graduate School. ii Abstract Outside of the Last Glacial Maximum ice extent, landscapes in the central Valley and Ridge physiographic province of Appalachia preserve soils and thick colluvial deposits indicating extensive periglacial landscape modification. The preservation of periglacial landforms in the present interglacial suggests active hillslope sediment transport in cold climates followed by limited modification in the Holocene. However, the timing and extent of these processes are poorly constrained, and it is unclear whether, and how much, this signature is due to LGM or older periglaciations. Here, we pair geomorphic mapping with in situ cosmogenic 10Be and 26Al measurements of surface material and buried clasts to estimate the residence time and depositional history of colluvium within Garner Run, a 1 km2 sandstone headwater valley in central Appalachia containing relict Pleistocene periglacial features including solifluction lobes, boulder fields, and thick colluvial footslope deposits. 10Be concentrations of stream sediment and hillslope regolith indicate slow erosion rates (6.3 m ± 0.5 m m.y.-1) over the past 38-140 kyr.
    [Show full text]
  • Surficial Geology Investigations in Wellesley Basin and Nisling Range, Southwest Yukon J.D
    Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon J.D. Bond, P.S. Lipovsky and P. von Gaza Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon Jeffrey D. Bond1 and Panya S. Lipovsky2 Yukon Geological Survey Peter von Gaza3 Geomatics Yukon Bond, J.D., Lipovsky, P.S. and von Gaza, P., 2008. Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon. In: Yukon Exploration and Geology 2007, D.S. Emond, L.R. Blackburn, R.P. Hill and L.H. Weston (eds.), Yukon Geological Survey, p. 125-138. ABSTRACT Results of surficial geology investigations in Wellesley basin and the Nisling Range can be summarized into four main highlights, which have implications for exploration, development and infrastructure in the region: 1) in contrast to previous glacial-limit mapping for the St. Elias Mountains lobe, no evidence for the late Pliocene/early Pleistocene pre-Reid glacial limits was found in the study area; 2) placer potential was identified along the Reid glacial limit where a significant drainage diversion occurred for Grayling Creek; 3) widespread permafrost was encountered in the study area including near-continuous veneers of sheet-wash; and 4) a monitoring program was initiated at a recently active landslide which has potential to develop into a catastrophic failure that could damage the White River bridge on the Alaska Highway. RÉSUMÉ Les résultats d’études géologiques des formations superficielles dans le bassin de Wellesley et la chaîne Nisling peuvent être résumés en quatre principaux faits saillants qui ont des répercussions pour l’exploration, la mise en valeur et l’infrastructure de la région.
    [Show full text]
  • Contemporary Periglacial Processes in the Swiss Alps: Seasonal, Inter-Annual and Long-Term Variations
    Permafrost, Phillips, Springman & Arenson (eds) © 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Contemporary periglacial processes in the Swiss Alps: seasonal, inter-annual and long-term variations N. Matsuoka & A. Ikeda Institute of Geoscience, University of Tsukuba, Ibaraki, Japan K. Hirakawa & T. Watanabe Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, Japan ABSTRACT: Comprehensive monitoring of periglacial weathering and mass wasting has been undertaken near the lower limit of the mountain permafrost belt. Seven years of monitoring highlight both seasonal and inter- annual variations. On the seasonal scale, three types of movements are identified: (A) small magnitude events associated with diurnal freeze-thaw cycles, (B) larger events during early seasonal freezing and (C) sporadic events originating from refreezing of meltwater during seasonal thawing. Type A produces pebbles or smaller fragments from rockwalls and shallow (Ͻ10 cm) frost creep on debris slopes. Types B and C are responsible for larger debris production and deeper (Ͻ50 cm) frost creep/gelifluction. Some of these events contribute to perma- nent opening of rock joints and advance of solifluction lobes. Sporadic large boulder falls enhance inter-annual variation in rockwall retreat rates. On some debris slopes, prolonged snow melting occasionally triggers rapid soil flow, which causes inter-annual variation in rates of soil movement. 1 INTRODUCTION 9º40'E 10º00'E Piz Kesch Real-time monitoring of periglacial slope processes is 3418 Switzerland useful to predict ongoing slope instability problems in Inn alpine regions. Such a prediction, however, needs long- Piz d'Err Piz Ot term variations in slope processes caused by climate 3378 3246 Samedan Italia change to be distinguished from inter-annual scale vari- A 30'E 30'E º St.
    [Show full text]
  • Freezing in Naples Underground
    THE ARTIFICIAL GROUND FREEZING TECHNIQUE APPLICATION FOR THE NAPLES UNDERGROUND Giuseppe Colombo a Construction Supervisor of Naples underground, MM c Technicalb Director MM S.p.A., via del Vecchio Polit Abstract e Technicald DirectorStudio Icotekne, di progettazione Vico II S. Nicola Lunardi, all piazza S. Marco 1, The extension of the Naples Technical underground Director between Rocksoil Pia S.p.A., piazza S. Marc Direzionale by using bored tunnelling methods through the Neapo Cassania to unusually high heads of water for projects of th , Pietro Lunardi natural water table. Given the extreme difficulty of injecting the mater problem of waterproofing it during construction was by employing artificial ground freezing (office (AGF) district) metho on Line 1 includes 5 stations. T The main characteristics of this ground treatment a d with the main problems and solutions adopted during , Vittorio Manassero aspects of this experience which constitutes one of Italy, of the application of AGF technology. b , Bruno Cavagna e c S.p.A., Naples, Giovanna e a Dogana 9,ecnico Naples 8, Milan ion azi Sta o led To is type due to the presence of the Milan zza Dante and the o 1, Milan ial surrounding thelitan excavation, yellow tuff, the were subject he stations, driven partly St taz Stazione M zio solved for four of the stations un n Università ic e ds. ip Sta io zione Du e omo re presented in the text along the major the project examples, and theat leastsignificant in S t G ta a z r io iibb n a e Centro lldd i - 1 - 1.
    [Show full text]
  • Report 2008/05 Pacific Earthquake Engineering Research Center College of Engineering University of California, Berkeley August 2008
    PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER Performance-Based Earthquake Engineering Design Evaluation Procedure for Bridge Foundations Undergoing Liquefaction-Induced Lateral Ground Displacement Christian A. Ledezma and Jonathan D. Bray University of California, Berkeley PEER 2008/05 AUGUST 2008 Performance-Based Earthquake Engineering Design Evaluation Procedure for Bridge Foundations Undergoing Liquefaction-Induced Lateral Ground Displacement Christian A. Ledezma and Jonathan D. Bray, Ph.D., P.E. Department of Civil and Environmental Engineering University of California, Berkeley PEER Report 2008/05 Pacific Earthquake Engineering Research Center College of Engineering University of California, Berkeley August 2008 ABSTRACT Liquefaction-induced lateral ground displacement has caused significant damage to pile foundations during past earthquakes. Ground displacements due to liquefaction can impose large forces on the overlying structure and large bending moments in the laterally displaced piles. Pile foundations, however, can be designed to withstand the displacement and forces induced by lateral ground displacement. Piles may actually “pin” the upper layer of soil that would normally spread atop the liquefied layer below it into the stronger soils below the liquefiable soil layer. This phenomenon is known as the “pile-pinning” effect. Piles have been designed as “pins” across liquefiable layers in a number of projects, and this design methodology was standardized in the U.S. bridge design guidance document MCEER/ATC-49-1. A number of simplifying assumptions were made in developing this design procedure, and several of these assumptions warrant re-evaluation. In this report, some of the key assumptions involved in evaluating the pile-pinning effect are critiqued, and a simplified probabilistic design framework is proposed for evaluating the effects of liquefaction-induced displacement on pile foundations of bridge structures.
    [Show full text]
  • Oliva Vieira 2017.Pdf
    Catena 149 (2017) 637–647 Contents lists available at ScienceDirect Catena journal homepage: www.elsevier.com/locate/catena Soil temperatures in an Atlantic high mountain environment: The Forcadona buried ice patch (Picos de Europa, NW Spain) Jesús Ruiz-Fernández a,⁎,MarcOlivab, Filip Hrbáček c, Gonçalo Vieira b, Cristina García-Hernández a a Department of Geography, University of Oviedo, Oviedo, Spain b Centre for Geographical Studies, Institute of Geography and Spatial Planning, Universidade de Lisboa, Lisbon, Portugal c Department of Geography, Masaryk University, Brno, Czech Republic article info abstract Article history: The present study focuses on the analysis of the ground and near-rock surface air thermal conditions at the Received 15 February 2016 Forcadona glacial cirque (2227 m a.s.l.) located in the Western Massif of the Picos de Europa, Spain. Temperatures Received in revised form 13 June 2016 have been monitored in three distinct geomorphological and topographical sites in the Forcadona area over the Accepted 27 June 2016 period 2006–11. The Forcadona buried ice patch is the remnant of a Little Ice Age glacier located in the bottom of a Available online 1 August 2016 glacial cirque. Its location in a deep cirque determines abundant snow accumulation, with snow cover between 8 and 12 months. The presence of snow favours stable soil temperatures and geomorphic stability. Similarly to Keywords: fi Soil temperatures other Cantabrian Mountains, the annual thermal regime of the soil is de ned by two seasonal periods (continu- Cirque wall temperatures ous thaw with daily oscillations and isothermal regime), as well as two short transition periods.
    [Show full text]
  • JBT Lecture Paper
    JACKED BOX TUNNELLING Using the Ropkins System TM , a non-intrusive tunnelling technique for constructing new underbridges beneath existing traffic arteries DR DOUGLAS ALLENBY, Chief Tunnelling Engineer, Edmund Nuttall Limited JOHN W T ROPKINS, Managing Director, John Ropkins Limited Lecture presented at the Institution of Mechanical Engineers Held at 1 Birdcage Walk, London On Wednesday 17 October 2007 © Institution of Mechanical Engineers 2007 This publication is copyright under the Berne Convention and the International Copyright Convention. All rights reserved. Apart from any fair dealing for the purpose of private study, research, criticism or review, as permitted under the Copyright, Designs and Patent Act, 1988, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means without the prior permission of the copyright owners. Reprographic reproduction is permitted only in accordance with the terms of licenses issued by the Copyright Licensing Agency, 90 Tottenham Court Road, London W1P 9HE. Unlicensed multiple copying of the contents of the publication without permission is illegal. Jacked Box Tunnelling using the Ropkins System TM , a non-intrusive tunnelling technique for constructing new underbridges beneath existing traffic arteries Dr Douglas Allenby BSc(Hons) PhD CEng FICE FIMechE FGS, Chief Tunnelling Engineer, Edmund Nuttall Limited John W T Ropkins BSc CEng MICE, Managing Director, John Ropkins Limited The Ropkins System TM is a non-intrusive tunnelling technique that enables engineers to construct underbridges beneath existing traffic arteries in a manner that avoids the cost and inconvenience of traffic disruption associated with traditional construction techniques. The paper outlines a tunnelling system designed to install large open ended rectangular reinforced concrete box structures at shallow depth beneath existing railway and highway infrastructure.
    [Show full text]
  • Chapter 7 Seasonal Snow Cover, Ice and Permafrost
    I Chapter 7 Seasonal snow cover, ice and permafrost Co-Chairmen: R.B. Street, Canada P.I. Melnikov, USSR Expert contributors: D. Riseborough (Canada); O. Anisimov (USSR); Cheng Guodong (China); V.J. Lunardini (USA); M. Gavrilova (USSR); E.A. Köster (The Netherlands); R.M. Koerner (Canada); M.F. Meier (USA); M. Smith (Canada); H. Baker (Canada); N.A. Grave (USSR); CM. Clapperton (UK); M. Brugman (Canada); S.M. Hodge (USA); L. Menchaca (Mexico); A.S. Judge (Canada); P.G. Quilty (Australia); R.Hansson (Norway); J.A. Heginbottom (Canada); H. Keys (New Zealand); D.A. Etkin (Canada); F.E. Nelson (USA); D.M. Barnett (Canada); B. Fitzharris (New Zealand); I.M. Whillans (USA); A.A. Velichko (USSR); R. Haugen (USA); F. Sayles (USA); Contents 1 Introduction 7-1 2 Environmental impacts 7-2 2.1 Seasonal snow cover 7-2 2.2 Ice sheets and glaciers 7-4 2.3 Permafrost 7-7 2.3.1 Nature, extent and stability of permafrost 7-7 2.3.2 Responses of permafrost to climatic changes 7-10 2.3.2.1 Changes in permafrost distribution 7-12 2.3.2.2 Implications of permafrost degradation 7-14 2.3.3 Gas hydrates and methane 7-15 2.4 Seasonally frozen ground 7-16 3 Socioeconomic consequences 7-16 3.1 Seasonal snow cover 7-16 3.2 Glaciers and ice sheets 7-17 3.3 Permafrost 7-18 3.4 Seasonally frozen ground 7-22 4 Future deliberations 7-22 Tables Table 7.1 Relative extent of terrestrial areas of seasonal snow cover, ice and permafrost (after Washburn, 1980a and Rott, 1983) 7-2 Table 7.2 Characteristics of the Greenland and Antarctic ice sheets (based on Oerlemans and van der Veen, 1984) 7-5 Table 7.3 Effect of terrestrial ice sheets on sea-level, adapted from Workshop on Glaciers, Ice Sheets and Sea Level: Effect of a COylnduced Climatic Change.
    [Show full text]
  • Combined Ground Freezing Application for the Excavation of Connection Tunnels for Centrum Nauki Kopernik Station - Warsaw Underground Line II
    Combined ground freezing application for the excavation of connection tunnels for Centrum Nauki Kopernik Station - Warsaw Underground Line II Achille Balossi Restelli, Elena Rovetto Studio ingegneria Balossi Restelli e Associati Andrea Pettinaroli Studio Andrea Pettinaroli s.r.l. ABSTRACT The Station “C13” of Warsaw Underground Line II, with tunnel crown 10m below the water table, required the excavation of three connection tunnels, underpassing a six-lane in service road tunnel, working from two lateral shafts. After the collapse occurred while digging the first tunnel, the use of artificial ground freezing was chosen to ensure the excavation under safe conditions. A complex freezing pipe geometry and excavation sequencing was necessary because of the interferences of the overlying road tunnel diaphragm wall foundations, shaft internal structures and previous grouting activities. A combined freezing method was used: nitrogen for freezing the tunnel arches, brine for freezing the intermediate wall and for maintenance stages. Sandy and silty sandy layers were frozen around the crowns and sides. No treatment was necessary for the inverts, lying in clay. A monitoring system of ground temperatures and structure movements allowed for successful completion of work in 8 months. INTRODUCTION The C13 Station of the Warsaw Underground-Line II is located on the West bank of the Vistula River. It consists of two shafts and three connecting tunnels, passing under the Wislostrada (WS) Road tunnel. According to the initial geotechnical investigation, tunnels should have been excavated in high- plasticity clay, but during the first borings non cohesive soil was encountered. Additional investigations were performed on both shafts and a more detailed stratigraphy was reconstructed (Lombardi et al.
    [Show full text]
  • Quaternary Deposits and Landscape Evolution of the Central Blue Ridge of Virginia
    Geomorphology 56 (2003) 139–154 www.elsevier.com/locate/geomorph Quaternary deposits and landscape evolution of the central Blue Ridge of Virginia L. Scott Eatona,*, Benjamin A. Morganb, R. Craig Kochelc, Alan D. Howardd a Department of Geology and Environmental Science, James Madison University, Harrisonburg, VA 22807, USA b U.S. Geological Survey, Reston, VA 20192, USA c Department of Geology, Bucknell University, Lewisburg, PA 17837, USA d Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA Received 30 August 2002; received in revised form 15 December 2002; accepted 15 January 2003 Abstract A catastrophic storm that struck the central Virginia Blue Ridge Mountains in June 1995 delivered over 775 mm (30.5 in) of rain in 16 h. The deluge triggered more than 1000 slope failures; and stream channels and debris fans were deeply incised, exposing the stratigraphy of earlier mass movement and fluvial deposits. The synthesis of data obtained from detailed pollen studies and 39 radiometrically dated surficial deposits in the Rapidan basin gives new insights into Quaternary climatic change and landscape evolution of the central Blue Ridge Mountains. The oldest depositional landforms in the study area are fluvial terraces. Their deposits have weathering characteristics similar to both early Pleistocene and late Tertiary terrace surfaces located near the Fall Zone of Virginia. Terraces of similar ages are also present in nearby basins and suggest regional incision of streams in the area since early Pleistocene–late Tertiary time. The oldest debris-flow deposits in the study area are much older than Wisconsinan glaciation as indicated by 2.5YR colors, thick argillic horizons, and fully disintegrated granitic cobbles.
    [Show full text]
  • Periglacial Processes, Features & Landscape Development 3.1.4.3/4
    Periglacial processes, features & landscape development 3.1.4.3/4 Glacial Systems and landscapes What you need to know Where periglacial landscapes are found and what their key characteristics are The range of processes operating in a periglacial landscape How a range of periglacial landforms develop and what their characteristics are The relationship between process, time, landforms and landscapes in periglacial settings Introduction A periglacial environment used to refer to places which were near to or at the edge of ice sheets and glaciers. However, this has now been changed and refers to areas with permafrost that also experience a seasonal change in temperature, occasionally rising above 0 degrees Celsius. But they are characterised by permanently low temperatures. Location of periglacial areas Due to periglacial environments now referring to places with permafrost as well as edges of glaciers, this can account for one third of the Earth’s surface. Far northern and southern hemisphere regions are classed as containing periglacial areas, particularly in the countries of Canada, USA (Alaska) and Russia. Permafrost is where the soil, rock and moisture content below the surface remains permanently frozen throughout the entire year. It can be subdivided into the following: • Continuous (unbroken stretches of permafrost) • extensive discontinuous (predominantly permafrost with localised melts) • sporadic discontinuous (largely thawed ground with permafrost zones) • isolated (discrete pockets of permafrost) • subsea (permafrost occupying sea bed) Whilst permafrost is not needed in the development of all periglacial landforms, most periglacial regions have permafrost beneath them and it can influence the processes that create the landforms. Many locations within SAMPLEextensive discontinuous and sporadic discontinuous permafrost will thaw in the summer months.
    [Show full text]