A Changing Arctic: Ecological Consequences for Tundra, Streams and Lakes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Recent Declines in Warming and Vegetation Greening Trends Over Pan-Arctic Tundra
Remote Sens. 2013, 5, 4229-4254; doi:10.3390/rs5094229 OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra Uma S. Bhatt 1,*, Donald A. Walker 2, Martha K. Raynolds 2, Peter A. Bieniek 1,3, Howard E. Epstein 4, Josefino C. Comiso 5, Jorge E. Pinzon 6, Compton J. Tucker 6 and Igor V. Polyakov 3 1 Geophysical Institute, Department of Atmospheric Sciences, College of Natural Science and Mathematics, University of Alaska Fairbanks, 903 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 2 Institute of Arctic Biology, Department of Biology and Wildlife, College of Natural Science and Mathematics, University of Alaska, Fairbanks, P.O. Box 757000, Fairbanks, AK 99775, USA; E-Mails: [email protected] (D.A.W.); [email protected] (M.K.R.) 3 International Arctic Research Center, Department of Atmospheric Sciences, College of Natural Science and Mathematics, 930 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 4 Department of Environmental Sciences, University of Virginia, 291 McCormick Rd., Charlottesville, VA 22904, USA; E-Mail: [email protected] 5 Cryospheric Sciences Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mail: [email protected] 6 Biospheric Science Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mails: [email protected] (J.E.P.); [email protected] (C.J.T.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-907-474-2662; Fax: +1-907-474-2473. -
AMAP Update on Selected Climate Issues of Concern: Observations, Short-Lived Climate Forcers, Arctic Carbon Cycle, and Predictive Capability
DRAFT: FOR RESTRICTED CIRCULATION FOR REVIEW PURPOSES ONLY. DO NO CITE, COPY OR DISTRIBUTE Version approved by AMAP WG, 14 January 2009 AMAP Update on Selected Climate Issues of Concern: Observations, Short-lived Climate Forcers, Arctic Carbon Cycle, and Predictive Capability EXECUTIVE SUMMARY C1. The Arctic Climate Impact Assessment and the Intergovernmental Panel on Climate Change have established the importance of climate change in the Arctic both regionally and globally. Following those reports, emphasis has been placed on continued observations, a new assessment of the Arctic carbon cycle, the role of short lived climate forcers in the Arctic, and the need for improved predictive capacity at the regional level in the Arctic. C2. The Arctic continues to warm. Since publication of the Arctic Climate Impact Assessment in 2005, several indicators show further and extensive climate change at rates faster than previously anticipated. Air temperatures are increasing in the Arctic. Sea ice extent has decreased sharply, with a record low in 2007 and ice-free conditions in both the Northeast and Northwest sea passages for first time in recorded history in 2008. As ice that persists for several years (multi- year ice) is replaced by newly formed (first-year) ice, the Arctic sea-ice is becoming increasingly vulnerable to melting. Surface waters in the Arctic Ocean are warming. Permafrost is warming and, at its margins, thawing. Snow cover in the Northern Hemisphere is decreasing by 1-2% per year. Glaciers are shrinking and the melt area of the Greenland Ice Cap is increasing. The treeline is moving northwards in some areas up to 3-10 meters per year, and there is increased shrub growth north of the treeline. -
201026 BOEM Oil Spill Occurrence North Slope Draftforfinal
OCS Study BOEM 2020-050 Oil Spill Occurrence Rates from Alaska North Slope Oil and Gas Exploration, Development, and Production US Department of the Interior Bureau of Ocean Energy Management Alaska Region OCS Study BOEM 2020-050 Oil Spill Occurrence Rates from Alaska North Slope Oil and Gas Exploration, Development, and Production October / 2020 Authors: Tim Robertson, Nuka Research and Planning Group, Lead Author Lynetta K. Campbell, Statistical Consulting Services, Lead Analyst Sierra Fletcher, Nuka Research and Planning Group, Editor Prepared under contract #140M0119F0003 by Nuka Research and Planning Group, LLC P.O. Box 175 Seldovia, AK 99663 10 Samoset Street Plymouth, Massachusetts 02360 US Department of the Interior Bureau of Ocean Energy Management Alaska Region DISCLAIMER Study concept, oversight, and funding were provided by the US Department of the Interior, Bureau of Ocean Energy Management (BOEM), Environmental Studies Program, Washington, DC, under Contract Number 140M0119F0003. This report has been technically reviewed by BOEM, and it has been approved for publication. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the US Government, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. REPORT AVAILABILITY To download a PDF file of this report, go to the US Department of the Interior, Bureau of Ocean Energy Management Data and Information Systems webpage (http://www.boem.gov/Environmental-Studies- EnvData/), click on the link for the Environmental Studies Program Information System (ESPIS), and search on 2020-050. The report is also available at the National Technical Reports Library at https://ntrl.ntis.gov/NTRL/. -
Surficial Geology Investigations in Wellesley Basin and Nisling Range, Southwest Yukon J.D
Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon J.D. Bond, P.S. Lipovsky and P. von Gaza Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon Jeffrey D. Bond1 and Panya S. Lipovsky2 Yukon Geological Survey Peter von Gaza3 Geomatics Yukon Bond, J.D., Lipovsky, P.S. and von Gaza, P., 2008. Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon. In: Yukon Exploration and Geology 2007, D.S. Emond, L.R. Blackburn, R.P. Hill and L.H. Weston (eds.), Yukon Geological Survey, p. 125-138. ABSTRACT Results of surficial geology investigations in Wellesley basin and the Nisling Range can be summarized into four main highlights, which have implications for exploration, development and infrastructure in the region: 1) in contrast to previous glacial-limit mapping for the St. Elias Mountains lobe, no evidence for the late Pliocene/early Pleistocene pre-Reid glacial limits was found in the study area; 2) placer potential was identified along the Reid glacial limit where a significant drainage diversion occurred for Grayling Creek; 3) widespread permafrost was encountered in the study area including near-continuous veneers of sheet-wash; and 4) a monitoring program was initiated at a recently active landslide which has potential to develop into a catastrophic failure that could damage the White River bridge on the Alaska Highway. RÉSUMÉ Les résultats d’études géologiques des formations superficielles dans le bassin de Wellesley et la chaîne Nisling peuvent être résumés en quatre principaux faits saillants qui ont des répercussions pour l’exploration, la mise en valeur et l’infrastructure de la région. -
Global Climate Influencer – Arctic Oscillation
ARCTIC OSCILLATION GLOBAL CLIMATE INFLUENCER by James Rohman | February 2014 Figure 1. A satellite image of the jet stream. Figure 2. How the jet stream/Arctic Oscillation might affect weather distribution in the Northern Hemisphere. Arctic Oscillation Introduction (%2#4)#)3(/-%4/!3%-)0%2-!.%.4,/702%3352%#)2#5,!4)/. (%2%!2%!.5-"%2/&2%#522).'#,)-!4%%6%.434(!4)-0!#44(%',/"!, +./7.!34(%0/,!26/24%8(!46/24%8)3).#/.34!.4/00/3)4)/.4/!.$ $)342)"54)/./&7%!4(%20!44%2.3.%/&4(%-/2%3)'.)&)#!.4#,)-!4%).$%8%3&/2 4(%2%&/2%2%02%3%.43/00/3).'02%3352%4/4(%7%!4(%20!44%2.3/&4(% 4(%/24(%2.%-)30(%2%)34(%2#4)#3#),,!4)/. ./24(%2.-)$$,%,!4)45$%3)%./24(%2./24(-%2)#!52/0%!.$3)! ).$)#!4%34(%$)&&%2%.#%).3%!,%6%,02%3352%"%47%%.4(% (%2#4)#3#),,!4)/.-%!352%34(%6!2)!4)/.).4(% /24(/,%!.$4(%./24(%2.-)$,!4)45$%34)-0!#437%!4(%2 342%.'4().4%.3)49!.$3):%/&4(%*%4342%!-!3)4%80!.$3 0!44%2.3).4(%/24(%2.%-)30(%2%4(2/5'(4(%0/3)4)6%!.$.%'!4)6% #/.42!#43!.$!,4%23)433(!0%4)3-%!352%$"93%!02%3352% 0(!3%3/&4(%#9#,% !./-!,)%3%)4(%20/3)4)6%/2.%'!4)6%!.$"9/00/3).'!./-!,)%3.%'!4)6% / / /20/3)4)6%).,!4)45$%3(%,03$%&).%4(% %842% -%3/&4(%%##%.42)#)4)%3).4(%*%4 342%!- (%.4(%2%)3!342/.'.%'!4)6%0(!3%4(%*%4342%!-3,/73 52).'4(%;.%'!4)6%0(!3%</&3%!,%6%,02%3352%)3()'().4(% $/7.!.$4!+%3,!2'%-%!.$%2).',//0352).'0/3)4)6%0(!3%34(%*%4 2#4)#7(),%,/73%!,%6%,02%3352%$%6%,/03).4(%./24(%2. -
ARCTIC ECOLOGY Total Phosphorus, and Ions of Calcium, Increase in the Spatial Distribution of Lakes in Peril Chloride, Magnesium, and Sodium) Warmer Temperatures
research highlights ARCTIC ECOLOGY total phosphorus, and ions of calcium, increase in the spatial distribution of Lakes in peril chloride, magnesium, and sodium) warmer temperatures. Glob. Change Biol. http://doi.org/xhk (2014) increased in shrinking lakes over the These findings highlight that extreme 25-year study period, but changed little in Northern Hemisphere anomalies are stable or expanding lakes. These changes the most variable on decadal timescales were most likely the result of shifts in the and could be used as indicators of global evaporation-to-inflow ratio and indicate temperature variability. BW that shrinking lakes may suffer from high- nutrient or saline conditions. AB ECONOMICS Climate-trade policy nexus TEMPERATURE TRENDS Appl. Econ. Persp. Pol. http://doi.org/xhg (2014) Warming hemispheres Geophys. Res. Lett. http://doi.org/xhh (2014) Surface temperature is typically reported as a global average when considering climate change. The use of a global average allows us to see the overall trend in temperature change, but results in the loss of important MINT IMAGES LIMITED / ALAMY MINT IMAGES spatial information. To investigate trends in warm and Reductions in lake area in some regions of cold temperature anomalies and their the Arctic and subarctic have occurred in spatial pattern, Scott Robeson of Indiana recent years. These changes raise concerns University, USA, and co-workers apply a about the fate of stored carbon and could spatial percentile approach to a gridded also have serious consequences for the temperature dataset on a monthly basis. health of the lake ecosystems themselves. Anomalies are calculated by comparison GEDULDIG / ALAMY BILDAGENTUR The mechanisms of lake reduction are with the 1961 to 1990 period and thought to relate primarily to increased analysis was performed individually on Climate change and international trade evaporation and decreased inflow, and lake both hemispheres. -
Arctic Climate Impact Assessment
PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge, CB2 2RU, UK AMAP Secretariat 40 West 20th Street, New York, NY 10011-4211, USA P.O. Box 8100 Dep. 10 Stamford Road, Oakleigh, VIC 3166, Australia N-0032 Oslo, Norway Ruiz de Alarcón 13, 28014 Madrid, Spain Tel: +47 23 24 16 30 Dock House, The Waterfront, Cape Town 8001, South Africa Fax: +47 22 67 67 06 http://www.amap.no http://www.cambridge.org First published 2004 CAFF International Printed in Canada Secretariat Hafnarstraeti 97 ISBN 0 521 61778 2 paperback 600 Akureyri, Iceland Tel: +354 461-3352 ©Arctic Climate Impact Assessment, 2004 Fax: +354 462-3390 http://www.caff.is Author Susan Joy Hassol IASC Secretariat Project Production and Graphic Design Middelthuns gate 29 Paul Grabhorn, Joshua Weybright, Clifford Grabhorn (Cartography) P.O. Box 5156 Majorstua N-0302 Oslo, Norway Photography Tel: +47 2295 9900 Bryan and Cherry Alexander, and others: credits on page 139 Fax: +47 2295 9901 Technical editing http://www.iasc.no Carolyn Symon Contributors Assessment Integration Team ACIA Secretariat Robert Corell, Chair American Meteorological Society, USA Gunter Weller, Executive Director Pål Prestrud, Vice Chair Centre for Climate Research in Oslo, Norway Patricia A. Anderson, Deputy Executive Director Gunter Weller University of Alaska Fairbanks, USA Barb Hameister, Sherry Lynch Patricia A. Anderson University of Alaska Fairbanks, USA International Arctic Research Center Snorri Baldursson Liaison for the Arctic Council, Iceland University of Alaska Fairbanks Elizabeth Bush Environment Canada, Canada Fairbanks, AK 99775-7740, USA Terry V. -
Oliva Vieira 2017.Pdf
Catena 149 (2017) 637–647 Contents lists available at ScienceDirect Catena journal homepage: www.elsevier.com/locate/catena Soil temperatures in an Atlantic high mountain environment: The Forcadona buried ice patch (Picos de Europa, NW Spain) Jesús Ruiz-Fernández a,⁎,MarcOlivab, Filip Hrbáček c, Gonçalo Vieira b, Cristina García-Hernández a a Department of Geography, University of Oviedo, Oviedo, Spain b Centre for Geographical Studies, Institute of Geography and Spatial Planning, Universidade de Lisboa, Lisbon, Portugal c Department of Geography, Masaryk University, Brno, Czech Republic article info abstract Article history: The present study focuses on the analysis of the ground and near-rock surface air thermal conditions at the Received 15 February 2016 Forcadona glacial cirque (2227 m a.s.l.) located in the Western Massif of the Picos de Europa, Spain. Temperatures Received in revised form 13 June 2016 have been monitored in three distinct geomorphological and topographical sites in the Forcadona area over the Accepted 27 June 2016 period 2006–11. The Forcadona buried ice patch is the remnant of a Little Ice Age glacier located in the bottom of a Available online 1 August 2016 glacial cirque. Its location in a deep cirque determines abundant snow accumulation, with snow cover between 8 and 12 months. The presence of snow favours stable soil temperatures and geomorphic stability. Similarly to Keywords: fi Soil temperatures other Cantabrian Mountains, the annual thermal regime of the soil is de ned by two seasonal periods (continu- Cirque wall temperatures ous thaw with daily oscillations and isothermal regime), as well as two short transition periods. -
Bridging Perspectives from Remote Sensing and Inuit Communities on Changing Sea-Ice Cover in the Baffin Bay Region
Annals of Glaciology 44 2006 433 Bridging perspectives from remote sensing and Inuit communities on changing sea-ice cover in the Baffin Bay region Walter N. MEIER,1 Julienne STROEVE,1 Shari GEARHEARD2 1National Snow and Ice Data Center/World Data Center for Glaciology, CIRES, University of Colorado, Boulder, CO 80309-0449, USA E-mail: [email protected] 2Department of Geography, University of Western Ontario, London, Ontario N6A 5C2, Canada ABSTRACT. Passive microwave imagery indicates a decreasing trend in Arctic summer sea-ice extent since 1979. The summers of 2002–05 have exhibited particularly reduced extent and have reinforced the downward trend. Even the winter periods have now shown decreasing trends. At the local level, Arctic residents are also noticing changes in sea ice. In particular, indigenous elders and hunters report changes such as earlier break-up, later freeze-up and thinner ice. The changing conditions have profound implications for Arctic-wide climate, but there is also regional variability in the extent trends. These can have important ramifications for wildlife and indigenous communities in the affected regions. Here we bring together observations from remote sensing with observations and knowledge of Inuit who live in the Baffin Bay region. Weaving the complementary perspectives of science and Inuit knowledge, we investigate the processes driving changes in Baffin Bay sea-ice extent and discuss the present and potential future effects of changing sea ice on local activities. INTRODUCTION with the Inuit observations to obtain a more complete picture Sea ice in the Arctic plays an important role in climate by of the changes in Baffin Bay and to understand the impacts of reflecting incoming solar radiation and acting as a barrier to the observed changes on the indigenous populations. -
Periglacial Processes, Features & Landscape Development 3.1.4.3/4
Periglacial processes, features & landscape development 3.1.4.3/4 Glacial Systems and landscapes What you need to know Where periglacial landscapes are found and what their key characteristics are The range of processes operating in a periglacial landscape How a range of periglacial landforms develop and what their characteristics are The relationship between process, time, landforms and landscapes in periglacial settings Introduction A periglacial environment used to refer to places which were near to or at the edge of ice sheets and glaciers. However, this has now been changed and refers to areas with permafrost that also experience a seasonal change in temperature, occasionally rising above 0 degrees Celsius. But they are characterised by permanently low temperatures. Location of periglacial areas Due to periglacial environments now referring to places with permafrost as well as edges of glaciers, this can account for one third of the Earth’s surface. Far northern and southern hemisphere regions are classed as containing periglacial areas, particularly in the countries of Canada, USA (Alaska) and Russia. Permafrost is where the soil, rock and moisture content below the surface remains permanently frozen throughout the entire year. It can be subdivided into the following: • Continuous (unbroken stretches of permafrost) • extensive discontinuous (predominantly permafrost with localised melts) • sporadic discontinuous (largely thawed ground with permafrost zones) • isolated (discrete pockets of permafrost) • subsea (permafrost occupying sea bed) Whilst permafrost is not needed in the development of all periglacial landforms, most periglacial regions have permafrost beneath them and it can influence the processes that create the landforms. Many locations within SAMPLEextensive discontinuous and sporadic discontinuous permafrost will thaw in the summer months. -
Arctic Policy &
Arctic Policy & Law References to Selected Documents Edited by Wolfgang E. Burhenne Prepared by Jennifer Kelleher and Aaron Laur Published by the International Council of Environmental Law – toward sustainable development – (ICEL) for the Arctic Task Force of the IUCN Commission on Environmental Law (IUCN-CEL) Arctic Policy & Law References to Selected Documents Edited by Wolfgang E. Burhenne Prepared by Jennifer Kelleher and Aaron Laur Published by The International Council of Environmental Law – toward sustainable development – (ICEL) for the Arctic Task Force of the IUCN Commission on Environmental Law The designation of geographical entities in this book, and the presentation of material, do not imply the expression of any opinion whatsoever on the part of ICEL or the Arctic Task Force of the IUCN Commission on Environmental Law concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers and boundaries. The views expressed in this publication do not necessarily reflect those of ICEL or the Arctic Task Force. The preparation of Arctic Policy & Law: References to Selected Documents was a project of ICEL with the support of the Elizabeth Haub Foundations (Germany, USA, Canada). Published by: International Council of Environmental Law (ICEL), Bonn, Germany Copyright: © 2011 International Council of Environmental Law (ICEL) Reproduction of this publication for educational or other non- commercial purposes is authorized without prior permission from the copyright holder provided the source is fully acknowledged. Reproduction for resale or other commercial purposes is prohibited without the prior written permission of the copyright holder. Citation: International Council of Environmental Law (ICEL) (2011). -
Structures Caused by Repeated Freezing and Thawing in Various Loamy Sediments: a Comparison of Active, Fossil and Experimental Data
EARTH SURFACE PROCESSES AND LANDFORMS, VOL. 9,553-565 (1984) STRUCTURES CAUSED BY REPEATED FREEZING AND THAWING IN VARIOUS LOAMY SEDIMENTS: A COMPARISON OF ACTIVE, FOSSIL AND EXPERIMENTAL DATA BRIGITTE VAN VLIET-LANOE AND JEAN-PIERRE COWARD Centre de Giomorphologie du C.N.R.S., Rue des Tilieuis, 14000 Caen, France AND ALBERT PISSART Laboratoire de Giographie Physique et Giofogie du Quarernaire. Universiti de Li2ge, 7 place du XX Aolit. 4000 Liege, Belgique ABSTRACT In this paper, the authors present the results of both macroscopic and microscopic investigations on structure development created by repeated ice lensing in various loamy experiments. Experimental data are compared with observations performed on active forms in High Arctic and Alpine Mountain environments. Those observations are also compared with phenomena observed in fossil periglacial formations of Western Europe. Platy and short prismatic structure formation is bonded to the hydraulic and thermal conditions during ice segr%ation. When a long series of alternating freezing and thawing affects platy structures, the fabric evolves, also being influenced by slope and drainage conditions: cryoturbations, frostcreep, and gelifluction can appear. They are characterized by specific microfabrics which are better developed with an increasing number of cycles: this is clear in experiments where hydraulic and thermal parameters are better controlled. Vesicles are also a prominent characteristic of the surface horizon in experiments and arctic soils. The genesis of vesicles is discussed on the basis of new observations and is related to the mechanical collapse of frost-created aggregates under the mechanical work of soil air escape during soil saturation by water at thaw.