Vterials. the Material Is Presented in Six Chapters. Chapter I ******4
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
View of Theoretical Approaches 51
University of Alberta Caribou Hunting at Ice Patches: Seasonal Mobility and Long-term Land-Use in the Southwest Yukon By Vandy E. Bowyer A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Anthropology © Vandy E. Bowyer Spring 2011 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. In memory of Tagish ABSTRACT Recently documented ice patch sites in the southwest Yukon are ideal for evaluating precontact hunter-gatherer land-use patterns in the western subarctic. Located in the alpine of the mountainous regions of the boreal forest, ice patches are associated with well preserved hunting equipment, caribou (Rangifer tarandus) dung and an abundance of faunal remains dating to over 8000 years ago. However, current models are inadequate for explaining caribou hunting at ice patches as they tend to emphasize large-scale communal hunts associated with latitudinal movements of caribou. Much less is known about the alititudinal movment of caribou and the associated hunting forays to ice patches in the alpine. -
Executive Summary: the Northern
EXECUTIVE SUMMARY THE NORTHERN TRANSPORTATION SYSTEMS ASSESSMENT Executive Summary January 2011 PROLOG CANADA INC. PAGE 1 NORTHERN TRANSPORTATION SYSTEMS ASSESSMENT Disclaimer This report reflects the views of PROLOG Canada Inc. only and does not necessarily reflect the official views or policies of Transport Canada. Neither Transport Canada, nor its employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy or completeness of any information contained in this report, or process described herein, and assumes no responsibility for anyone’s use of the information. Transport Canada is not responsible for errors or omissions in this report and makes no representations as to the accuracy or completeness of the information. Transport Canada does not endorse products or companies. Reference in this report to any specific commercial products, process, or service by trade name, trademark, manufacturer or otherwise does not constitute or imply its endorsement, recommendation, or favouring by Transport Canada and shall not be used for advertising or service endorsement purposes. Trade or company names appear in this report only because they are essential to the objectives of the report. PAGE 2 PROLOG CANADA INC. EXECUTIVE SUMMARY THE NORTHERN TRANSPORTATION SYSTEMS ASSESSMENT Executive Summary Prepared for Transport Canada Prepared by PROLOG Canada Inc. In Association with EBA Engineering Consultants Ltd. January 2011 PROLOG CANADA INC. PAGE 3 NORTHERN TRANSPORTATION SYSTEMS ASSESSMENT PAGE 4 PROLOG CANADA INC. EXECUTIVE SUMMARY Northern Transportation Systems Assessment Executive Summary 1. Introduction The purpose of the Northern Transportation Systems Assessment is to determine what transportation infrastructure is required to support growing demand in the North over the next 20 years; and to determine what incremental improvements will build towards a transportation system that supports Canada’s vision for northern development. -
Makes the Cut 10 Favorite Fall Recipes
MUSTARD makes the cut 10 Favorite Fall Recipes SPONSORED BY mustard-and-salt-crusted rib roast with roasted vegetables and horseradish-mustard cream A coating of mustard gives this roast a flavorful, browned crust. Serves 6 1 4-rib (8- to 9-lb.) standing 2/3 cup crème fraîche offset spatula, spread 1/2 cup of Meanwhile, in a small bowl, beef rib-eye roast, bones 2 Tbs. drained jarred the mustard on the roast, creat- combine the crème fraîche, removed and tied back on horseradish (this can be done by your ing a thin, even layer. Pat on the horseradish, the remaining 2 Tbs. butcher and makes the roast 2 Tbs. chopped fresh flat-leaf salt and pepper mixture, being mustard, and the parsley, and easier to slice) parsley; more for serving especially generous on the top of season to taste with salt and Kosher salt roast and using the palm of your pepper. Keep refrigerated until Position a rack in the center of 3 Tbs. flaky sea salt hand to encourage the seasoning serving. the oven and heat the oven to 2 Tbs. coarsely cracked black to adhere to the sides. Scatter 450°F. peppercorns the carrots, shallots, and leeks Remove the roast from the 1/2 cup plus 2 Tbs. Maille Rich around the roast, and drizzle oven and cut the strings from Remove the roast from the Country Dijon mustard with olive oil. Toss the vegetables the bones. Let the roast rest refrigerator, pat dry with paper 6 medium carrots, peeled and to coat and season with salt and for 15 minutes before slicing. -
Gwich'in Land Use Plan
NÀNHÀNH’ GEENJIT GWITRWITR’IT T’T’IGWAAIGWAA’IN WORKING FOR THE LAND Gwich’in Land Use Plan Gwich’in Land Use Planning Board August 2003 NÀNH’ GEENJIT GWITR’IT T’IGWAA’IN / GWICH’IN LAND USE PLAN i ii NÀNH’ GEENJIT GWITR’IT T’IGWAA’IN / GWICH’IN LAND USE PLAN Ta b le of Contents Acknowledgements . .2 1Introduction . .5 2Information about the Gwich’in Settlement Area and its Resources . .13 3 Land Ownership, Regulation and Management . .29 4 Land Use Plan for the Future: Vision and Land Zoning . .35 5 Land Use Plan for the Future: Issues and Actions . .118 6Procedures for Implementing the Land Use Plan . .148 7Implementation Plan Outline . .154 8Appendix A . .162 NÀNH’ GEENJIT GWITR’IT T’IGWAA’IN / GWICH’IN LAND USE PLAN 1 Acknowledgements The Gwich’in are as much a part of the land as the land is a part of their culture, values, and traditions. In the past they were stewards of the land on which they lived, knowing that their health as people and a society was intricately tied to the health of the land. In response to the Berger enquiry of the mid 1970’s, the gov- ernment of Canada made a commitment to recognize this relationship by estab- lishing new programmes and institutions to give the Gwich’in people a role as stewards once again. One of the actions taken has been the creation of a formal land use planning process. Many people from all communities in the Gwich’in Settlement Area have worked diligently on land use planning in this formal process with the government since the 1980s. -
Hydroelectric Alternatives for the Alaska Rai I Bel T
Hydroelectric Alternatives For The Alaska Rai I bel t ulId,Wildlif:) <J... RECEIVED U.S. Department Of Energy Alaska Power Administration Juneau, Alaska, 99802 TK ARLIS 1424 AJaskaResources .M & A2515 Library Information Services 1980 Anchorage. AJaska Additional copies of this report are available from:- Alaska Power Administration P.O. Box 50 Juneau, Alaska 99802 T/< ILf2Lf 0. /I If II ;)515 /QfO HYDROELECTRIC ALTERNATIVES FOR THE ALASKA.. RAILBELT February 1980 ARLIS Alaska Resources Library & Information Services JUachorage.Alaska U.S. Department of Energy Alaska Power Administration Juneau, Alaska 99802 CONTENTS TITLE PAGE NO. PART I INTRODUCTION. 1 ~y PART II •• "•.•• . ,; . 2 PART III PREVIOUS STUDIES •. ". .... .. ". ... ..... 3 PART IV HYDROELECTRIC POWER INVENTORY • 6 PART V ALTERNATIVE HYDROEtECTRIC PLANS • 9 Bases of Comparison ~ ~ ~ ~ ~ • ~ ••• ~ 9 Power Demands~ ~ ~ ..... ~ • ~ ••• 10 Costs'.. oi ...... •. "•• -..... .. ~ 10 Land Use and Management~ ••••••••••• 11 Environmental Aspects. ._,. ••• ~ • .. ••• .. • ~ 11 Larger Capacity Single Sites. •_ ~ •••• ~ ~ •• ~ 11- Combinations o-f, Smaller Sites by Geographic Area~ • •• i2 Combinations of 'the Most Economical Smaller Sites • ~ • 18 The "Small" Hydro Approach. ~ ;; •• ~ •• ~ ~ .'•••• 19 APPENDIX~ 20 A~ Inventory of Potential Hydroelectric-Sites in Alaska .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ~ • 20 B. Map of Potential Hydroelectric Sites in Alaska .. .. .. .. .. • .. .. .. .. • .. .. .. .- .. .. 24 C~ Description of Small Capacity Sites Within 'Geographic Areas~ -
Surficial Geology Investigations in Wellesley Basin and Nisling Range, Southwest Yukon J.D
Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon J.D. Bond, P.S. Lipovsky and P. von Gaza Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon Jeffrey D. Bond1 and Panya S. Lipovsky2 Yukon Geological Survey Peter von Gaza3 Geomatics Yukon Bond, J.D., Lipovsky, P.S. and von Gaza, P., 2008. Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon. In: Yukon Exploration and Geology 2007, D.S. Emond, L.R. Blackburn, R.P. Hill and L.H. Weston (eds.), Yukon Geological Survey, p. 125-138. ABSTRACT Results of surficial geology investigations in Wellesley basin and the Nisling Range can be summarized into four main highlights, which have implications for exploration, development and infrastructure in the region: 1) in contrast to previous glacial-limit mapping for the St. Elias Mountains lobe, no evidence for the late Pliocene/early Pleistocene pre-Reid glacial limits was found in the study area; 2) placer potential was identified along the Reid glacial limit where a significant drainage diversion occurred for Grayling Creek; 3) widespread permafrost was encountered in the study area including near-continuous veneers of sheet-wash; and 4) a monitoring program was initiated at a recently active landslide which has potential to develop into a catastrophic failure that could damage the White River bridge on the Alaska Highway. RÉSUMÉ Les résultats d’études géologiques des formations superficielles dans le bassin de Wellesley et la chaîne Nisling peuvent être résumés en quatre principaux faits saillants qui ont des répercussions pour l’exploration, la mise en valeur et l’infrastructure de la région. -
Cold-Climate Landform Patterns in the Sudetes. Effects of Lithology, Relief and Glacial History
ACTA UNIVERSITATIS CAROLINAE 2000 GEOGRAPHICA, XXXV, SUPPLEMENTUM, PAG. 185–210 Cold-climate landform patterns in the Sudetes. Effects of lithology, relief and glacial history ANDRZEJ TRACZYK, PIOTR MIGOŃ University of Wrocław, Department of Geography, Wrocław, Poland ABSTRACT The Sudetes have the whole range of landforms and deposits, traditionally described as periglacial. These include blockfields and blockslopes, frost-riven cliffs, tors and cryoplanation terraces, solifluction mantles, rock glaciers, talus slopes and patterned ground and loess covers. This paper examines the influence, which lithology and structure, inherited relief and time may have had on their development. It appears that different rock types support different associations of cold climate landforms. Rock glaciers, blockfields and blockstreams develop on massive, well-jointed rocks. Cryogenic terraces, rock steps, patterned ground and heterogenic solifluction mantles are typical for most metamorphic rocks. No distinctive landforms occur on rocks breaking down through microgelivation. The variety of slope form is largely inherited from pre- Pleistocene times and includes convex-concave, stepped, pediment-like, gravitational rectilinear and concave free face-talus slopes. In spite of ubiquitous solifluction and permafrost creep no uniform characteristic ‘periglacial’ slope profile has been created. Mid-Pleistocene trimline has been identified on nunataks in the formerly glaciated part of the Sudetes and in their foreland. Hence it is proposed that rock-cut periglacial relief of the Sudetes is the cumulative effect of many successive cold periods during the Pleistocene and the last glacial period alone was of relatively minor importance. By contrast, slope cover deposits are usually of the Last Glacial age. Key words: cold-climate landforms, the Sudetes 1. -
Mesoproterozoic Frost Action at the Base of the Svinsaga Formation 291
NORWEGIAN JOURNAL OF GEOLOGY Mesoproterozoic frost action at the base of the Svinsaga Formation 291 Mesoproterozoic frost action at the base of the Svinsaga Formation, central Telemark, South Norway Juha Köykkä & Kauko Laajoki Köykkä, J. & Laajoki, K. 2009: Mesoproterozoic frost action ath the base of the Svinsaga Formation, central telemark, South Norway. Norwegain Journal of Geology, vol 89, pp 291-303. Trondheim 2009, ISSN 029-196X. The Mesoproterozoic Svinsaga Formation (SF) in central Telemark, South Norway, was unconformably deposited after ca. 1.347 Ga on the quartz arenite of the upper member of the Brattefjell Formation (UB), which is part of the Vindeggen Group. The unconformity is marked by a fracture zone a few meters thick developed in the UB quartz arenite. The lower part of the fracture zone, which contains sparse and closed fractures, and microfractures, grades upwards into a system of wider and mostly random oriented fractures and fracture patterns. The fractures are filled with mudstone. The fracture zone is overlain by several meters of in situ SF breccia, in which the fragments consist solely of the UB quartz arenite. The in situ breccia gradually grades into a basal breccia and clast- or matrix-supported conglomerates. The SF conglomerate beds contain solitary quartz arenite fragments and blocks up to 9.0 m3 that were derived from the UB. The fractures, fracture patterns, and microfractures in the UB quartz arenite and shattered quartz arenite fragments in the in situ SF breccia are ascribed to in situ fracturing, brecciation, and the accumulation of slightly moved blocks in a cold climate. -
Mineral Element Stocks in the Yedoma Domain
Discussions https://doi.org/10.5194/essd-2020-359 Earth System Preprint. Discussion started: 8 December 2020 Science c Author(s) 2020. CC BY 4.0 License. Open Access Open Data Mineral element stocks in the Yedoma domain: a first assessment in ice-rich permafrost regions Arthur Monhonval1, Sophie Opfergelt1, Elisabeth Mauclet1, Benoît Pereira1, Aubry Vandeuren1, Guido Grosse2,3, Lutz Schirrmeister2, Matthias Fuchs2, Peter Kuhry4, Jens Strauss2 5 1Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium 2Permafrost Research Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany 3Institute of Geosciences, University of Potsdam, Potsdam, Germany 4Department of Physical Geography, Stockholm University, Stockholm, Sweden 10 Correspondence to: Arthur Monhonval ([email protected]) Abstract With permafrost thaw, significant amounts of organic carbon (OC) previously stored in frozen deposits are unlocked and 15 become potentially available for microbial mineralization. This is particularly the case in ice-rich regions such as the Yedoma domain. Excess ground ice degradation exposes deep sediments and their OC stocks, but also mineral elements, to biogeochemical processes. Interactions of mineral elements and OC play a crucial role for OC stabilization and the fate of OC upon thaw, and thus regulate carbon dioxide and methane emissions. In addition, some mineral elements are limiting nutrients for plant growth or microbial metabolic activity. A large ongoing effort is to quantify OC stocks and their lability in permafrost 20 regions, but the influence of mineral elements on the fate of OC or on biogeochemical nutrient cycles has received less attention. The reason is that there is a gap of knowledge on the mineral element content in permafrost regions. -
Sess Report 2018
SESS REPORT 2018 The State of Environmental Science in Svalbard – an annual report Xxx 1 SESS report 2018 The State of Environmental Science in Svalbard – an annual report ISSN 2535-6321 ISBN 978-82-691528-0-7 Publisher: Svalbard Integrated Arctic Earth Observing System (SIOS) Editors: Elizabeth Orr, Georg Hansen, Hanna Lappalainen, Christiane Hübner, Heikki Lihavainen Editor popular science summaries: Janet Holmén Layout: Melkeveien designkontor, Oslo Citation: Orr et al (eds) 2019: SESS report 2018, Longyearbyen, Svalbard Integrated Arctic Earth Observing System The report is published as electronic document, available from SIOS web site www.sios-svalbard.org/SESSreport Contents Foreword .................................................................................................................................................4 Authors from following institutions contributed to this report ...................................................6 Summaries for stakeholders ................................................................................................................8 Permafrost thermal snapshot and active-layer thickness in Svalbard 2016–2017 .................................................................................................................... 26 Microbial activity monitoring by the Integrated Arctic Earth Observing System (MamSIOS) .................................................................................. 48 Snow research in Svalbard: current status and knowledge gaps ............................................ -
Oliva Vieira 2017.Pdf
Catena 149 (2017) 637–647 Contents lists available at ScienceDirect Catena journal homepage: www.elsevier.com/locate/catena Soil temperatures in an Atlantic high mountain environment: The Forcadona buried ice patch (Picos de Europa, NW Spain) Jesús Ruiz-Fernández a,⁎,MarcOlivab, Filip Hrbáček c, Gonçalo Vieira b, Cristina García-Hernández a a Department of Geography, University of Oviedo, Oviedo, Spain b Centre for Geographical Studies, Institute of Geography and Spatial Planning, Universidade de Lisboa, Lisbon, Portugal c Department of Geography, Masaryk University, Brno, Czech Republic article info abstract Article history: The present study focuses on the analysis of the ground and near-rock surface air thermal conditions at the Received 15 February 2016 Forcadona glacial cirque (2227 m a.s.l.) located in the Western Massif of the Picos de Europa, Spain. Temperatures Received in revised form 13 June 2016 have been monitored in three distinct geomorphological and topographical sites in the Forcadona area over the Accepted 27 June 2016 period 2006–11. The Forcadona buried ice patch is the remnant of a Little Ice Age glacier located in the bottom of a Available online 1 August 2016 glacial cirque. Its location in a deep cirque determines abundant snow accumulation, with snow cover between 8 and 12 months. The presence of snow favours stable soil temperatures and geomorphic stability. Similarly to Keywords: fi Soil temperatures other Cantabrian Mountains, the annual thermal regime of the soil is de ned by two seasonal periods (continu- Cirque wall temperatures ous thaw with daily oscillations and isothermal regime), as well as two short transition periods. -
Chapter 7 Seasonal Snow Cover, Ice and Permafrost
I Chapter 7 Seasonal snow cover, ice and permafrost Co-Chairmen: R.B. Street, Canada P.I. Melnikov, USSR Expert contributors: D. Riseborough (Canada); O. Anisimov (USSR); Cheng Guodong (China); V.J. Lunardini (USA); M. Gavrilova (USSR); E.A. Köster (The Netherlands); R.M. Koerner (Canada); M.F. Meier (USA); M. Smith (Canada); H. Baker (Canada); N.A. Grave (USSR); CM. Clapperton (UK); M. Brugman (Canada); S.M. Hodge (USA); L. Menchaca (Mexico); A.S. Judge (Canada); P.G. Quilty (Australia); R.Hansson (Norway); J.A. Heginbottom (Canada); H. Keys (New Zealand); D.A. Etkin (Canada); F.E. Nelson (USA); D.M. Barnett (Canada); B. Fitzharris (New Zealand); I.M. Whillans (USA); A.A. Velichko (USSR); R. Haugen (USA); F. Sayles (USA); Contents 1 Introduction 7-1 2 Environmental impacts 7-2 2.1 Seasonal snow cover 7-2 2.2 Ice sheets and glaciers 7-4 2.3 Permafrost 7-7 2.3.1 Nature, extent and stability of permafrost 7-7 2.3.2 Responses of permafrost to climatic changes 7-10 2.3.2.1 Changes in permafrost distribution 7-12 2.3.2.2 Implications of permafrost degradation 7-14 2.3.3 Gas hydrates and methane 7-15 2.4 Seasonally frozen ground 7-16 3 Socioeconomic consequences 7-16 3.1 Seasonal snow cover 7-16 3.2 Glaciers and ice sheets 7-17 3.3 Permafrost 7-18 3.4 Seasonally frozen ground 7-22 4 Future deliberations 7-22 Tables Table 7.1 Relative extent of terrestrial areas of seasonal snow cover, ice and permafrost (after Washburn, 1980a and Rott, 1983) 7-2 Table 7.2 Characteristics of the Greenland and Antarctic ice sheets (based on Oerlemans and van der Veen, 1984) 7-5 Table 7.3 Effect of terrestrial ice sheets on sea-level, adapted from Workshop on Glaciers, Ice Sheets and Sea Level: Effect of a COylnduced Climatic Change.