Frost Wedging and Fracture Propagation in Hard Rock Slopes In

Total Page:16

File Type:pdf, Size:1020Kb

Frost Wedging and Fracture Propagation in Hard Rock Slopes In Natalie Bennett Frost wedging and fracture propagation in hard rock slopes in cold regions Master’s thesis in Cold Climate Engineering Supervisor: Charlie Li, Thomas Ingeman-Nielsen June 2020 Master’s thesis NTNU Faculty of Engineering Department of Geoscience and Petroleum Norwegian University of Science and Technology Abstract In cold regions, the presence of moisture combined with freezing temperatures leads to a phys- ical weathering process in rocks known as frost weathering. Frost weathering is driven by the volumetric expansion of ice and ice segregation (Matsuoka and Murton, 2008). This study fo- cuses on the former and how it affects the stability of hard rock slopes in cold regions through fracture propagation, frost wedging, and freeze thaw cycles. The study of fracture propagation assesses this process in two different types of hard rock: Iddefjord Granite and Fauske Marble. The tests are organized into the three following sub cate- gories including 1. basic fracture propagation (Test A), 2. fracture propagation from intervaled infilling of water (Test B), and 3. fracture propagation with a free surface involved (Test C). The results show that significant ice buildup is required to induce fracture propagation from a mechanically made tip (Test A). The interval infilling method (Test B) did not see any fracture propagation throughout the four cycles. Both the basic fracture propagation (Test A) and free surface fracture propagation (Test C) tests exhibited full fracture propagation throughout the samples. Additionally, these results showed that the number of cycles required to fully propa- gate the fracture through the sample is dependent on both the rock type and the distance to the free surface. The effects of frost wedging are assessed through laboratory work, field investigation, numerical modelling, and analytical approach. A frost wedging test (Test D) was performed in the lab- oratory on two marble samples with wedges created within those samples. The samples were geometrically designed to represent a basic planar failure. One block was created to be a stable wedge, and the other an unstable wedge. The results of the laboratory investigation show that the effects of frost wedging on these samples are independent of the slope of the sliding plane. The field investigation was conducted near Soknedal, Norway, and assessed areas that could potentially have reduced stability due to frost wedging that occurs during months with sub zero temperatures. The analytical approach shows that the uplift from ice formation in joints leads to small horizontal displacements over time. The results of the assessment of frost wedging show that the presence of ice within the joints of a rock mass can lead to slow movements within the rock mass, thereby decreasing the overall stability of the rock mass. Freeze thaw cycles have been shown to cause damage in the form of physical weathering, and hence, decrease the strength of high porosity rocks. The damage to low porosity rocks is typically less extensive due to their lack of pore space (Matsuoka and Murton, 2008). An analysis of the effects of six freeze thaw cycles is conduced on low porosity Iddefjord Granite core. UCS tests are conducted on the core samples which have been subjected to the freeze thaw cycles and on a control group of core that was never frozen. The results showed no difference in strength from that of the control group. This study shows that some of the effects of frost weathering, specifically fracture propagation and frost wedging, lead to a decrease in the stability of hard rock slopes in cold regions. i Acknowledgement This masters thesis was written at the Department of Petroleum and Geosciences at the Nor- wegian University of Science and Technology in conjunction with the Department of Civil Engineering at the Technical University of Denmark. It fulfills the requirements for the Land Track with specialization in Rock Mechanics of the joint masters degree in Cold Climate Engi- neering at the Norwegian University of Science and Technology and the Technical University of Denmark. I would like to thank my primary supervisor, Charlie Li, for always showing excitement in my work and all of the time you have taken to provide assistance and guidance during this process. My supervisor at DTU, Thomas Ingeman-Nielsen, thank you for your guidance and further inspiring my love for working in the Arctic during your course in Greenland. Thank you to Gunnar Vistnes for all your help in the rock mechanics lab. Thank you for preparing all of my samples, assisting with testing, and for completing my UCS testing. Knut Høyland, thank you for all your help during my time in Norway. Thank you for taking the time to discuss ice mechanics with me and for allowing me to work in Ice Lab during my thesis. Thank you to Sønke Maus for lending me the thermistors for testing and helping teach me how to use them. Thank you to Chungxin Lyu for always helping me around the lab and for your words of encouragement. Thank you to my fellow classmates in the cold climate engineering program. We have been on quite the adventure together over the past two years. I feel so grateful to have had you to lean on during the difficult times and celebrate with during the good times. I will forever cherish the times we had in Denmark, Greenland, and Norway. A big thank you to my loving and supporting parents. Thank you for welcoming me back home when a global pandemic was declared in March, and for putting up with my makeshift office that has taken over our living room for the past three months. While I am sad to have not finished my thesis in Norway as planned, I feel lucky to have been able to soak up some extra family time before I transition into a career. Mom and Dad, I would not be where I am today without you. Thank you for all the sacrifices you have made so I could have so many incredible opportunities. Lastly, I would like to thank my loving boyfriend Jeff for all his love and support over the past two years. ii Table of Contents Abstract i Acknowledgement ii Table of Contents vi List of Tables x List of Figures xv Abbreviations xvi 1 Introduction 1 1.1 Cold Regions ................................... 2 1.2 Hard Rock ..................................... 2 1.3 Purpose of Study ................................. 3 1.4 Outline of Sections ................................ 3 2 Background Information 5 2.1 Slope Stability ................................... 5 2.1.1 Factor of Safety .............................. 6 2.1.2 Failure Modes .............................. 6 2.1.2.1 Planar ............................. 7 2.1.2.2 Wedge ............................. 7 2.1.3 Fracture Mechanics ............................ 8 2.2 Frozen Ground .................................. 8 2.2.1 Freezing Process ............................. 9 2.3 Freezing in Soil .................................. 9 2.3.1 Ice Wedging ............................... 10 2.3.2 Solifluction ................................ 10 2.4 Freezing in Rock ................................. 11 2.4.1 Ice Segregation (Microgelivation) .................... 11 2.4.2 Ice Wedging (Macrogelivation) ..................... 11 2.4.2.1 Spatial and Temporal Relationship .............. 11 2.4.2.2 Rock Mass Properties ..................... 12 iii 2.5 Climate Change Impacts ............................. 12 3 Ice Driven Fracture of Intact Rock 13 3.1 Introduction .................................... 13 3.2 Methods ...................................... 13 3.2.1 Test A - Fracture Propagation ...................... 14 3.2.2 Test B - Interval Infilling - Fracture Propagation ............. 15 3.2.3 Test C - Free Surface - Fracture Propagation ............... 16 3.2.4 Temperature Monitoring ......................... 16 3.2.5 Procedure ................................. 17 3.3 Results ....................................... 18 3.3.1 Test A - Fracture Propagation ...................... 18 3.3.1.1 Test A.1 - Granite Block with 9 cm Fracture ......... 18 3.3.1.2 Test A.2 - Marble Block with 9 cm Fracture ......... 26 3.3.1.3 Test A.3 - Granite Block with 6 cm Fracture ......... 28 3.3.2 Test B - Interval Infilling - Fracture Propagation ............. 39 3.3.2.1 Test B.1 - Granite Block with 6 cm Fracture ......... 39 3.3.3 Test C - Free Surface - Fracture Propagation ............... 47 3.3.3.1 Test C.1 - Fracture 1 ...................... 48 3.3.3.2 Test C.2 - Fracture 2 ...................... 52 4 Ice Driven Displacement of Blocks 59 4.1 Introduction .................................... 59 4.2 Field Investigation ................................ 59 4.2.1 Background Information ......................... 60 4.2.2 Structural Mapping ............................ 61 4.2.2.1 Location 4 ........................... 62 4.2.2.2 Location 7 ........................... 63 4.2.2.3 Location 10 .......................... 64 4.2.3 Photographic Assessment ........................ 65 4.2.4 Ice Covered Rock Cut .......................... 65 4.3 Numerical Modelling ............................... 66 4.3.1 Location 4 ................................ 67 4.3.1.1 Initial Conditions ....................... 67 4.3.1.2 Water Pressure Conditions ................... 68 4.3.2 Location 7 ................................ 68 4.3.2.1 Initial Conditions ....................... 69 4.3.2.2 Water Pressure Conditions ................... 69 4.3.3 Location 10 ................................ 70 4.3.3.1 Initial Conditions ....................... 70 4.3.3.2 Water Pressure Conditions ................... 71 4.4 Analytical Approach
Recommended publications
  • Faro Landscape Hazards
    Faro Landscape Hazards Geoscience Mapping for Climate Change Adaptation Planning This publication may be obtained from: Northern Climate ExChange Yukon Research Centre, Yukon College 500 College Drive P.O. Box 2799 Whitehorse, Yukon Y1A 5K4 867.668.8895 1.800.661.0504 yukoncollege.yk.ca/research Recommended citation: Benkert, B.E., Fortier, D., Lipovsky, P., Lewkowicz, A., Roy, L.-P., de Grandpré, I., Grandmont, K., Turner, D., Laxton, S., and Moote, K., 2015. Faro Landscape Hazards: Geoscience Mapping for Climate Change Adaptation Planning. Northern Climate ExChange, Yukon Research Centre, Yukon College. 130 p. and 2 maps. Front cover photograph: Aerial view of Faro looking southeast towards the Pelly River. Photo credit: archbould.com Disclaimer: The report including any associated maps, tables and figures (the “Information”) convey general observations only. The Information is based on an interpretation and extrapolation of discrete data points and is not necessarily indicative of actual conditions at any location. The Information cannot be used or relied upon for design or construction at any location without first conducting site-specific geotechnical investigations by a qualified geotechnical engineer to determine the actual conditions at a specific location (“Site-Specific Investigations”). The Information should only be used or relied upon as a guide to compare locations under consideration for such Site-Specific Investigations. Use of or reli- ance upon the Information for any other purpose is solely at the user’s own risk. Yukon College and the individual authors and contributors to the Information accept no liability for any loss or damage arising from the use of the Information.
    [Show full text]
  • Contemporary Periglacial Processes in the Swiss Alps: Seasonal, Inter-Annual and Long-Term Variations
    Permafrost, Phillips, Springman & Arenson (eds) © 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Contemporary periglacial processes in the Swiss Alps: seasonal, inter-annual and long-term variations N. Matsuoka & A. Ikeda Institute of Geoscience, University of Tsukuba, Ibaraki, Japan K. Hirakawa & T. Watanabe Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, Japan ABSTRACT: Comprehensive monitoring of periglacial weathering and mass wasting has been undertaken near the lower limit of the mountain permafrost belt. Seven years of monitoring highlight both seasonal and inter- annual variations. On the seasonal scale, three types of movements are identified: (A) small magnitude events associated with diurnal freeze-thaw cycles, (B) larger events during early seasonal freezing and (C) sporadic events originating from refreezing of meltwater during seasonal thawing. Type A produces pebbles or smaller fragments from rockwalls and shallow (Ͻ10 cm) frost creep on debris slopes. Types B and C are responsible for larger debris production and deeper (Ͻ50 cm) frost creep/gelifluction. Some of these events contribute to perma- nent opening of rock joints and advance of solifluction lobes. Sporadic large boulder falls enhance inter-annual variation in rockwall retreat rates. On some debris slopes, prolonged snow melting occasionally triggers rapid soil flow, which causes inter-annual variation in rates of soil movement. 1 INTRODUCTION 9º40'E 10º00'E Piz Kesch Real-time monitoring of periglacial slope processes is 3418 Switzerland useful to predict ongoing slope instability problems in Inn alpine regions. Such a prediction, however, needs long- Piz d'Err Piz Ot term variations in slope processes caused by climate 3378 3246 Samedan Italia change to be distinguished from inter-annual scale vari- A 30'E 30'E º St.
    [Show full text]
  • Menighetsblad Nr 2
    n e d a n g u d s d r å g e k r i k å p p p o TUSEN TAKK TIL t s a f o r ALLE FRIVILLIGE! t r e l l i t s d ø r d n a S r o d l a H g o m u l a M s n a H God sommer! MENIGHETSBLAD for Budal, Singsås, Soknedal og Støren JUNI 2020 NR 2 69. ÅRGANG SALMESKATTEN Herren selv vil sine berge, Ingen er så trygg i fare han er deres skjold og verge Over dem han seg forbarmer, Av Kjerstin Kosberg bærer dem på faderarmer. Livet har en start og en slutt, det er likt for alle Ingen nød og ingen lykke, mennesker. skal av Herrens hånd dem rykke For noen kommer slutten før den har startet, Han den beste venn blant venner, mens andre får leve i nesten hundre år. sine barns bekymring kjenner. Hver ny dag er en dag i resten av ditt liv, dette er tanker å ta med seg i hverdagen. Våre hodehår han teller, hver en tåre som vi feller Vi kom alle bekymringsløs til denne verden. Etter Han oss føder og oss kleder, hvert som vi blir voksne byr dagene på utfor- midt i sorgen han oss gleder. dringer som gir oss store eller små bekymringer. Salmen «Ingen er så trygg i fare» av Lina Sandell Gled deg da, du lille skare, gir tanker og håp om at vi ikke trenger å være Jakobs Gud skal deg bevare bekymret.
    [Show full text]
  • New Insights Into the Drainage of Inundated Arctic Polygonal Tundra
    https://doi.org/10.5194/tc-2020-100 Preprint. Discussion started: 5 May 2020 c Author(s) 2020. CC BY 4.0 License. New insights into the drainage of inundated Arctic polygonal tundra using fundamental hydrologic principles Dylan R Harp1, Vitaly Zlotnik2, Charles J Abolt1, Brent D Newman1, Adam L Atchley1, Elchin Jafarov1, and Cathy J Wilson1 1Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87544 2Earth and Atmospheric Sciences Department, University of Nebraska, Lincoln, NE, 68588-0340 Correspondence: Dylan Harp ([email protected]) Abstract. The pathways and timing of drainage from inundated ice-wedge polygon centers in a warming climate have im- portant implications for carbon flushing, advective heat transport, and transitions from carbon dioxide to methane dominated emissions. This research helps to understand this process by providing the first in-depth analysis of drainage from a single polygon based on fundamental hydrogeological principles. We use a recently developed analytical solution to evaluate the 5 effects of polygon aspect ratios (radius to thawed depth) and hydraulic conductivity anisotropy (horizontal to vertical hydraulic conductivity) on drainage pathways and temporal depletion of ponded water heights of inundated ice-wedge polygon centers. By varying the polygon aspect ratio, we evaluate the effect of polygon size (width), inter-annual increases in active layer thick- ness, and seasonal increases in thaw depth on drainage. One of the primary insights from the model is that most inundated ice-wedge polygon drainage occurs along an annular region of the polygon center near the rims. This implies that inundated 10 polygons are most intensely flushed by drainage in an annular region along their horizontal periphery, with implications for transport of nutrients (such as dissolved organic carbon) and advection of heat towards ice wedge tops.
    [Show full text]
  • E6 Ulsberg - Melhus
    E6 Ulsberg - Melhus Gauldalskonferansen 28.oktober 2015 v/ ass. prosjektleder Vigdis Espnes Landheim 03.11.2015 Reguleringsplaner Status pr 27.10.15 03.11.2015 Status i reguleringsarbeidet STATUSLINJE Milepæl 2 Milepæl 3 Milepæl 4 Milepæl 5 År 2015 2016 kvartal 1. kv 2.kv 3.kv 4.kv 1.kv 2.kv 3. kv 4.kv Ulsberg - Kreativ Teknisk Reg.plan Oversende Vindåsliene fase plan kommunen Vedtak i Off. ettersyn kommunen Vindåsliene – Vedtatt Vedtak i Soknedal sent. regplan. MGK Mindre kommune endring Soknedal sent. - Kreativ Teknisk Reg.plan Oversende Korporalsbrua fase plan kommunen Vedtak i Off. ettersyn kommunen Korporalsbrua – Kreativ Teknisk Reg.plan Oversende Prestteigen fase plan kommunen Vedtak i Off. ettersyn kommunen Prestteigen – Plan program Kreativ fase Teknisk Oversende Gyllan Innkjøp konsulent plan KU/ kommune Vedtak i Reg.plan Off. kommunen ettersyn Gyllan - Røskaft Kreativ Teknisk Reg.plan Oversende fase plan kommunen Vedtak i Off. ettersyn kommunen Røskaft - Kreativ Teknisk Reg.plan Oversende Skjerdingstad fase plan kommunen Vedtak i Off. ettersyn kommunen 10.09.2015 E6 Ulsberg - Melhus Rennebu kommune ● Ulsberg - Vindåsliene – Teknisk plan og reguleringsplan i sluttfasen – Frist 01.11.15 – Oversendes til Rennebu og Midtre Gauldal kommune i november Midtre Gauldal kommune 5 03.11.2015 E6 Ulsberg - Melhus Reguleringsplan E6 Ulsberg - Vindåsliene Planmyndighet: Rennebu kommune og Midtre Gauldal kommune ● Oversendelse til kommunene Uke 50 ● Intern samarbeidsgruppe 24.11.15 ● Presentasjon i formannskapet i RK 03.11.2015 ● Ekstern samarbeidsgruppe 04.12.15 ● Presentasjon i NPM i MGK 19.10.15 ● Evt. presentasjon i kommunestyret i RK 19.11.15 ● Evt. presentasjon i kommunestyret i MGK 07.12.15 ● 1.gangs behandling/utlegging i RK 07.01.16 ● 1.gangs behandling/utlegging i MGK 18.01.16 ● Høringsperiode 01.02.16 – 01.04.16 ● Folkemøter på Berkåk/Støren Uke 7 ● Åpne kontordager på Berkåk/Støren Uke 8/9 ● Evt.
    [Show full text]
  • Modeling the Role of Preferential Snow Accumulation in Through Talik OPEN ACCESS Development and Hillslope Groundwater flow in a Transitional
    Environmental Research Letters LETTER • OPEN ACCESS Recent citations Modeling the role of preferential snow - Shrub tundra ecohydrology: rainfall interception is a major component of the accumulation in through talik development and water balance hillslope groundwater flow in a transitional Simon Zwieback et al - Development of perennial thaw zones in boreal hillslopes enhances potential permafrost landscape mobilization of permafrost carbon Michelle A Walvoord et al To cite this article: Elchin E Jafarov et al 2018 Environ. Res. Lett. 13 105006 View the article online for updates and enhancements. This content was downloaded from IP address 192.12.184.6 on 08/07/2020 at 18:02 Environ. Res. Lett. 13 (2018) 105006 https://doi.org/10.1088/1748-9326/aadd30 LETTER Modeling the role of preferential snow accumulation in through talik OPEN ACCESS development and hillslope groundwater flow in a transitional RECEIVED 27 March 2018 permafrost landscape REVISED 26 August 2018 Elchin E Jafarov1 , Ethan T Coon2, Dylan R Harp1, Cathy J Wilson1, Scott L Painter2, Adam L Atchley1 and ACCEPTED FOR PUBLICATION Vladimir E Romanovsky3 28 August 2018 1 Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America PUBLISHED 2 15 October 2018 Climate Change Science Institute and Environmental Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America 3 Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America Original content from this work may be used under E-mail: [email protected] the terms of the Creative Commons Attribution 3.0 Keywords: permafrost, hydrology, modeling, ATS, talik licence. Any further distribution of this work must maintain attribution to the Abstract author(s) and the title of — — the work, journal citation Through taliks thawed zones extending through the entire permafrost layer represent a critical and DOI.
    [Show full text]
  • Rådet for Eldre Og Mennesker Med Nedsatt Funksjonsevne 1
    Møteinnkalling Utvalg: Rådet for eldre og mennesker med nedsatt funksjonsevne Møtested: Formannskapssalen, Midtre Gauldal rådhus Dato: 11.06.2019 Tidspunkt: 11:00 Eventuelt forfall må meldes snarest på tlf. 72 40 30 00. Vararepresentanter møter etter nærmere beskjed. Framlagte saker er godkjent av rådmann/enhetsleder. Støren, den 03.06.2019 Svein Olav Johnsen kommunalsjef 1 2 Saksliste Utvalgs- Innhold Lukket Arkiv- saksnr saksnr PS Referatsaker PS Kommunestyre- og fylkestingsvalget 2019 - valglokaler 2019/934 RS Brev til eldrerådene LEVE HELE LIVET April 2019 2019/315 RS Fwd: Forberedelse til neste valgperiode - valg av 2019/2244 eldreråd Orienteringer om: - Aktivitetstilbudet v/Kristin Grindstuen, enhetsleder PLO - Demenstilbudet v/ Kristin Grindstuen, enhetsleder PLO - «Leve hele livet» v/ Kristin Grindstuen, enhetsleder PLO - Arbeidet med helse og omsorgsplan v/ Svein Olav Johnsen, kommunalsjef 3 PS 5/19 Referatsaker 4 Til eldrerådet i din kommune April 2019 Leve hele livet Regjeringen la «Leve hele livet» den 4. mai 2018. www.levehelelivet.no Reformen skal bidra til: • at eldre kan mestre livet lengre, oppleve god kvalitet og ha trygghet for at de får god hjelp når de har behov for det • At pårørende kan bidra uten at de blir utslitt • At ansatte opplever at de kan bruke sin kompetanse i tjenesten og gjøre en god jobb Kvalitetsreformen skal settes på dagsorden i både kommunene og fylkeskommunen i 2019. Kommunene og fylkeskommunen skal kartlegge egne behov og utfordringer når det gjelder innsatsområdene for «Leve hele livet». 2019 et viktig år når det gjelder å involvere brukerne selv og deres pårørende. Arbeidet med reformen er nå i gang og ditt eldreråd kan følge Helsedirektoratets jobbing med reformen på vedlagte nettside; https://helsedirektoratet.no/leve-hele-livet-kvalitetsreformen-for-eldre Formålet med nettsiden er å gi generell og oppdatert informasjon om arbeidet med reformen.
    [Show full text]
  • Frost Heave Due to Ice Lens Formation in Freezing Soils 1
    Nordic Hydrolgy, 26, 1995, 125-146 No pd11 m,ty ix ~rproduredby .my proce\\ w~thoutcomplete leference Frost Heave due to Ice Lens Formation in Freezing Soils 1. Theory and Verification D. Sheng, K. Axelsson and S. Knutsson Department of Civil Engineering, Lulei University of Technology, Sweden A frost heave model which simulates formation of ice lenses is developed for saturated salt-free soils. Quasi-steady state heat and mass flow is considered. Special attention is paid to the transmitted zone, i.e. the frozen fringe. The permeability of the frozen fringe is assumed to vary exponentially as a function of temperature. The rates of water flow in the frozen fringe and in the unfrozen soil are assumed to be constant in space but vary with time. The pore water pres- sure in the frozen fringe is integrated from the Darcy law. The ice pressure in the frozen fringe is detcrmined by the generalized Clapeyron equation. A new ice lens is assumed to form in the liozen fringe when and where the effective stress approaches zero. The neutral stress is determined as a simple function of the un- frozen water content and porosity. The model is implemented on an personal computer. The simulated heave amounts and heaving rates are compared with expcrimental data, which shows that the model generally gives reasonable esti- mation. Introduction The phenomenon of frost heave has been studied both experimentally and theoreti- cally for decades. Experimental observations suggest that frost heave is caused by ice lensing associated with thermally-induced water migration. Water migration can take place at temperatures below the freezing point, by flowing via the unfrozen wa- ter film adsorbed around soil particles.
    [Show full text]
  • Deltakerliste Årsmøte Geno 2021.Pdf
    Deltakerliste – Digitalt årsmøte i Geno 2021 Styret Styreleder Nr 1 Jan Ole Mellby 1747 Skjeberg Nestleder: “ 2 Anne Margrethe Solheim Stormo 8146 Reipå Styremedlem: “ 3 Elisabeth Gjems 2450 Rena Styremedlem: “ 4 Vegard Smenes 6532 Averøy Styremedlem: “ 5 Ole Magnar Undheim 4363 Brusand Styremedlem: “ 6 Jon Sandal 6843 Skei i Jølster Styremedlem: “ 7 Anne Guro Larsgard 1435 Ås Årsmøtet Årsmøtets møteleder Nr 101 Nina Engelbrektson 6823 Sandane Årsmøtets varamøteleder ” 102 Knut Harald Bergum 2917 Skrautvål Region Nord: nr 8 Ingebjørg Grindhaug 8980 Vega ” 9 Marita Katrin Helskog 8288 Bogøy ” 10 Dag Runar V. Wollvik 9144 Samuelsberg ” 11 Stine Marie Jelti 9845 Tana “ 12 Øyvind Lehn 8404 Sortland Region Midt: nr 13 Anne Stine Foldal Aam 6150 Ørsta “ 14 Iver Fossum 7288 Soknedal “ 15 Ragnhild Kjesbu 7670 Inderøy “ 16 Berit Haarstad Foss 7340 Oppdal “ 17 Anne Merete Hansen Lines 7176 Linesøya “ 18 Bård Arne Mjøsund 7877 Høylandet “ 19 Lars Egil Hognes 7732 Steinkjer “ 20 Nina Vangen Ranøien 7320 Fannrem “ 21 Ingunn Torvik 6639 Torvikbukt Region Sørvest: nr 22 Nils Magne Gjengedal 6829 Hyen “ 23 Marianne Goderstad 4900 Tvedestrand “ 24 Håvard Ellef Haugland 4646 Finsland “ 25 Liv Haukås 5570 Aksdal “ 26 Torgeir Kinn 4020 Stavanger “ 27 Ingunn Skeide 6848 Fjærland “ 28 Tommy Skretting 4360 Varhaug “ 29 Anders Sæleset 5600 Norheimsund “ 30 Inga Skretting Timpelen 4354 Voll “ 31 Magnar Tveite 5713 Vossestrand Region Øst: nr 32 Odd Martin Gaalaas Baardseth 2360 Rudshøgda “ 33 Leif Einar Bratengen 2387 Brumunddal “ 34 Mona Hvaale Fretland 3618 Skollenborg “ 35 Halvor Gauteplass 3580 Geilo “ 36 Tove Grethe Kolstad 2950 Skammestein “ 37 Lars Egil Lauten 2040 Kløfta “ 38 Nina Rokvam 2651 Østre Gausdal “ 39 Gunn Randi Finstad 2485 Rendalen TYR: nr 40 Asbjørn Dahlen 6638 Osmarka Q-meieriene: nr 41 Magne Helleland 4054 Tjelta “ 110 Erling Surnflødt 2653 Vestre Gausdal Ansattes utsendinger: nr 42 Idar Dombestein 6730 Davik “ 43 Ellen J.
    [Show full text]
  • Kan Ikke Si Nei Til Søknaden Fra Røros
    - Kan ikke si nei til søknaden fra Røros Rettighetshaverne i Forollhogna var samlet til møte på Kvikne i går kveld, for blant annet å diskutere årets oppsynsrapport, jegermoral og erfaringene med "fri jakt" på tirsdager og onsdager. Det ble også en diskusjon om ønsket fra Røros om innlemmelse i villreinområdet. Foto: A. Nyaas Grunneiere i vestre deler av Røros ønsker å være med i Forollhogna villreinområde. Arealet i Røros er på 107 000 dekar, og vil - med nåværende kvotestørrelse - utløse en fellingsrett på cirka 40 dyr årlig. Villreinområdet ble opprettet i 1956 - og klart definert av Landbruksdepartementet. I rettighetshavermøtet på Kvikne i går kveld påpekte to av nemndmedlemmene følgende: "Vi kan ikke si nei til søknaden fra Røros". Av samme mening var områdesekretær Terje Borgos. Brevet fra Landbruksdepartementet blir med andre ord avgjørende når søknaden behandles i villreinnemnda. Ifølge nemndleder Per Ousten vil vedtaket fattes før årsmøtet i Forollhogna villreinområde i mars/april. Tekst:: Arne Nyaas [email protected] Forollhogna villreinområde har per dato et tellende areal på 1.843.181 dekar, som omfatter områder i Midtre Gauldal, Rennebu og Holtålen i Sør-Trøndelag og Os, Tolga og Tynset i Hedmark. Det omsøkte området i Røros har ifølge opplysninger gitt under møtet på Kvikne i går kveld, et tellende areal på 107.000 dekar. Til sammenligning har Holtålen i dag et tellende villreinareal på 368.700 dekar og Os et tellende areal på 220.000 dekar. - Vi har mottatt søknaden fra Røros, og nemnda har diskutert saken i to møter allerede. Vi kommer til å fatte vedtak i god tid før årsmøtet i villreinområdet, bekrefter Per Ousten, som viser til det 54 år gamle brevet fra Landbruksdepartemenet og bekrefter at også han er av samme mening: Søknaden fra Røros må godkjennes.
    [Show full text]
  • Hazard Mapping for Infrastructure Planning in the Arctic
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-2021 Hazard Mapping for Infrastructure Planning in the Arctic Christopher I. Amaddio Follow this and additional works at: https://scholar.afit.edu/etd Part of the Geotechnical Engineering Commons Recommended Citation Amaddio, Christopher I., "Hazard Mapping for Infrastructure Planning in the Arctic" (2021). Theses and Dissertations. 4938. https://scholar.afit.edu/etd/4938 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. HAZARD MAPPING FOR INSTRASTRUCTURE PLANNING IN THE ARCTIC THESIS Christopher I. Amaddio, 1st Lt, USAF AFIT-ENV-MS-21-M-201 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, the Department of Defense, or the United States Government. HAZARD MAPPING FOR INFRASTRUCTURE PLANNING IN THE ARCTIC THESIS Presented to the Faculty Department of Engineering Management Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering Management Christopher I. Amaddio, BS 1st Lt, USAF February 2021 DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
    [Show full text]
  • Permafrost Soils and Carbon Cycling
    SOIL, 1, 147–171, 2015 www.soil-journal.net/1/147/2015/ doi:10.5194/soil-1-147-2015 SOIL © Author(s) 2015. CC Attribution 3.0 License. Permafrost soils and carbon cycling C. L. Ping1, J. D. Jastrow2, M. T. Jorgenson3, G. J. Michaelson1, and Y. L. Shur4 1Agricultural and Forestry Experiment Station, Palmer Research Center, University of Alaska Fairbanks, 1509 South Georgeson Road, Palmer, AK 99645, USA 2Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA 3Alaska Ecoscience, Fairbanks, AK 99775, USA 4Department of Civil and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA Correspondence to: C. L. Ping ([email protected]) Received: 4 October 2014 – Published in SOIL Discuss.: 30 October 2014 Revised: – – Accepted: 24 December 2014 – Published: 5 February 2015 Abstract. Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environ- ment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enor- mous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region’s soil or- ganic carbon (SOC) stocks to changing climatic conditions. In this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile.
    [Show full text]