Mine Waste Covers in Cold Regions MEND Report 1.61.5A

Total Page:16

File Type:pdf, Size:1020Kb

Mine Waste Covers in Cold Regions MEND Report 1.61.5A Mine Waste Covers in Cold Regions MEND Report 1.61.5a This work was done on behalf of MEND and sponsored by: The Mining Association of Canada (MAC) and MEND March 2009 Mine Waste Covers in Cold Regions Prepared for Mine Environment Neutral Drainage Program (MEND) Prepared by SRK Consulting (Canada) Inc. Suite 2200, 1066 West Hastings Street Vancouver, B.C. V6E 3X2 Tel: 604.681.4196 Fax: 604.687.5532 E-mail: [email protected] Web site: www.srk.com March 2009 Authors Maritz Rykaart Daryl Hockley Mine Waste Covers in Cold Regions Page i Executive Summary This report examines phenomena that could affect the performance of soil covers constructed on mine wastes located in cold regions. It reviews the state of knowledge about such phenomena, and their occurrence in existing mine waste covers. It also identifies priorities for research to develop soil cover design and construction methods suitable for cold regions. Soil covers are widely used in the management of mine tailings and waste rock. However, current soil cover design and construction practices are based largely on experience from temperate regions, and on the theoretical basis provided by agricultural soil physics, which is also derived largely from experience in temperate regions. As a result, they do not take into account many potentially important features and processes that are common in cold regions. Several dozen features or processes affecting soils have been identified in cold regions. The most widespread processes are ground freezing and ground ice formation, ground thawing and thaw settlement, and freeze-thaw cycling. Cryoturbation, solifluction, gelifluction and convective cooling can also occur in limited conditions. Combinations of these processes with specific soil or hydrologic conditions can result in terrain features such as ice wedges, pingos, thermokarst, patterned ground, boulder fields, mounds or hummocks, and mudboils, as well as a number of less common features. The rates of these processes can be slow enough that they would not be obvious in current observations of soil covers, but fast enough that they might have significant effects over a cover’s design life. Cold regions also exhibit distinct hydrologic phenomena. The effect of freezing conditions on infiltration is one example of importance to cover design and performance. Other less obvious effects may also be important in particular circumstances. Nearly 100 examples have been found of soil covers either proposed for or constructed on mine wastes in cold regions. Detailed information is seldom available, but it appears that very few of the constructed or proposed covers have been reviewed from a cold regions perspective. The limited cases where cold regions considerations have affected cover design and cover performance are reviewed. There is a need for additional research on fundamental cold regions phenomena, for development of predictive and design tools that take cold regions phenomena into account, and for the development of best practice guidelines. Several large-scale cover trials are currently underway in cold regions. Coordination of those programs offers opportunities to make significant advances in the understanding of the effects of cold regions phenomena on soil cover performance. March 2009 Mine Waste Covers in Cold Regions Page i Résumé Dans ce rapport, l’on examine les phénomènes qui pourraient toucher le rendement des couvertures de sol construites sur des rejets miniers situés dans des régions froides. L’on passe en revue le savoir sur ces phénomènes et leur présence dans les couvertures existantes. L’on identifie aussi les priorités pour la recherche qui vise l’élaboration de méthodes de conception et de construction de couverture de sol qui conviennent aux régions froides. Les couvertures de sol sont très utilisées dans la gestion des résidus miniers et des stériles. Toutefois, les méthodes actuellement exploitées pour concevoir et construire des systèmes de couverture de sol s’inspirent largement de l’expérience provenant des régions tempérées, et aussi des fondements théoriques de la physique des sols appliquée à l’agriculture, une discipline qui, elle aussi, découle grandement de l’expérience accumulée dans les régions tempérées. Par conséquent, ces méthodes ne tiennent pas compte de nombreux processus et caractéristiques éventuellement importants et généralement présents dans les régions froides. Plusieurs douzaines de caractéristiques ou de processus touchant les sols ont été identifiés dans les régions froides. Les processus les plus fréquents sont la congélation du sol et la formation de glace dans les sols, le dégel du sol et le tassement dû au dégel, et le cycle de gel et de dégel. La turbation périglaciaire, la solifluxion, la gélifluxion et le refroidissement par convection se produisent quant à eux dans certaines conditions. La combinaison de ces processus et de certains sols ou de certaines conditions hydrologiques entraîne quelquefois la formation de traits caractéristiques de terrain, par exemple des blocs de glace, des pingos, du thermokarst, des terrains réticulés, des champs de blocs rocheux, des buttes ou des hummocks, et des marmites de boue, ainsi que de caractéristiques moins courantes. La progression de ces processus est quelquefois si lente que les processus sont imperceptibles lors des observations ordinaires des couvertures de sol mais elle peut être si rapide que les processus ont un impact important sur la durée de vie théorique des couvertures. En outre, les régions froides abritent des phénomènes hydrologiques distincts. L’effet du gel sur l’infiltration est un exemple de phénomène important pour la conception et le rendement des couvertures. D’autres effets moins évidents peuvent, eux aussi, s’avérer importants dans des circonstances particulières. L’on a identifié une centaine de couvertures de sol dont la construction sur des rejets miniers situés dans des régions froides a été proposée ou est terminée. De l’information détaillée est rarement disponible, mais il semble que très peu de ces couvertures construites ou proposées aient été examinées pour les régions froides. L’on examine dans le rapport les quelques cas où le lieu, soit une région froide, est entré en ligne de compte dans la conception et le rendement de la couverture. Il y a lieu de poursuivre la recherche sur les phénomènes fondamentaux des régions froides, afin de créer des instruments de prévision et de conception qui tiennent compte des phénomènes particuliers aux régions froides et d’élaborer des lignes directrices sur les meilleures pratiques. Plusieurs essais de couvertures à grande échelle sont en voie d’exécution dans des régions froides. La coordination de ces programmes offre des possibilités de réaliser des progrès importants dans la compréhension des effets, sur le rendement des couvertures de sol, des phénomènes particuliers aux régions froides. March 2009 Mine Waste Covers in Cold Regions Page i Table of Contents Executive Summary ........................................................................................................... i Résumé ............................................................................................................................... i Table of Contents ............................................................................................................... i 1 Introduction .................................................................................................................. 1 1.1 Background ......................................................................................................................... 1 1.2 Acknowledgements ............................................................................................................. 1 1.3 Report Structure.................................................................................................................. 1 2 Cold Regions Phenomena........................................................................................... 2 2.1 Cold Regions....................................................................................................................... 2 2.1.1 Geographic Extent...................................................................................................................2 2.1.2 Distribution of Cold Regions Ground Features and Processes ..............................................3 2.2 Frozen Ground Phenomena................................................................................................ 5 2.2.1 Basics......................................................................................................................................5 2.2.2 Processes................................................................................................................................7 2.2.3 Terrain Features....................................................................................................................12 2.2.4 Rates of Frozen Ground Phenomena ...................................................................................20 2.3 Cold Regions Hydrologic Phenomena .............................................................................. 23 2.3.1 Precipitation...........................................................................................................................23 2.3.2 Snow......................................................................................................................................23 2.3.3 Energy Balance .....................................................................................................................25
Recommended publications
  • Kinikmi Sigum Qanuq Ilitaavut = Wales Inupiaq Sea Ice Dictionary
    Kirjikmi Si gum Qanuq llitaavut Wales Inupiaq Sea Ice Dictionary Iqqaluagigut Agiyagaq (1945—2010) We Cherish the Memory of Herbert Anungazuk (1945- ■2010) •J. tuagikuq The village of Wales, Alaska, as seen from the land-fast ice, tuaq on February 9, 2007. Small pressure ridges, iunilaurat are built on the flat surface of the land-fast ice (tuagikuq) closer to the beach. Photo, Winton Weyapuk, Jr. Kinikmi Sigum Qanuq llitaavut Wales Inupiaq Sea Ice Dictionary Winton Weyapuk, Jr. and Igor Krupnik, compilers Advisers: Pete Sereadlook, Faye Ongtowasruk, and Lawrence Kaplan Editors: Igor Krupnik, Herbert Anungazuk. and Matthew Druckenmiller International Polar Year National Park Service Native Village of Wales Arctic Studies Center 2007-2008 Shared Beringian Heritage Program Wales, Alaska Smithsonian Institution © 2012 by the Arctic Studies Center Smithsonian Institution Washington, D.C. 20013-7012 All rights reserved Printed in the United States of America ISBN 978-0-9673429-3-1 This book may be cited as: Wales Inupiaq Sea Ice Dictionary/Kir)ikmi Sigum Qanuq llitaavut. 2012. Winton Weyapuk, Jr. and Igor Krupnik, compilers. Igor Krupnik, Herbert Anungazuk, and Matthew Druckenmiller, editors. Washington, DC: Arctic Studies Center. Smithsonian Institution. 112 pp. The paper used in this publication meets the minimum requirements of the American National Standard for Information Sciences-Permanence of Paper for Printed Library Materials This project was supported by a grant from the Shared Beringian Heritage Program National Park Service, Alaska Office Volume design: Igor Krupnik and Winton Weyapuk, Jr. Production editor: Allison Maslow This book has been produced for the ‘SIKU - Sea Ice Knowledge and Use’ Project (IPY #166), a part of The International Polar Year 2007-2008 sponsored by The International Council for Science (ICSU) and The World Meteorological Organization (WMO) Front cover: Ice-covered Bering Strait off the Village of Wales, Alaska, February 2007.
    [Show full text]
  • A Guide to Hazard Mitigation Planning for Wisconsin Coastal Communities
    GGUUIIDDEE TTOO HHAAZZAARRDD MMIITTIIGGAATTIIOONN LANNING FOR PPLANNING FOR WWIISSCCOONNSSIINN COOAASSTTAALL C CCOOMMMMUUNNIITTIIEESS Prepared by: Bay-Lake Regional Planning Commission June 2007 GGUUIIDDEE TTOO HHAAZZAARRDD MMIITTIIGGAATTIIOONN PPLLAANNNNIINNGG FFOORR WWIISSCCOONNSSIINN CCOOAASSTTAALL CCOOMMMMUUNNIITTIIEESS Prepared by: Bay-Lake Regional Planning Commission 441 South Jackson Street Green Bay, WI 54301 (920) 448-2820 WCMP Agreement #AD9014-007.42 BLRPC Contract #0601209 Principal Author: Angela M. Pierce, Natural Resources Planner II Acknowledgement Funded by the Wisconsin Coastal Management Program and the National Oceanic and Atmospheric Administration, Office of Ocean and Coastal Resource Management under the Coastal Zone Management Act, Grant #NA06NOS4190183. ABOUT THE BAY-LAKE REGIONAL PLANNING COMMISSION The Bay-Lake Regional Planning Commission was created in April 1972 under section 66.945 of the Wisconsin Statutes as the official area-wide planning agency for northeastern Wisconsin. At the request of seven county boards within the region, Governor Lucey established the Bay-Lake Regional Planning Commission by Executive Order 35. In December 1973, Florence County joined the Commission, bringing the total number of counties within the region to eight. The Commission serves a region in northeastern Wisconsin consisting of the counties of Brown, Door, Florence, Kewaunee, Manitowoc, Marinette, Oconto, and Sheboygan. The Bay-Lake Region is comprised of 185 units of government: 8 counties, 17 cities, 39 villages, 120 towns, and the Oneida Nation of Wisconsin. The total area of the region is 5,433 square miles or 9.7 percent of the area of the State of Wisconsin. The region has over 400 miles of coastal shoreline along Lake Michigan and Green Bay and contains 12 major watershed areas that drain into the waters of Green Bay and Lake Michigan.
    [Show full text]
  • Dicionarioct.Pdf
    McGraw-Hill Dictionary of Earth Science Second Edition McGraw-Hill New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be repro- duced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-141798-2 The material in this eBook also appears in the print version of this title: 0-07-141045-7 All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw- Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decom- pile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent.
    [Show full text]
  • Andrew R. Mahoney
    CURRICULUM VITAE Andrew R. Mahoney Personal information Nationality British Date of Birth 11 January 1977 Address PO Box 83251, Fairbanks, Alaska 99708, USA Phone +1 (907) 474-5382 E-mail [email protected] Website http: //seaice.alaska.edu/gi/people/mahoney Professional preparation 2006 PhD Geophysics, University of Alaska Fairbanks, Fairbanks, AK, USA. 1999 BSc Hons Geophysical Sciences, University of East Anglia, Norwich, UK Appointments 2010- Research Assistant Professor, Geophysical Institute, University of present Alaska Fairbanks 2008-2010 Post Doctoral Fellow, Department of Physics, University of Otago, Dunedin, New Zealand. 2006-2008 Post Doctoral Researcher, National Snow and Ice Data Center, University of Colorado, Boulder, Colorado. 2000-2006 Graduate research assistant, Geophysical Institute, University of Alaska Fairbanks 1999-2000 Field studies tutor, Kingswood Group, Norwich, UK. 1999 Geophysical research assistant, University of East Anglia, Norwich, UK. Research interests My broad field of expertise is sea ice geophysics, but my research interests encompass climate change, coastal dynamics, ice-ocean interaction and the relationship between humans and sea ice. Arctic sea ice is a rapidly changing component of the global climate system and reports of its retreat make frequent headlines in international media. My research interests include the local implications of these changes for the Arctic residents. Sea ice geophysics also has an important role to play in providing data and information to stake holders and policy makers as commercial interests in the Arctic grow. At the opposite end of the world, Antarctic sea ice is not undergoing the same reduction in extent. The two Polar Regions are geographically very different from each other, so a difference should not be surprising.
    [Show full text]
  • Glacial Geology of the Stony Brook-Setauket-Port Jefferson Area1 Gilbert N
    Glacial Geology of the Stony Brook-Setauket-Port Jefferson Area1 Gilbert N. Hanson Department of Geosciences Stony Brook University Stony Brook, NY 11794-2100 Fig. 1 Digital elevation model of Long Island High resolution digital elevation models are available for the State of New York including Long Island. These have a horizontal resolution of 10 meters and are based on 7.5' topographic maps. For those quadrangles with 10' contour intervals, interpolation results in elevations with an uncertainty of about 4'. The appearance is as if one were viewing color-enhanced images of a barren terrain, for example Mars (see Fig. 1). This allows one to see much greater detail than is possible on a standard topographic map. The images shown on this web site have a much lower resolution than are obtainable from the files directly. Digital Elevation Models for Long Island and surrounding area can be downloaded as self extracting zip files at http://www.geo.sunysb.edu/reports/dem_2/dems/ A ca. five foot long version (jpg) of the DEM of Long Island (see above except with scale and north arrow) for printing can be downloaded at this link. A DEM of Long Island (shown above in Fig. 1) in PowerPoint can be downloaded at this link. The geomorphology of Long Island has been evaluated earlier based on US Geological Survey topographic maps (see for example, Fuller, 1914; and Sirkin, 1983). Most of the observations presented here are consistent with previous interpretations. Reference to earlier work is made mainly where there is a significant disagree- ment based on the higher quality of the information obtainable from the DEM's.
    [Show full text]
  • Stratigraphic Signature of the Late Palaeozoic Ice Age in the Parmeener Supergroup of Tasmania, SE Australia, and Inter- Regional Comparisons
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 2010 Stratigraphic signature of the late Palaeozoic Ice Age in the Parmeener Supergroup of Tasmania, SE Australia, and inter- regional comparisons Christopher R. Fielding University of Nebraska-Lincoln, [email protected] Tracy D. Frank University of Nebraska-Lincoln, [email protected] John L. Isbell University of Wisconsin-Milwaukee, [email protected] Lindsey C. Henry University of Wisconsin-Milwaukee Eugene W. Domack Hamilton College, Clinton, NY, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons Fielding, Christopher R.; Frank, Tracy D.; Isbell, John L.; Henry, Lindsey C.; and Domack, Eugene W., "Stratigraphic signature of the late Palaeozoic Ice Age in the Parmeener Supergroup of Tasmania, SE Australia, and inter-regional comparisons" (2010). Papers in the Earth and Atmospheric Sciences. 263. https://digitalcommons.unl.edu/geosciencefacpub/263 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Palaeogeography, Palaeoclimatology, Palaeoecology 298 (2010), pp. 70–90; doi:10.1016/j.palaeo.2010.05.023 Copyright © 2010 Elsevier B.V. Used by permission Submitted September 25, 2009; revised April 20, 2010; accepted May 20, 2010; published online June 1, 2010. Stratigraphic signature of the late Palaeozoic Ice Age in the Parmeener Supergroup of Tasmania, SE Australia, and inter-regional comparisons Christopher R.
    [Show full text]
  • Geologic Site of the Month: Maine's Glacial Moraines: Living on the Edge
    Maine's Glacial Moraines: Living on the Edge Maine Geological Survey Maine Geologic Facts and Localities January, 2000 Maine's Glacial Moraines: Living on the Edge Text by Woodrow Thompson Maine Geological Survey, Department of Agriculture, Conservation & Forestry 1 Maine's Glacial Moraines: Living on the Edge Maine Geological Survey Introduction Toward the end of the "Ice Age," a glacier of vast proportions covered Maine. This was the Laurentide Ice Sheet, which advanced southward out of Canada about 25,000 years ago and remained here for nearly 15,000 years. The slowly flowing ice was thick enough to cover Maine's highest mountains. It swept away much of the evidence of earlier glaciations, eroding both the bedrock and previously existing sediment cover. Many glacial features that we see today were actually left behind during the final northward retreat of the ice sheet, when the pulverized rock debris was released from the melting ice. Even as the ice margin withdrew, internal flow within the glacier continued to transport its sediment load southward toward the edge of the ice sheet. Through a variety of processes, this dirty material was either released directly from the ice, forming a stony deposit called "till," or washed out of the glacier in meltwater streams. The water-laid sediments were deposited as layered accumulations in river valleys, lake basins, and Maine's coastal lowland. They include the majority of our sand and gravel deposits, and the finer silts and clays commonly found near the coast. Maine Geological Survey, Department of Agriculture, Conservation & Forestry 2 Maine's Glacial Moraines: Living on the Edge Maine Geological Survey Introduction The clearest markers of glacial retreat are ridges of sediment called "end moraines," which will be referred to here as simply "moraines" (Figure 1).
    [Show full text]
  • Frost Weathering and Rock Platform Erosion on Periglaciallake Shorelines: a Test of a Hypothesis
    Frost weathering and rock platform erosion on periglaciallake shorelines: a test of a hypothesis RICHARD A. SHAKESBY & JOHN A. MATIHEWS Shakesby, R. A. & Matthews, J. A.: Frost weathering and rock platform erosion on periglacial lake shorelines: a test of a hypothesis. Norsk Geologisk Tidsskrift, Vol. 67, pp. 197-203. Oslo 1987. ISSN 0029-196X. Matthews et al. (1986) hypothesised that rock platforms around a short-lived ice-dammed lake margin in Jotunheimen, southem Norway, bad been rapidly eroded mainly through frost weathering associated with lake-ice development. They proposed a general model accounting for the development of the rock platforms in terms of deep penetration of the annua! freeze-thaw cycle, the movement of unfrozen lake water towards the freezing plane, and the growth of segregation ice in bedrock fissures below lake leve!. This paper presents a test of this hypothesis by observations of the shoreline of the present-day lake, which has been maintained at a lower, stable leve! since about A.D. 1826 when the ice dam was removed. The presence of cliff and platform development at the present lake shore supports and improves the hypothesis. For the modem platform, width measurements (mean 3.6 m, range 1.5-5.75 m) are similar to those for the relict platform, whereas calculated erosion rates (mean 2.2 cm/year, range 0.9-3.6 cm/ year) are overall slightly lower. The depth of water (0.9 m) at the cliff-platformjunction suggested for the formation of the relict platform is modified to 0.6 m in the light of the present results.
    [Show full text]
  • December 12, 2018 Oshkosh Herald
    *****************ECRWSS**** PRST STD U.S. POSTAGE POSTAL CUSTOMER PAID SHAWANO, WI PERMIT NO. 135 DECEMBER 12, 2018 x OSHKOSHHERALD.COM VOLUME 1, ISSUE 49 INSIDE Vehicle fee options get scrutiny resurfacing improvements. serve as a proxy of site development and City panel studies financing At its Dec. 5 meeting the panel recom- corresponding impact on the transporta- method used by Neenah mended the city provide more informa- tion system. The number of ERUs would tion on a mechanism already being imple- dictate the charge to a property. By Tom Ekvall mented by the city of Neenah to finance The rationale for Neenah’s proposal us- Herald contributor its improvements. Neenah sets a fee sim- ing impervious, or paved, areas is that they ilar to an equivalent runoff unit (ERU) can be viewed as an indication of the level The Oshkosh Long Range Finance utility charge, known as a transportation of development and more broadly viewed Committee will continue reviewing its assessment replacement fee (TARF). as an indicator of impact on the transpor- plan to recommend the city implement E-recycling According to a Neenah staff report, the a vehicle registration fee to finance street SEE Vehicle fees ON PAGE 18 Sadoff adds focus on basis for using the ERU measurement is to handling electronics Page 4 Space legend Apollo 8’s Borman dedicates EAA exhibit Page 5 Arena thriller Herd ends losing streak with big OT win Page 14 Girls hockey Photo by Michael Cooney North player Verstegen leads alliance team Special visit Jennifer Meyer’s children, 3-year-old Dylan and 6-year-old Charlie, tell Santa Claus what they would like at a recent Oshkosh Winter Page 17 Farmers Market.
    [Show full text]
  • Mid-Winter Breakout of Landfast Sea Ice and Major Storm Leads to Significant Ice Push Event Along Chukchi Sea Coastline
    feart-08-00344 August 27, 2020 Time: 11:43 # 1 ORIGINAL RESEARCH published: 27 August 2020 doi: 10.3389/feart.2020.00344 Mid-Winter Breakout of Landfast Sea Ice and Major Storm Leads to Significant Ice Push Event Along Chukchi Sea Coastline Reyce Bogardus1*, Christopher Maio1*, Owen Mason2, Richard Buzard1, Andrew Mahoney3 and Cary de Wit4 1 Arctic Coastal Geoscience Laboratory (ACGL), University of Alaska Fairbanks, Fairbanks, AK, United States, 2 Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder, Boulder, CO, United States, 3 Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, United States, 4 Geography Program, University of Alaska Fairbanks, Fairbanks, AK, United States During the winter of 2016, anomalous sea ice conditions and a powerful storm culminated in a destructive erosion event along the Chukchi Sea coastline of Cape Espenberg, Alaska. This event is commonly referred to as an “ice push” or “ivu,” the Inupiat word for an ice ridging event. In this article, we report the process and impact of this event by combining traditional ecological knowledge, news accounts, Edited by: Annett Bartsch, meteorological data, remote sensing, and ground surveys. The midwinter detachment b.geos, Austria of shorefast ice was caused by a low-pressure system and wind-driven swell that Reviewed by: destabilized shorefast ice, while northerly winds developed an open-water lead offshore Aleksey Maslakov, Lomonosov Moscow State University, to the eventual impact area. These conditions preceded the impact of an extratropical Russia cyclone on December 31, 2016, when powerful southerly winds and the second largest George Tanski, storm surge in Kotzebue Sound since at least 2003 led to the compressional failure Vrije Universiteit Amsterdam, Netherlands of the ice cover under uniaxial loading perpendicular to the southern coastline of the *Correspondence: Cape, resulting in the ice push event.
    [Show full text]
  • Frost-Weathering Model 5.2 Soil Production Function J
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Earth Surf. Dynam. Discuss., 3, 285–326, 2015 www.earth-surf-dynam-discuss.net/3/285/2015/ doi:10.5194/esurfd-3-285-2015 ESURFD © Author(s) 2015. CC Attribution 3.0 License. 3, 285–326, 2015 This discussion paper is/has been under review for the journal Earth Surface Dynamics (ESurfD). Frost-weathering Please refer to the corresponding final paper in ESurf if available. model The periglacial engine of mountain J. L. Andersen et al. erosion – Part 1: Rates of frost cracking Title Page and frost creep Abstract Introduction Conclusions References J. L. Andersen1, D. L. Egholm1, M. F. Knudsen1, J. D. Jansen2, and S. B. Nielsen1 Tables Figures 1Department of Geoscience, Aarhus University, Høegh-Guldbergs Gade 2, 8000 Aarhus C, Denmark 2Institute of Earth and Environmental Science, University of Potsdam, Germany J I Received: 30 March 2015 – Accepted: 1 April 2015 – Published: 22 April 2015 J I Correspondence to: J. L. Andersen ([email protected]) Back Close Published by Copernicus Publications on behalf of the European Geosciences Union. Full Screen / Esc Printer-friendly Version Interactive Discussion 285 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract ESURFD With accelerating climate cooling in the late Cenozoic, glacial and periglacial erosion became more widespread on the surface of the Earth. The resultant shift in erosion 3, 285–326, 2015 patterns significantly changed the large-scale morphology of many mountain ranges 5 worldwide. Whereas the glacial fingerprint is easily distinguished by its characteristic Frost-weathering fjords and U-shaped valleys, the periglacial fingerprint is more subtle but potentially model prevailing in some landscape settings.
    [Show full text]
  • Berichte 739 2020
    739 Berichte zur Polar- und Meeresforschung 2020 Reports on Polar and Marine Research Focus Siberian Permafrost – Terrestrial Cryosphere and Climate Change International Symposium Institute of Soil Science – Universität Hamburg 23 – 27 March 2020 Edited by E.M. Pfeiffer, T. Eckhardt, L. Kutzbach, I. Fedorova, L. Tsibizov & C. Beer Die Berichte zur Polar- und Meeresforschung werden The Reports on Polar and Marine Research are issued vom Alfred-Wegener-Institut, Helmholtz-Zentrum für by the Alfred Wegener Institute, Helmholtz Centre for Polar- und Meeresforschung (AWI) in Bremerhaven, Polar and Marine Research (AWI) in Bremerhaven, Deutschland, in Fortsetzung der vormaligen Berichte Germany, succeeding the former Reports on Polar zur Polarforschung herausgegeben. Sie erscheinen in Research. They are published at irregular intervals. unregelmäßiger Abfolge. Die Berichte zur Polar- und Meeresforschung ent- The Reports on Polar and Marine Research contain halten Darstellungen und Ergebnisse der vom AWI presentations and results of research activities in selbst oder mit seiner Unterstützung durchgeführten polar regions and in the seas either carried out by the Forschungsarbeiten in den Polargebieten und in den AWI or with its support. Meeren. Die Publikationen umfassen Expeditionsberichte der Publications comprise expedition reports of the ships, vom AWI betriebenen Schiffe, Flugzeuge und Statio- aircrafts, and stations operated by the AWI, research nen, Forschungsergebnisse (inkl. Dissertationen) des results (incl. dissertations) of the Institute and the Archiv Instituts und des Archivs für deutsche Polarforschung, für deutsche Polarforschung, as well as abstracts and sowie Abstracts und Proceedings von nationalen und proceedings of national and international conferences internationalen Tagungen und Workshops des AWI. and workshops of the AWI. Die Beiträge geben nicht notwendigerweise die Auf- The papers contained in the Reports do not necessarily fassung des AWI wider.
    [Show full text]