Ing Cor!Paa L. T' Ron, L Ts Rrll.Cl Ostl Uct!Ir'p. Ar.'D Present. This L: A'so

Total Page:16

File Type:pdf, Size:1020Kb

Ing Cor!Paa L. T' Ron, L Ts Rrll.Cl Ostl Uct!Ir'p. Ar.'D Present. This L: A'so A~C MIEn4X Rvt3ENGR'!~Qual If N. Mvid Kirrcrcry >~q.ratrment of Mtcrbals Rierce and Encline~~ing viassachu~mtts Inst ' tute af Tiecharrlociy Caribxll+Ae p %3ssachusc~tts iltudiea of the charao terlSt iCS Of ice and rnacrOSCoplc computatians are useful. Ni ver- de to tnaat iori properties were f irst ca r r ied theless, a lot of progress has beer. n.aoe th' to tal.ucidate the behavior of glaciers, and it last several years, and Dr. pr.rtchard w 1' nas only been in the last few decades that inform us atoi.t. the oresent start Of affairs. i.hs properties of sea r.r e have been seri rnusly Sea ic behavior can also be approached studied. During the c:arly yearS oe yrorld 4'ar f'rom the poirit of view of rcateriril s - ropcr- the rani;e of British airCraft was inac'ne- tiis in which the characte.istics rrf the c- gus'te for protection of the North Atlarrtlc are related to its crystallirie structure, itS saa lanes and several Suggeetl'ons were made cor!paa l. t' ron, l ts rrll.cl Ostl uct!ir'p. ar.'d f:l uaing natural lce aS t.ernparary landing ir:fluence Of vari ous impurit leS whi.ch n ay be f'e 'da, lrowever, icebergs are notoriously present. This l: a'so a complex subject unstable and the prospect of. a landrng fie]d SlnCe iCe fsrma ln VariOuS WayS. ri'e -ar. flipping Over during an apprOach was nat very expect that the prof>ert.ic:s of sea cr whi cli =omfortablo. sea ice platforms are al.so COritain;." a gOOd deal Of entr apperl brine Will inadequate. Aa a result a. substantial er fOrt be Similar ta the higher purity, l,irger gr in va 8 Q ev o 'te di 'to d ev e 1 opI rl g a n ic c e s 'tr uc 'tii x t- size giLacier ice carved from the shc re ~ of would be mare useful. A new ice alloy Green'and and Ellesmers Island. E'nce its .'=s devciloped called "pykretr. "! and prel 'm- mcchanica' properties ara of interest ir. r-arl desi<lns carried out, Howe.er, by the temperature ra~ge quite close to its melting ' ir. e it gct that: f.ar the exigencies of. thr point, terrpe rats,re ard strain rate are al so Wirlr Situaticn harl ichanq -'il a!!d t he pin Jeot impar:tant variablCs. SinCe sc rersl ..rlabl=s "=is not carried to ..orir.let.lon. This story inf1 uence the resulting properties. a cer .a iri semess to be sympt.orna t ic o f our up-arid-down camp lexi ty rouse be adrlressed and this . s tire ai pros- h t.i arr.tic: endr.avors. That w'as task which Dr. tiecks and Dr. Keller ha; e cer a inl'; the case when i n 196 ' we carr '' ecl u"ide r taken. succeaaf ul experlmer,t.al landings crf the crit ir e Air Force i nventory of aircraft. T.ia 1 O, Cr'eenlanrl, lne l ucl i ng Caria truC t ed '-,arking area suitable for the heaviest airs- a f r. Boon the reaf ter t hs Air Force lest l;trar'eSt. Let us hopr,. that our preach a-cti.c policy wil 1 incl.udge a sus ainr-.d ef fort ar understanding the propr'rtles and beha. iors arctrc 'Ce, The papers presented this ter nsan will make it. clear that their'e l.s still mcuch to learn. fn this session we shall look to the behaVisr rrf arCtie Sea lCe f rOm tWO cluite dif fe erst points of view, First, .' c tchard will take- a r..acroscopic view of sea 'ce behavior on the scale of hundrecls and t =.ris of kilometers, modeirng its behavior an terms of the imposed f'orc es and character- istic ice properties, The problem is a rifficult one since the forces actinc ice are complex a.,d cove f rom dif ferent ori.giins.which can be evaluated and descr ibed .=- ai'ltatlve'y, but their quanti atlve es'tl. :.a> ion iS Still mOSt. dlf lcult, Similarly, .lie react;ion of sea ice to the oppased f ' cs rs a complex otic and depends ori the sour e of the: ice and time, teni era+ are, ar:d ta -"- al can sideratior.s that are riios' if i" lt to Simpllfv ir. a fo m for whi h 223 LrtODELINGOF ARCTIC SEA ICE FIELOS Robert S. Pritchard Flow Industries, Inc . Research and Technology Oivision Kent, 'Hashington 98031 USA The capability to model sea ice dynamics behavior ily through the formation of open water, which in- has increased substantially during the last decade, creases heat transfer fram the ocean to the atmos- TTse literature deSCribing maCrOSCale and meSOSCale phere. The ice stress is not of direct physical ~cling in the Arctic Basin, especially the Beaufort concern . On mesoscales of tens to hundreds of ki lo- Sea. the Chukchi Sea and Bering Strait region, and meters, both ice motions and stresses are important. tile Bal tiC, Bering and Greenland Seas is reviewed. Ice motions would influence an oil spill by trans- Basic contributions to model development are ident- porting it. Also' the large-scale ice stress could. sf led with the intent of determining the essential be transmitted shoreward to generate forces on off- s i ~ i larities in approach. Features needed to des- shore drilling structures. The geophysical scale cribe ice behavior in a physically acceptable way are forces from winds and currents over wide areas of the discussed. Although models have come into more con- ice pack cause its motion . These effects can be «n use, many of these models have not incorporated realized at large distances vrhen internal tee 'the results of recent studies of small-scale pro- stresses are high . These large-scale forces and ceSSeS. The Sea ice madeling cOmmunity is Challenged stresses rannot be measured dirertly. To compare to take this better understanding of individual phy- with observed behavior, our attention must be focused sical processes and to incorporate it into the models, on the motions, the only directly observable vari- able, On small scales of a hundred meters and less, these forces affect the design and use of offshore 1 . INTROoUCTIOaL drilling structures. Artifici al i sl ands, docks, breakwaters, and conical platforms must be designed poring the 'last decade, the unders,tanding «sea to withstand the forces that sea ice ran apply. For ice behavior has increased substantially. As in scales between a hundred meters and ten kilon ters, other engineering and scientific fields, modeling of sea ice behavior i s difficult to categorize. There this behavior has been able to keep pace because of is not a c.lear separation of scales ano several the great advances in computer hardware and soft~are problems fal 1 within the mesoscale and small -scale end. to a lesser extent, because of advances i n nu- bounds. mricaI solution techniques for solving complicated In current sea iCe mOdelS, the phySical behavicr prcrblems. The techniques needed to simulate sea ice of sea ice is described by accounting for mass, mo- tarehavior are some of the most sophisticated in use mentum and energy balance and the constitutive laws anywhere today. relating deformation to stres,s and thickness redis- The purpose af this revie~ is to survey the mod- tribution and thermal growth. In this review, the ~ 1s currently in use and to examine and compare the i r numeri cal schemes used to sol ve the mathemati ca 1 basic components. In this way, the differences and, model s are discussed brief ly. Computational consid- even more, the similarities in the var ious approaches erations include the choice of a tagrangian or Euler- Can be 'Identified. It is hoped that this analysis ian descr iption, a finite element or finite dif- mi 11 encourage and help other investigators to focus ference approximation. and an implicit or explicit ran improving our understanding and description of sea time integration. tce processes and thereby adapt and extend present This review is not complete in the sense that not acrcle'I s . all ice modeling publications are discussed. Atten- Models are used in a diverse r ange of applica- tionn is focused on mesoscale and smaller modeli ng in tions. extending from the need for more fundaraental whirh stress, velocity and ice conditions are equally scientific knowledge to a variety of specific opera- important- past reviews by Rothrock [1,2j and Hibler t i trna I needs. These app1i cat tons include under- [3,4] on macroscale modeling are updated, but models standing climate dynamics, determining oil spill tra- developed primarily for studying climate dynarrics are jectories, estimating loads that might be applied to only included as they apply to mesoscale problems. a f ixed structure operating within the ice cover, Also, small-s cele engineering studies are ignored. estimating noise generated by the ice cover, or warn- These engineering studies will, in the future, provide ing of possible future ice invasions dur ing petroleum input to modeling individuaL processes, but, at tnrs dr i I I ing operations in open-water con di ti ons . Time tirae, have not been included in larger scale models. and space scales in each of these problems differ ftany valuable engineering studies are to be found irr s 1g ni f i cant I y. proceedings of the POACand OTC confer ences as well On macroscales of hundreds of kilometers, sea ice as the numerous recent ASrtEand ASCE conferenc s with bractav i Or af fects climate dynamic s.
Recommended publications
  • Kinikmi Sigum Qanuq Ilitaavut = Wales Inupiaq Sea Ice Dictionary
    Kirjikmi Si gum Qanuq llitaavut Wales Inupiaq Sea Ice Dictionary Iqqaluagigut Agiyagaq (1945—2010) We Cherish the Memory of Herbert Anungazuk (1945- ■2010) •J. tuagikuq The village of Wales, Alaska, as seen from the land-fast ice, tuaq on February 9, 2007. Small pressure ridges, iunilaurat are built on the flat surface of the land-fast ice (tuagikuq) closer to the beach. Photo, Winton Weyapuk, Jr. Kinikmi Sigum Qanuq llitaavut Wales Inupiaq Sea Ice Dictionary Winton Weyapuk, Jr. and Igor Krupnik, compilers Advisers: Pete Sereadlook, Faye Ongtowasruk, and Lawrence Kaplan Editors: Igor Krupnik, Herbert Anungazuk. and Matthew Druckenmiller International Polar Year National Park Service Native Village of Wales Arctic Studies Center 2007-2008 Shared Beringian Heritage Program Wales, Alaska Smithsonian Institution © 2012 by the Arctic Studies Center Smithsonian Institution Washington, D.C. 20013-7012 All rights reserved Printed in the United States of America ISBN 978-0-9673429-3-1 This book may be cited as: Wales Inupiaq Sea Ice Dictionary/Kir)ikmi Sigum Qanuq llitaavut. 2012. Winton Weyapuk, Jr. and Igor Krupnik, compilers. Igor Krupnik, Herbert Anungazuk, and Matthew Druckenmiller, editors. Washington, DC: Arctic Studies Center. Smithsonian Institution. 112 pp. The paper used in this publication meets the minimum requirements of the American National Standard for Information Sciences-Permanence of Paper for Printed Library Materials This project was supported by a grant from the Shared Beringian Heritage Program National Park Service, Alaska Office Volume design: Igor Krupnik and Winton Weyapuk, Jr. Production editor: Allison Maslow This book has been produced for the ‘SIKU - Sea Ice Knowledge and Use’ Project (IPY #166), a part of The International Polar Year 2007-2008 sponsored by The International Council for Science (ICSU) and The World Meteorological Organization (WMO) Front cover: Ice-covered Bering Strait off the Village of Wales, Alaska, February 2007.
    [Show full text]
  • Ice Ic” Werner F
    Extent and relevance of stacking disorder in “ice Ic” Werner F. Kuhsa,1, Christian Sippela,b, Andrzej Falentya, and Thomas C. Hansenb aGeoZentrumGöttingen Abteilung Kristallographie (GZG Abt. Kristallographie), Universität Göttingen, 37077 Göttingen, Germany; and bInstitut Laue-Langevin, 38000 Grenoble, France Edited by Russell J. Hemley, Carnegie Institution of Washington, Washington, DC, and approved November 15, 2012 (received for review June 16, 2012) “ ” “ ” A solid water phase commonly known as cubic ice or ice Ic is perfectly cubic ice Ic, as manifested in the diffraction pattern, in frequently encountered in various transitions between the solid, terms of stacking faults. Other authors took up the idea and liquid, and gaseous phases of the water substance. It may form, attempted to quantify the stacking disorder (7, 8). The most e.g., by water freezing or vapor deposition in the Earth’s atmo- general approach to stacking disorder so far has been proposed by sphere or in extraterrestrial environments, and plays a central role Hansen et al. (9, 10), who defined hexagonal (H) and cubic in various cryopreservation techniques; its formation is observed stacking (K) and considered interactions beyond next-nearest over a wide temperature range from about 120 K up to the melt- H-orK sequences. We shall discuss which interaction range ing point of ice. There was multiple and compelling evidence in the needs to be considered for a proper description of the various past that this phase is not truly cubic but composed of disordered forms of “ice Ic” encountered. cubic and hexagonal stacking sequences. The complexity of the König identified what he called cubic ice 70 y ago (11) by stacking disorder, however, appears to have been largely over- condensing water vapor to a cold support in the electron mi- looked in most of the literature.
    [Show full text]
  • A Primer on Ice
    A Primer on Ice L. Ridgway Scott University of Chicago Release 0.3 DO NOT DISTRIBUTE February 22, 2012 Contents 1 Introduction to ice 1 1.1 Lattices in R3 ....................................... 2 1.2 Crystals in R3 ....................................... 3 1.3 Comparingcrystals ............................... ..... 4 1.3.1 Quotientgraph ................................. 4 1.3.2 Radialdistributionfunction . ....... 5 1.3.3 Localgraphstructure. .... 6 2 Ice I structures 9 2.1 IceIh........................................... 9 2.2 IceIc........................................... 12 2.3 SecondviewoftheIccrystalstructure . .......... 14 2.4 AlternatingIh/Iclayeredstructures . ........... 16 3 Ice II structure 17 Draft: February 22, 2012, do not distribute i CONTENTS CONTENTS Draft: February 22, 2012, do not distribute ii Chapter 1 Introduction to ice Water forms many different crystal structures in its solid form. These provide insight into the potential structures of ice even in its liquid phase, and they can be used to calibrate pair potentials used for simulation of water [9, 14, 15]. In crowded biological environments, water may behave more like ice that bulk water. The different ice structures have different dielectric properties [16]. There are many crystal structures of ice that are topologically tetrahedral [1], that is, each water molecule makes four hydrogen bonds with other water molecules, even though the basic structure of water is trigonal [3]. Two of these crystal structures (Ih and Ic) are based on the same exact local tetrahedral structure, as shown in Figure 1.1. Thus a subtle understanding of structure is required to differentiate them. We refer to the tetrahedral structure depicted in Figure 1.1 as an exact tetrahedral structure. In this case, one water molecule is in the center of a square cube (of side length two), and it is hydrogen bonded to four water molecules at four corners of the cube.
    [Show full text]
  • Arxiv:2004.08465V2 [Cond-Mat.Stat-Mech] 11 May 2020
    Phase equilibrium of liquid water and hexagonal ice from enhanced sampling molecular dynamics simulations Pablo M. Piaggi1 and Roberto Car2 1)Department of Chemistry, Princeton University, Princeton, NJ 08544, USA a) 2)Department of Chemistry and Department of Physics, Princeton University, Princeton, NJ 08544, USA (Dated: 13 May 2020) We study the phase equilibrium between liquid water and ice Ih modeled by the TIP4P/Ice interatomic potential using enhanced sampling molecular dynamics simulations. Our approach is based on the calculation of ice Ih-liquid free energy differences from simulations that visit reversibly both phases. The reversible interconversion is achieved by introducing a static bias potential as a function of an order parameter. The order parameter was tailored to crystallize the hexagonal diamond structure of oxygen in ice Ih. We analyze the effect of the system size on the ice Ih-liquid free energy differences and we obtain a melting temperature of 270 K in the thermodynamic limit. This result is in agreement with estimates from thermodynamic integration (272 K) and coexistence simulations (270 K). Since the order parameter does not include information about the coordinates of the protons, the spontaneously formed solid configurations contain proton disorder as expected for ice Ih. I. INTRODUCTION ture forms in an orientation compatible with the simulation box9. The study of phase equilibria using computer simulations is of central importance to understand the behavior of a given model. However, finding the thermodynamic condition at II. CRYSTAL STRUCTURE OF ICE Ih which two or more phases coexist is particularly hard in the presence of first order phase transitions.
    [Show full text]
  • River Ice Management in North America
    RIVER ICE MANAGEMENT IN NORTH AMERICA REPORT 2015:202 HYDRO POWER River ice management in North America MARCEL PAUL RAYMOND ENERGIE SYLVAIN ROBERT ISBN 978-91-7673-202-1 | © 2015 ENERGIFORSK Energiforsk AB | Phone: 08-677 25 30 | E-mail: [email protected] | www.energiforsk.se RIVER ICE MANAGEMENT IN NORTH AMERICA Foreword This report describes the most used ice control practices applied to hydroelectric generation in North America, with a special emphasis on practical considerations. The subjects covered include the control of ice cover formation and decay, ice jamming, frazil ice at the water intakes, and their impact on the optimization of power generation and on the riparians. This report was prepared by Marcel Paul Raymond Energie for the benefit of HUVA - Energiforsk’s working group for hydrological development. HUVA incorporates R&D- projects, surveys, education, seminars and standardization. The following are delegates in the HUVA-group: Peter Calla, Vattenregleringsföretagen (ordf.) Björn Norell, Vattenregleringsföretagen Stefan Busse, E.ON Vattenkraft Johan E. Andersson, Fortum Emma Wikner, Statkraft Knut Sand, Statkraft Susanne Nyström, Vattenfall Mikael Sundby, Vattenfall Lars Pettersson, Skellefteälvens vattenregleringsföretag Cristian Andersson, Energiforsk E.ON Vattenkraft Sverige AB, Fortum Generation AB, Holmen Energi AB, Jämtkraft AB, Karlstads Energi AB, Skellefteå Kraft AB, Sollefteåforsens AB, Statkraft Sverige AB, Umeå Energi AB and Vattenfall Vattenkraft AB partivipates in HUVA. Stockholm, November 2015 Cristian
    [Show full text]
  • Calving Processes and the Dynamics of Calving Glaciers ⁎ Douglas I
    Earth-Science Reviews 82 (2007) 143–179 www.elsevier.com/locate/earscirev Calving processes and the dynamics of calving glaciers ⁎ Douglas I. Benn a,b, , Charles R. Warren a, Ruth H. Mottram a a School of Geography and Geosciences, University of St Andrews, KY16 9AL, UK b The University Centre in Svalbard, PO Box 156, N-9171 Longyearbyen, Norway Received 26 October 2006; accepted 13 February 2007 Available online 27 February 2007 Abstract Calving of icebergs is an important component of mass loss from the polar ice sheets and glaciers in many parts of the world. Calving rates can increase dramatically in response to increases in velocity and/or retreat of the glacier margin, with important implications for sea level change. Despite their importance, calving and related dynamic processes are poorly represented in the current generation of ice sheet models. This is largely because understanding the ‘calving problem’ involves several other long-standing problems in glaciology, combined with the difficulties and dangers of field data collection. In this paper, we systematically review different aspects of the calving problem, and outline a new framework for representing calving processes in ice sheet models. We define a hierarchy of calving processes, to distinguish those that exert a fundamental control on the position of the ice margin from more localised processes responsible for individual calving events. The first-order control on calving is the strain rate arising from spatial variations in velocity (particularly sliding speed), which determines the location and depth of surface crevasses. Superimposed on this first-order process are second-order processes that can further erode the ice margin.
    [Show full text]
  • Sea Ice Growth and Decay a Remote Sensing Perspective Sea Ice Growth & Decay
    Sea Ice Growth And Decay A Remote Sensing Perspective Sea Ice Growth & Decay Add snow here Loss of Sea Ice in the Arctic Donald K. Perovich and Jacqueline A. Richter-Menge Annual Review of Marine Science 2009 1:1, 417-441 Sea Ice Remote Sensing Method Physical Property Sensor Type Geophysical Variable Passive Microwave Surface Emissivity Radiometer Sea Ice Concentration ~ 1 – 100 GHz Sea Ice Classification Sea Ice Motion Thin Sea Ice Thickness (Snow Depth) Active Microwave Backscatter SAR Sea Ice Classification Sea Ice Motion Very Thin Sea Ice Thickness Scatterometer Sea Ice Type Altimeter Sea Ice Thickness (Snow Depth) Optical Spectral Albedo Spectrometer Floe Sizes Distribution Melt Pond Coverage Melt Pond Depth Infrared Surface Emissivity Radiometer Sea Ice Surface Temperature Thin Sea Ice Thickness Laser Backscatter Altimeter Sea Ice Thickness What are the main processes of sea ice growth & decay? How do they affect sea ice remote sensing? How to observe these processes independently? Formation Redistribution Snow Surface Melt & Growth Processes Annual Cycle of Sea Ice Sea Ice Extent Area covered at least with 15% sea ice (according to passive microwave data) Long-Term Sea Ice Trends Sea Ice Extent Sea Ice Thickness Passive Microwave Time Series Submarines, Moorings, Airborne Surveys Arctic Antarctic No comparable sea ice thickness data record Sea Ice Age & Type Sea Ice Age Sea Ice Type Model with observed ice drift & concentration Passive & Active Microwave Formation Redistribution Snow Surface Melt & Growth Processes Early Sea Ice
    [Show full text]
  • Ice Flow Impacts the Firn Structure of Greenland's Percolation Zone
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2019 Ice Flow Impacts the Firn Structure of Greenland's Percolation Zone Rosemary C. Leone University of Montana, Missoula Follow this and additional works at: https://scholarworks.umt.edu/etd Part of the Glaciology Commons Let us know how access to this document benefits ou.y Recommended Citation Leone, Rosemary C., "Ice Flow Impacts the Firn Structure of Greenland's Percolation Zone" (2019). Graduate Student Theses, Dissertations, & Professional Papers. 11474. https://scholarworks.umt.edu/etd/11474 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. ICE FLOW IMPACTS THE FIRN STRUCTURE OF GREENLAND’S PERCOLATION ZONE By ROSEMARY CLAIRE LEONE Bachelor of Science, Colorado School of Mines, Golden, CO, 2015 Thesis presented in partial fulfillMent of the requireMents for the degree of Master of Science in Geosciences The University of Montana Missoula, MT DeceMber 2019 Approved by: Scott Whittenburg, Dean of The Graduate School Graduate School Dr. Joel T. Harper, Chair DepartMent of Geosciences Dr. Toby W. Meierbachtol DepartMent of Geosciences Dr. Jesse V. Johnson DepartMent of Computer Science i Leone, RoseMary, M.S, Fall 2019 Geosciences Ice Flow Impacts the Firn Structure of Greenland’s Percolation Zone Chairperson: Dr. Joel T. Harper One diMensional siMulations of firn evolution neglect horizontal transport as the firn column Moves down slope during burial.
    [Show full text]
  • Genesis and Geographical Aspects of Glaciers - Vladimir M
    HYDROLOGICAL CYCLE – Vol. IV - Genesis and Geographical Aspects of Glaciers - Vladimir M. Kotlyakov GENESIS AND GEOGRAPHICAL ASPECTS OF GLACIERS Vladimir M. Kotlyakov Institute of Geography, Russian Academy of Sciences, Moscow, Russia Keywords: Chionosphere, cryosphere, equilibrium line, firn line, glacial climate, glacier, glacierization, glaciosphere, ice, seasonal snow line, snow line, snow-patch Contents 1. Introduction 2. Properties of natural ice 3. Cryosphere, glaciosphere, chionosphere 4. Snow-patches and glaciers 5. Basic boundary levels of snow and ice 6. Measures of glacierization 7. Occurrence of glaciers 8. Present-day glacierization of the Arctic Glossary Bibliography Biographical Sketch Summary There exist ten crystal variants of ice and one amorphous form in Nature, however only one form ice-1 is distributed on the Earth. Ten other ice variants steadily exist only under a certain combinations of pressure, specific volume and temperature of medium, and those are not typical for our planet. The ice density is less than that of water by 9%, and owing to this water reservoirs are never totally frozen., Thus life is sustained in them during the winter time. As a rule, ice is much cleaner than water, and specific gas-ice compounds called as crystalline hydrates are found in ice. Among the different spheres surrounding our globe there are cryosphere (sphere of the cold), glaciosphere (sphere of snow and ice) and chionosphere (that part of the troposphere where the annual amount of solid precipitation exceeds their losses). The chionosphere envelopes the Earth with a shell 3 to 5 km in thickness. In the present epoch, snow and ice cover 14.2% of the planet’s surface and more than half of the land surface.
    [Show full text]
  • Comparison of Remote Sensing Extraction Methods for Glacier Firn Line- Considering Urumqi Glacier No.1 As the Experimental Area
    E3S Web of Conferences 218, 04024 (2020) https://doi.org/10.1051/e3sconf/202021804024 ISEESE 2020 Comparison of remote sensing extraction methods for glacier firn line- considering Urumqi Glacier No.1 as the experimental area YANJUN ZHAO1, JUN ZHAO1, XIAOYING YUE2and YANQIANG WANG1 1College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China 2State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources/Tien Shan Glaciological Station, Chinese Academy of Sciences, Lanzhou, China Abstract. In mid-latitude glaciers, the altitude of the snowline at the end of the ablating season can be used to indicate the equilibrium line, which can be used as an approximation for it. In this paper, Urumqi Glacier No.1 was selected as the experimental area while Landsat TM/ETM+/OLI images were used to analyze and compare the accuracy as well as applicability of the visual interpretation, Normalized Difference Snow Index, single-band threshold and albedo remote sensing inversion methods for the extraction of the firn lines. The results show that the visual interpretation and the albedo remote sensing inversion methods have strong adaptability, alonger with the high accuracy of the extracted firn line while it is followed by the Normalized Difference Snow Index and the single-band threshold methods. In the year with extremely negative mass balance, the altitude deviation of the firn line extracted by different methods is increased. Except for the years with extremely negative mass balance, the altitude of the firn line at the end of the ablating season has a good indication for the altitude of the balance line.
    [Show full text]
  • Frazil-Ice Nucleation by Mass-Exchange Processes at the Air- Water Interface
    J ournal oIG/acio logy, V o !. 19, No. 8 1, 197 7 FRAZIL-ICE NUCLEATION BY MASS-EXCHANGE PROCESSES AT THE AIR- WATER INTERFACE By T. E. O ST E RKAMP':' (Geophysical Institute, University of Alaska, Fairbanks, A laska 99701, U .S.A. ) AosTRACT. T he physical requirem ents for proposed frazil-ice nucleati on theori es are reviewed in the light of recent observations on frazil-ice forma tion. It is concluded that sponta neous heterogeneous nucleation in a thin supercooled surface la yer of wa ter is not a via ble mechanism for frazil-ice nucleation. E fforts to observe crys ta l multiplicati on b y b order ice have n o t been successful. The mass-excha nge m echanism proposed by O sterka mp and others ( 1974) has been gen era li zed to include splashing, wind spray, bubble bursting, evapo ra tion, a nd ma teria l tha t originates a t a dista nce from the strea m (e. g. snow, frost, ice pa rticles, cold orga nic m a teria l, a nd cold soil pa rticles). I t is shown that these mass-exchange processes ca n account for frazil-ice nucleation under a wide ra nge of phys ical a nd meteorological conditions. It is suggested that secondary nuclea tion may be responsible for large frazil-ice concentra tions in streams and rivers. R EsuME. JVllcieatioll de la glace dll ''.fra zil'' par des processus d'echallges de masses a I'illlerface air ell eall. O n a rev u les conditions physiques requises pa r les theories p our la nucleation d e la glace du " frazil " a la lumicre de recentes observations sur cette forma ti on.
    [Show full text]
  • Theoretical Design of a Non-Cyclic Cooling System Using Pykrete As a Cooling Material and Considering the System As a Heat Exchanger
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 Theoretical Design of a Non-Cyclic Cooling System using Pykrete as a Cooling Material and Considering the System as a Heat Exchanger Divyashree Deore1, Sarthak Sharma2 B.E. Mechanical Engineering, Sinhgad Academy of Engineering, Pune, Maharashtra, India Abstract: A non-cyclic cooling unit was theoretically designed with supply of air similar to that of commercially available A.C. unit producing one ton of refrigeration. The minimum temperature for the design was considered to be 16℃. The element used for cooling the air is Pykrete. The various stable temperatures of Pykrete were experimentally found. Also, the cooling capacity of designed unit was found theoretically. The working principle of this system is similar to that of Thermal Energy Storage system. The calculations were carried out considering this system would act as a heat exchanger. Keywords: Non-Cyclic Cooling System, Pykrete, Stable Surface temperatures, Thermal Energy Storage System, Heat Exchanger 1. Introduction many months later, at individual building, multiuser building, district, town or even regional scale depending on In this method Pykrete is used for keeping the space at the specific technology. As examples: energy demand can be temperature below the surrounding temperature. Pykrete is a balanced between day time and night time; summer heat frozen composite material made of approximately 14 percent from solar collectors can be stored inter-seasonally for use in sawdust or some other form of wood pulp (such as paper) winter; and cold obtained from winter air can be provided and 86 percent ice by weight (6 to 1 by weight).
    [Show full text]