https://doi.org/10.5194/tc-2020-118 Preprint. Discussion started: 2 June 2020 c Author(s) 2020. CC BY 4.0 License. Evaluation of a new snow albedo scheme for the Greenland ice sheet in the regional climate model RACMO2 Christiaan T. van Dalum1, Willem Jan van de Berg1, Stef Lhermitte2, and Michiel R. van den Broeke1 1Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, The Netherlands 2Department of Geoscience & Remote Sensing, Delft University of Technology, Delft, The Netherlands Correspondence: Christiaan van Dalum (
[email protected]) Abstract. Snow and ice albedo schemes in present day climate models often lack a sophisticated radiation penetration scheme and do not explicitly include spectral albedo variations. In this study, we evaluate a new snow albedo scheme in the regional climate model RACMO2 for the Greenland ice sheet, version 2.3p3, that includes these processes. The new albedo scheme uses the two-stream radiative transfer in snow model TARTES and the spectral-to-narrowband albedo module SNOWBAL, 5 version 1.2. Additionally, the bare ice albedo parameterization has been updated. The snow and ice broadband and narrow- band albedo output of the updated version of RACMO2 is evaluated using PROMICE and K-transect in-situ data and MODIS remote-sensing observations. Generally, the modeled narrowband and broadband albedo is in very good agreement with satel- lite observations, leading to a negligible domain-averaged broadband albedo bias smaller than 0.001 for the interior. Some discrepancies are, however, observed close to the ice margin. Compared to the previous model version, RACMO2.3p2, the 10 broadband albedo is considerably higher in the bare ice zone during the ablation season, as atmospheric conditions now alter the bare ice broadband albedo.