People and Things

Total Page:16

File Type:pdf, Size:1020Kb

People and Things People and things Hideki Yukawa many years. In 1943 he received became a centre of international the Cultural Medal, the highest renown. He then moved to Naples. award in Japan, and six years later An original and rationalistic thinker the Nobel Physics Prize. and a gifted experimentalist, he To commemorate this Prize, the continually provided stimulus for Institute for Fundamental Physics further research. was set up at Kyoto University, and Yukawa remained as Director Bruno Tallini for many years. In 1946 he inau­ • gurated the journal 'Progress of With the premature death of Bruno Theoretical Physics' which brought Tallini in September, the European Japanese theoretical physics to particle physics community has world attention, and was its Editor lost one of its most active mem­ until his death. A visit to CERN in bers. He had been involved for the late 1950s impressed on him more than two decades in bubble the importance of high energy ac­ chamber experiments, dividing his celerators, an influence which time between data taking at CERN eventually led to the establishment and film analysis at Saclay. Lately of the Japanese KEK Laboratory. he served at CERN as Chairman of Throughout his life he was a great the BEBC Users Committee and promoter of peace and was a lead­ then as a member of the SPS Ex­ ing figure in a movement to abolish periments Committee. In the last nuclear weapons. few years his interests turned to­ wards testing the predictions of Ettore Pancini grand unified theories and he played an important role in devel­ Hideki Yukawa Italian physicist Ettore Pancini died oping the instrumentation for the prematurely on 1 September. In new underground laboratory being Last month saw the death of 1946, with Marcello Conversi and built in the Frejus tunnel in France. Hideki Yukawa at the age of 74, Oreste Piccioni, he discovered that after five years of grave illness the cosmic ray meson (the muon), Earlier this year a symposium was bravely borne. In 1949 he became contrary to general belief at the held at Yale University to celebrate the first Japanese to receive a time, could not be the particle pos­ the sixtieth birthday of Feza Gur- Nobel Prize. He graduated in phy­ tulated by Hideki Yukawa as the sey, well known for his many im- sics from Kyoto in 1932 along carrier of the short range nuclear with Sin-itiro Tomonaga, who went force. By establishing that the Maurice Goldhaber (left) was one of those on to receive the Nobel award in muon behaves as a heavy electron, who took part in a recent symposium at Yale to celebrate the sixtieth birthday of 1965. His contributions to physics these experiments opened up the theoretician Feza Gursey (right). ranged over a wide field, covering field of leptonic physics. This work atomic structure, beta decay, nu­ also led to the idea of a universal clear structure and field theory. weak interaction, and pointed the However he is best known for his way to the study of mesic atoms. theory of nuclear forces, first pre­ After graduating from Padua, in sented in 1934, based on the ex­ 1940 Ettore Pancini went to Rome change of particles predicted to to study cosmic ray physics, a be several hundred times heavier career which was soon interrupted than the electron. These particles, by the war in which he went on the pions, were discovered in cos­ to play an important role. In 1950 mic ray experiments in 1947, and he was appointed Professor of the Yukawa model remained a Experimental Physics at Genoa, cornerstone of nuclear theory for which during his ten year residence CERN Courier, November 1981 409 portant contributions to theoretical Scientific Policy Committee. At haven. Commissioning of the physics. Among those contributing DESY, he has been a Director, Pre­ X—ray ring of the NSLS is immi­ were Y. Nambu, L. A. Radicati, sident of the Directorate and Chair­ nent. M. Klein, F. J. Dyson and M. Gold- man of the Scientific Council. He A group at the University of haber. The proceedings of the continues to be active in machine Science and Technology of China, symposium will appear in a forth­ development, one of his recent Hefei, led by Pao Chung-mou, is coming dedicated Festschrift vo­ achievements being the remarkable planning an 800 MeV electron stor­ lume. 'neutron bottle' at the Institut age ring as a synchrotron radiation Laue-Langevin, Grenoble. For source, it would provide high inten­ Wolfgang Paul is retiring as head many years Professor Paul has sity ultraviolet and soft X—rays out of Bonn University's Physics Insti­ been one of the most influential to about 2 keV. A wiggler magnet tute. Soon after arriving at Bonn European physicists in ensuring is being designed to give higher in 1952, he was encouraged by support for high energy physics energy radiation, extending the Heisenberg to begin construction and for the CERN and DESY Labo­ of the 500 MeV (now 2.5 GeV) ratories. The progress of the LEP electron synchrotron, the first Euro­ project in particular owes a great The new User's Executive Committee at pean machine to use the alternating deal to his commitment. Fermilab. Members include; seated Jeff Appel (Secretary, Fermilab}, Dick Gustafson gradient technique. At CERN he (Chairman, Michigan), Jim Walker (Fermilab) has served variously as Leader of standing — Mike Shaevitz (Columbia), Frank Synchrotron radiation news Turkot (Fermilab), Mel Schwartz (Stanford), Nuclear Physics Division, Chairman Maris Abolins (Michigan State), Sharon of the Electronic Experiments Com­ At the end of August a circulating Hagopian (Florida State), Jerry Rosen mittee, Federal Germany's delegate electron beam was achieved for (Northwestern), Gaurang Yodh (Maryland), Larry Jones (Michigan), Tom Romanowski to CERN Council (a position he the first time in the VUV (vacuum (Ohio State). Vince Peterson (Hawaii) is also continues to hold) and as both ultraviolet) ring of the US National on the Committee. member and Chairman of the Synchrotron Light Source at Brook- (Photo Fermilab) 410 CERN Courier, November 19g1 In August, circulating beam was obtained in the vacuum ultraviolet storage ring of the new National Synchrotron Light Source at Brookhaven. To celebrate the occasion, NSLS staff posed in front of their building. (Photo Brookhaven) available range out to about fifty theorists and experimenters The papers will be grouped under WkeV. are expected to participate, Topics four headings — Design aspects In July, a first section of the linac will include present and planned of accelerators, Digital control of injector operated at 30 MeV. Pro­ experiments on proton decay and accelerators, Operational aspects totype bending and quadrupole neutron-antineutron oscillations as and experimental data processing, magnets plus vacuum chamber well as theoretical and cosmolog- Special applications of accelerators and other components have also ical aspects of baryon nonconser­ (medicine, industry, synchrotron been built. The site selected near vation. Further details from radiation, etc.). Chairman of the the University has space for future Dr. V. S. Narasimham, Secretary, Organizing Committee is Prof. R. expansion, such as a 2.5 GeV elec­ ICOBAN, TIFR, Homi Bhabha Road, Zelazny, and further information tron machine for nuclear physics. Bombay — 400 005, India. is available from Miss J. Clszews- The work is supported by the ka, R. C. C. CYFRONET, Institute Chinese Academy of Science and From 17—23 February an Inter­ of Nuclear Research, 05—400 about a hundred scientists and national Conference on Instrumen­ Otwock—Swierk, Poland. engineers from the University and tation for Colliding Beam Physics elsewhere are involved. A design will be held at the Stanford Linear report for the synchrotron radiation Accelerator Center. It is the second Electron laser success facility is being prepared and it is in a series which started at Novo­ hoped to have authorization in sibirsk in 1977 and will cover re­ A team at Los Alamos, led by about six months. The Chinese cent technological developments Charles Brau, has demonstrated scientists greatly appreciate con­ in the construction and operation the principle of a high efficiency tacts of all kinds with their col­ of detectors for colliding beam free electron laser. A 20 MeV free leagues elsewhere. experiments. Further details from electron laser amplified the light Ruth Thor Nelson, SLAC Bin 14, from a conventional carbon dioxide Box 4349, Stanford, CA 94305, laser with a much higher proportion Conferences USA. of electron energy being converted From 11—14 January, an Inter­ into laser light than can be national Colloquium on Baryon A Europhysics Conference on achieved with conventional mag­ Nonconservation (ICOBAN) will be 'Computing in Accelerator Design netic fields. The team is preparing . held at the Tata Institute of Funda­ and Operation' will be held in War­ a complete system for operation mental Research, Bombay. Over saw from 21-24 September 1982. in 1983 and Brau has predicted CERN Courier, November 1981 411 Seen here being checked out in the CERN Computer Centre is the new IBM 3081, which is now working alongside the existing IBM 370/168. The IBM 3032 processor previously in use has been sold. (Photo CERN 144.9.81) that all the remaining physics ques­ tion marks over free electron lasers (deemed 'presently the sexiest things in accelerator physics' at the Washington Accelerator Con­ ference in March) will be removed during the next year. Work on the development of electron lasers is also under way at several other research centres. Argonne Microtron project Work has started on a prototype magnet to confirm the design of a 2 GeV electron microtron under study at Argonne for use in nuclear and particle physics research. The design has two 25 MeV linacs in parallel linked via a novel magnet system, providing 2 GeV electrons after forty circuits through the two machines.
Recommended publications
  • Muons for Time-Dependent Studies in Magnetism
    Muons for time-dependent studies in magnetism D. Andreica, Faculty of Physics, Babeş-Bolyai University Cluj-Napoca, ROMANIA The European School on Magnetism, 22.08-01.09 2011, Târgovişte, ROMANIA Muons for time-dependent studies in magnetism Content: Introduction: muon properties; history. SR method: muon beams; sample environment; Muons for solid state physics & examples. ESM 2011-Târgovişte, ROMANIA Muons for time-dependent studies in magnetism In a few words: Polarized muons (S=1/2) are implanted into the sample The spin of the muon precesses around the local magnetic field The muons decay (2.2 s) by emitting a positron preferentially along the spin direction. The positrons are counted/recorded in hystograms along certain directions = the SR spectra = the physics of your sample. ESM 2011-Târgovişte, ROMANIA Muons for time-dependent studies in magnetism It belongs to the family of NMR, EPR, PAC, neutron scattering and Mossbauer experimental methods. ESM 2011-Târgovişte, ROMANIA Muons for time-dependent studies in magnetism ESM 2011-Târgovişte, ROMANIA Muons for time-dependent studies in magnetism -Small magnetic probe. Spin: 1/2, Mass: m = 206.7682838(54) me = 0.1126095269(29) mp -Charge: +-e - Muon beam 100% polarized → possibility to perform ZF measurements - Can be implanted in all type of samples - Gyromagnetic ratio: = 2 x 13.553882 (0.2 ppm) kHz/Gauss → senses weak magnetism. - Allows independent determination of the magnetic volume and of magnetic moment. - Possibility to detect disordered magnetism (spin glass) or short range magnetism. How ? ESM 2011-Târgovişte, ROMANIA Muons for time-dependent studies in magnetism The muon decay into an electron and two neutrinos after an average lifetime of = 2.19703(4) s: + + e + e + The decay is highly anisotropic.
    [Show full text]
  • A Hidden Treasure on Computer Science Pre-History in Pisa: the CSCE Collection
    Parallel Session Biagioni and Giannini A Hidden Treasure on Computer Science Pre-History in Pisa: the CSCE Collection Stefania Biagioni and Silvia Giannini, ISTI-CNR, Institute for the Science and Technologies of Information, National Research Council, Italy Abstract The collection of the Center for the Study of Electronic Computers (CSCE) contains the scientific documentation produced by the staff and associate members of the Center. The CSCE was established by the University of Pisa with the specific purpose of designing and building the first electronic computer entirely built in Italy: the CEP, standing for “Pisan Electronic Computer”. In recent times we have carried out the analysis, the description and the digitization of these historical documents, stored in paper copy at our library, and turned them into an Open Access digital archive freely available at http://csce.isti.cnr.it/. The most important historical events The history of the CSCE started at the beginning of the ‘50s, when the municipal and provincial administrations of Pisa, Lucca and Livorno granted the University of Pisa a significant amount of money (150 million liras) to be used for the realization of an important scientific device. The original idea was to build an electrosynchrotron. The studies about the construction of this electrosynchrotron began in February 1953 at the Institute of Physics of the University of Pisa, and were about to finish when a bid by the University of Rome, one of the project partners, to have the project transferred to Frascati, near Rome, was accepted; this transfer meant that the amount originally granted to the University of Pisa became available for a new project.
    [Show full text]
  • Sensitivity Physics. D KAONS, Or
    A PERIODICAL OF PARTICLE PHYSICS WINTER 1995 VOL. 25, NUMBER 4 Editors RENE DONALDSON, BILL KIRK Contributing Editor MICHAEL RIORDAN Editorial Advisory Board JAMES BJORKEN, GEORGE BROWN, ROBERT N. CAHN, DAVID HITLIN, JOEL PRIMACK, NATALIE ROE, ROBERT SIEMANN Illustrations page 4 TERRY ANDERSON Distribution CRYSTAL TILGHMAN The Beam Line is published quarterly by the Stanford Linear Accelerator Center, PO Box 4349, Stanford, CA 94309. Telephone: (415) 926-2585 INTERNET: [email protected] FAX: (415) 926-4500 Issues of the Beam Line are accessible electronically on uayc ou the World Wide Web at http://www.slac.stanford.edu/ pubs/beamline/beamline.html SLAC is operated by Stanford University under contract with the U.S. Department of Energy. The opinions of the authors do not necessarily reflect the policy of the Stanford Linear Accelerator Center. Cover: Martin Perl (left) and Frederick Reines (center) receive the 1995 Nobel Prize in physics from His Majesty the King of Sweden at the awards ceremony last December. (Photograph courtesy of Joseph Peri) Printed on recycled paper tj) . CONTENTS FEATURES "We conclude that the signature e-/. events cannot be explained either by the production and decay of any presently known particles 4 Discovery of the Tau or as coming from any of the well- THE ROLE OF MOTIVATION & understood interactions which can TECHNOLOGY IN EXPERIMENTAL conventionally lead to an e and a PARTICLE PHYSICS gu in the final state. A possible ex- One of this year's Nobel Prize in physics planation for these events is the recipients describes the discovery production and decay of a pair of of the tau lepton in his 1975 new particles, each having a mass SLAC experiment.
    [Show full text]
  • OCR Document
    Curriculum vitae prof. Sergio P. Ratti Sergio P. Ratti was born in Garlate (Lecco) sept. 5th 1934. Married to Amelia Corinna Aimi Sons. Alessandro G.G. born aug. 6th, 1962, in Evanston Ill. USA Michele, born jan 30th 1965, in Milano, Italy Scientifc High School in Milano. BS 1953 Laurea in Physics, University of Milano 1957 Qualification in General Physics, 1963. Career: Since nov 1st 1972: Full Professor in Experimental Physics; University of Pavia Dean of the Graduate School in Physics (since 1981) Dean Graduate Schools of the University: (1981-1990) + 2006 - Assistant professor University of Milano 1958-1959 Associate professor University of Milano 1960-1972. Research associate Northwestern University, Evanston 1961-1962 Visiting professor Northwestern University 1966 Oxford University 1976 Rutgers State University of New Jersey; 1979 Permanent visiting scientist: CERN, Geneva, 1970-71 Visiting scientist: CERN, Geneva (since 1965) FERMILAB, (since 1979). Awards: Giovanni Gentile jr. prize for Physics: 1958 Angelo Della Riccia (Italo-Suisse foundation) price for Phyiscs: 1971 Medal of merit: Italian Physical Society: 2005 Membership: Italian Physical Society European Physical Society American Geosciences Union Ministero dell’Istruzione Università e Ricerca (MIUR): National University Council (CUN): Member (1997-2006) and member of the Disciplinary Court (2006). European Academy for Economic and Cultural Relations. Editing: Director of the Journal Scientifica Acta Director of the serie “Fisica e Scienze esatte” (Ed. Franco Angeli, Milano
    [Show full text]
  • A Nature of Science Guided Approach to the Physics Teaching of Cosmic Rays
    A Nature of Science guided approach to the physics teaching of Cosmic Rays Dissertation zur Erlangung des akademischen Grades Doktorin der Philosophie (Dr. phil. { Doctor philosophiae) eingereicht am Fachbereich 4 Mathematik, Naturwissenschaften, Wirtschaft & Informatik der Universit¨atHildesheim vorgelegt von Rosalia Madonia geboren am 20. August 1961 in Palermo 2018 Schwerpunkt der Arbeit: Didaktik der Physik Tag der Disputation: 21 Januar 2019 Dekan: Prof. Dr. M. Sauerwein 1. Gutachter: Prof. Dr. Ute Kraus 2. Gutachter: Prof. Dr. Peter Grabmayr ii Abstract This thesis focuses on cosmic rays and Nature of Science (NOS). The first aim of this work is to investigate whether the variegated aspects of cosmic ray research -from its historical development to the science topics addressed herein- can be used for a teaching approach with and about NOS. The efficacy of the NOS based teaching has been highlighted in many studies, aimed at developing innovative and more effective teaching strategies. The fil rouge that we propose unwinds through cosmic ray research, that with its century long history appears to be the perfect topic for a study of and through NOS. The second aim of the work is to find out what knowledge the pupils and students have regarding the many aspect of NOS. To this end we have designed, executed, and analyzed the outcomes of a sample-based investigation carried out with pupils and students in Palermo (Italy), T¨ubingenand Hildesheim (Germany), and constructed around an open-ended ques- tionnaire. The main goal is to study whether intrinsic differences between the German and Italian samples can be observed. The thesis is divided in three parts.
    [Show full text]
  • Edoardo Amaldi 1908-89
    Edoardo Amaldi 1908-89 Edoardo Amaldi, right, with Gilberto Bernar- dini at a CERN Council session in 1965. Edoardo Amaldi, one of the driving forces of European science and a pioneer of CERN, died on 5 Decem• ber. He began his career in the 1930s with Enrico Fermi in Rome, where he helped discover that slow neutrons were more readily cap• tured in target nuclei. After the premature death of Et- tore Majorana and the decision of Fermi and other prominent Italian physicists to emigrate in the 1930s, Amaldi took essential steps to maintain the spirit of Ital• ian physics. Gian Carlo Wick was invited to take up the Rome chair left vacant after the departure of Fermi. Gilberto Bernardini at Bolog• na commuted regularly to the Ital• ian capital to continue the cosmic ray tradition pioneered by Bruno Rossi. Under their guidance, dra• matic wartime research exploits un• had led the small but vigorous ture. It took many years before fi• der difficult conditions nevertheless group of scientists and politicians nal agreement on the latter was made important contributions to who promoted the idea of a Euro• reached, but it was symbolic that physics, culminating in the epic pean Laboratory in the early Amaldi was President of the CERN 1946 discovery of the muon by 1950s, and it was fitting that he Council when the SPS was finally Marcello Conversi, Ettore Pancini held the position of Secretary Gen• approved in 1971. Subsequently find Oreste Piccioni. eral when CERN formally came into he was a regular visitor, still in• In 1955, while the experiment of being in 1954.
    [Show full text]
  • Ritorno a Chicago: Enrico Fermi E La Nascita Della Fisica Delle Alte Energie Nel Secondo Dopoguerra (1946-1954)
    Ritorno a Chicago: Enrico Fermi e la nascita della fisica delle alte energie nel secondo dopoguerra (1946-1954) Giulio Maltese1 Introduzione: Fermi e gli “anni Cinquanta” Nella storia della fisica delle particelle, non molto dopo la fine della Seconda Guerra Mondiale cominciò un periodo al quale ci si può genericamente riferire come agli “anni Cinquanta”. Durò dal 1947 al 1963, e attraverso di esso “la fisica delle particelle elementari divenne adulta e passò attraverso ai trionfi e ai dolori della sua adolescenza. Cominciato con la scoperta dei pioni carichi nei raggi cosmici, il periodo finì con la consapevolezza che i costituenti fondamentali degli adroni sono i quarks. Questi anni videro l’affermazione della teoria quantistica dei campi nell’elettrodinamica quantistica (QED) rinormalizzata, solo per vederla rigettata come schema teorico per le interazioni forti e deboli. Videro anche il concetto di simmetria emergere come caratteristica fondamentale della fisica, per assistere poi alla sua caduta nella rivoluzione della parità. I ricercatori scoprirono particelle così diverse da ogni altra particella allora nota da coniare per esse l’appellativo “strane” trovando poi proprietà inaspettate nel comportamento di interazioni note da tempo. Gli anni Cinquanta furono un periodo di scompiglio intellettuale, dove nella fisica teorica cambiarono mode e atteggiamenti.”2 Enrico Fermi fu uno dei personaggi principali della prima metà di questo periodo. Dei quasi sedici anni che trascorse negli Stati Uniti dalla fuga dall’Europa nel dicembre 1938 fino alla sua morte prematura nel 1954, le sue imprese scientifiche più note sono la realizzazione della prima reazione a catena (2 dicembre 1942) e il test della prima bomba atomica (16 luglio 1945), avvenute rispettivamente presso il Metallurgical Laboratory di Chicago e nel deserto di Alamogordo, vicino al laboratorio di Los Alamos, nel New Mexico.
    [Show full text]
  • QUANTUM FIELD THEORY from QED to the Standard Model Silvan S
    P1: GSM 0521571995C19 0521571995-NYE March 6, 2002 13:59 19 QUANTUM FIELD THEORY From QED to the Standard Model Silvan S. Schweber Until the 1980s, it was usual to tell the story of the developments in physics during the twentieth century as “inward bound” – from atoms, to nuclei and electrons, to nucleons and mesons, and then to quarks – and to focus on conceptual advances. The typical exposition was a narrative beginning with Max Planck (1858–1947) and the quantum hypothesis and Albert Einstein (1879–1955) and the special theory of relativity, and culminating with the formulation of the standard model of the electroweak and strong interac- tions during the 1970s. Theoretical understanding took pride of place, and commitment to reductionism and unification was seen as the most impor- tant factor in explaining the success of the program. The Kuhnian model of the growth of scientific knowledge, with its revolutionary paradigm shifts, buttressed the primacy of theory and the view that experimentation and instrumentation were subordinate to and entrained by theory.1 The situation changed after Ian Hacking, Peter Galison, Bruno Latour, Simon Schaffer, and other historians, philosophers, and sociologists of science reanalyzed and reassessed the practices and roles of experimentation. It has become clear that accounting for the growth of knowledge in the physical sciences during the twentieth century is a complex story. Advances in physics were driven and secured by a host of factors, including contingent ones. Furthermore, it is often difficult to separate the social, sociological, and political factors from the technical and intellectual ones. In an important and influential book, Image and Logic, published in 1997, Peter Galison offered a framework for understanding what physics was about in the twentieth century.
    [Show full text]
  • Arxiv:1909.00679V1 [Physics.Hist-Ph] 2 Sep 2019 1Cresti M., Loria A
    Oral History Interview with Marcello Cresti by Alessandro De Angelis, August 2019 Born in Grosseto, 26 April 1928, Marcello Cresti graduated in Physics in 1950 at the University of Pisa by attending the Scuola Normale Superiore, and became professor of Experimental Physics in Padua in 1965. His research focused on the physics of cosmic rays and elementary particles. In 1951, working at the mountain observatory built by the Padua research group at Pian di Fedaia, close to the Marmolada mountain, at an altitude of 2000 m a.s.l., he developed and used a system of overlapping Wilson chambers that allowed an analysis of particles produced by cosmic rays. With this device, in collaboration with Arturo Loria and Guido Zago, he obtained results on the extended air showers of cosmic radiation and on the production of pions and strange particles.1 As other mountain observatories, the Fedaia Laboratory had an important role in establishing international collaborations with other cosmic ray groups in Europe. In 1955 he worked at the Max Planck Institute for Physics in G¨ottingen,directed by Werner Heisenberg, to analyze the data obtained, developing a technique for reconstructing events that used one of the first electronic computers, built in that Institute by Heinz Billing in the early 1950s. During his stay in G¨ottingen, he collaborated with Martin Deutschmann who brought to the Fedaia observatory a multiplate cloud chamber2 and also established a relationship with Klaus Gottstein, who later led the Max Planck cosmic ray group and with whom he later collaborated in Berkeley. In 1956/57 he worked at the UCRL (University of California Radiation Laboratory) in Berkeley under the direction of Luis W.
    [Show full text]
  • Environmental Setting, Impacts and Mitigation Measures
    CHAPTER 4 Environmental Setting, Impacts and Mitigation Measures Approach to the Analysis of Impacts This chapter consists of 12 individual sections that describe the existing environmental setting and evaluate the environmental impacts of the proposed demolition of the Bevatron and the structure housing it, Building 51. Scope of the Environmental Evaluation In accordance with Appendix G of the CEQA Guidelines and the UC CEQA Handbook, the potential environmental effects of the proposed 2020 LRDP are analyzed for the following environmental issue areas: • Aesthetics • Air Quality • Biological Resources • Cultural Resources • Geology, Seismicity and Soils • Hazardous Materials • Hydrology and Water Quality • Land Use • Noise • Public Services • Transportation and Traffic • Utilities and Service System Agricultural resources, population and housing, and mineral resources are discussed only in the Notice of Preparation (see Appendix A). Format of Impact Analysis Each of the 12 sections in this chapter includes a brief Introduction that describes the approach to the analysis of the topic at hand; a description of the existing Setting, including a discussion of existing physical conditions and of the regulatory environment for the issues under analysis; and an analysis of Impacts and Mitigation Measures. Demolition of Building 51 and the Bevatron IV-1 ESA / 204442 Draft Environmental Impact Report IV. Environmental Setting, Impacts and Mitigation Measures The impacts analysis begins by setting for the relevant Significance Criteria by which impacts will be judged. In general, these criteria are derived from Appendix G of the state CEQA Guidelines and from the UC CEQA Handbook. Because this is a tiered EIR (that is, the analyses are founded upon the analysis in the Lab’s 1987 LRDP EIR, as amended), the impacts discussion next presents a summary of relevant impacts anticipated and analyzed in the programmatic LRDP EIR, as amended, as well as mitigation measures from the LRDP EIR, as amended.
    [Show full text]
  • People and Things
    People and things the detector so as not to interfere (below and page 1), Council Presi­ USSR Academy of Sciences with the detection of particles pro­ dent Josef Rembser announced duced in SLC's electron-positron that Federal German President Ri­ collisions. The USSR Academy of Sciences chard von Weizsàcker had Each section of the octagonal has elected CERN Director General awarded Schopper the Comman­ steel barrel surrounding the coil is a Carlo Rubbia, together with Sam der's Cross of the Order of Merit of weld-up of fourteen 5 cm-thick Ting, leader of the L3 experiment the Federal Republic of Germany steel plates with 2.5 cm gaps, each for CERN's new LEP electron-posi­ (Grosses Verdienstkreuz des Ver- pilled with flat limited-streamer tron collider, Wolfgang (Tief ) Pa- dienstordens der Bundesrepublik chambers to detect penetrating nofsky, former Director of SLAC, Deutschland). muons and measure remnants of and Zhou Guangzhao, Director of showers from the large liquid argon the Academia Sinica, Beijing, as calorimeter. This system together Foreign Members. with analogous components in the CERN elections and appointments two endcaps has already been in­ stalled. Once the large liquid argon calo­ At its meeting in December, CERN Honours for Schopper] rimeter is completely installed by Council elected A m finn Graue (Nor­ spring, the cylindrical shell of the way) as Chairman of Finance Com­ Cherenkov ring-imaging detector Former CERN Director General Her- mittee, replacing Jan Bezemer (Ne­ slides in, followed by the 2-metre wig Schopper has been awarded therlands). Georges Via nés (France) diameter central drift chamber.
    [Show full text]
  • CERN Courier – Digital Edition Welcome to the Digital Edition of the December 2013 Issue of CERN Courier
    I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 3 N UMBER 1 0 D ECEMBER 2 0 1 3 CERN Courier – digital edition Welcome to the digital edition of the December 2013 issue of CERN Courier. This edition celebrates a number of anniversaries. Starting with the “oldest”, 2013 saw the centenary of the birth of Bruno Pontecorvo, whose life and Towards the contributions to neutrino physics were celebrated with a symposium in Rome in September. Moving forwards, it is the 50th anniversary of the Institute for intensity frontier High Energy Physics in Protvino, Russia, and also of CESAR – CERN’s first storage ring, which saw the first beam in December 1963 and paved the way for the LHC. More recently, a new network for mathematical and theoretical physics started up 10 years ago, re-establishing connections between scientists in the Balkans. At the same time, the longer-standing CERN School of Computing began a phase of reinvigoration. There is also a selection of books for more relaxed reading during the festive season. To sign up to the new-issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. JUBILEE ALICE SCIENCE IN IHEP, Protvino, Forward muons celebrates its join the upgrade THE BALKANS EDITOR: CHRISTINE SUTTON, CERN 50th anniversary programme The story behind a DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p28 p6 physics network p21 CERNCOURIER www. V OLUME 5 3 N UMBER 1 0 D ECEMBER 2 0 1 3 CERN Courier December 2013 Contents Covering current developments in high-energy physics and related fi elds worldwide CERN Courier is distributed to member-state governments, institutes and laboratories affi liated with CERN, and to their personnel.
    [Show full text]