Owen Chamberlain Papers, 1941-2006
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Date: To: September 22, 1 997 Mr Ian Johnston©
22-SEP-1997 16:36 NOBELSTIFTELSEN 4& 8 6603847 SID 01 NOBELSTIFTELSEN The Nobel Foundation TELEFAX Date: September 22, 1 997 To: Mr Ian Johnston© Company: Executive Office of the Secretary-General Fax no: 0091-2129633511 From: The Nobel Foundation Total number of pages: olO MESSAGE DearMrJohnstone, With reference to your fax and to our telephone conversation, I am enclosing the address list of all Nobel Prize laureates. Yours sincerely, Ingr BergstrSm Mailing address: Bos StU S-102 45 Stockholm. Sweden Strat itddrtSMi Suircfatan 14 Teleptelrtts: (-MB S) 663 » 20 Fsuc (*-«>!) «W Jg 47 22-SEP-1997 16:36 NOBELSTIFTELSEN 46 B S603847 SID 02 22-SEP-1997 16:35 NOBELSTIFTELSEN 46 8 6603847 SID 03 Professor Willis E, Lamb Jr Prof. Aleksandre M. Prokhorov Dr. Leo EsaJki 848 North Norris Avenue Russian Academy of Sciences University of Tsukuba TUCSON, AZ 857 19 Leninskii Prospect 14 Tsukuba USA MSOCOWV71 Ibaraki Ru s s I a 305 Japan 59* c>io Dr. Tsung Dao Lee Professor Hans A. Bethe Professor Antony Hewlsh Department of Physics Cornell University Cavendish Laboratory Columbia University ITHACA, NY 14853 University of Cambridge 538 West I20th Street USA CAMBRIDGE CB3 OHE NEW YORK, NY 10027 England USA S96 014 S ' Dr. Chen Ning Yang Professor Murray Gell-Mann ^ Professor Aage Bohr The Institute for Department of Physics Niels Bohr Institutet Theoretical Physics California Institute of Technology Blegdamsvej 17 State University of New York PASADENA, CA91125 DK-2100 KOPENHAMN 0 STONY BROOK, NY 11794 USA D anni ark USA 595 600 613 Professor Owen Chamberlain Professor Louis Neel ' Professor Ben Mottelson 6068 Margarldo Drive Membre de rinstitute Nordita OAKLAND, CA 946 IS 15 Rue Marcel-Allegot Blegdamsvej 17 USA F-92190 MEUDON-BELLEVUE DK-2100 KOPENHAMN 0 Frankrike D an m ar k 599 615 Professor Donald A. -
Particle Detectors Lecture Notes
Lecture Notes Heidelberg, Summer Term 2011 The Physics of Particle Detectors Hans-Christian Schultz-Coulon Kirchhoff-Institut für Physik Introduction Historical Developments Historical Development γ-rays First 1896 Detection of α-, β- and γ-rays 1896 β-rays Image of Becquerel's photographic plate which has been An x-ray picture taken by Wilhelm Röntgen of Albert von fogged by exposure to radiation from a uranium salt. Kölliker's hand at a public lecture on 23 January 1896. Historical Development Rutherford's scattering experiment Microscope + Scintillating ZnS screen Schematic view of Rutherford experiment 1911 Rutherford's original experimental setup Historical Development Detection of cosmic rays [Hess 1912; Nobel prize 1936] ! "# Electrometer Cylinder from Wulf [2 cm diameter] Mirror Strings Microscope Natrium ! !""#$%&'()*+,-)./0)1&$23456/)78096$/'9::9098)1912 $%&!'()*+,-.%!/0&1.)%21331&10!,0%))0!%42%!56784210462!1(,!9624,10462,:177%&!(2;! '()*+,-.%2!<=%4*1;%2%)%:0&67%0%&!;1&>!Victor F. Hess before his 1912 balloon flight in Austria during which he discovered cosmic rays. ?40! @4)*%! ;%&! /0%)),-.&1(8%! A! )1,,%2! ,4-.!;4%!BC;%2!;%,!D)%:0&67%0%&,!(7!;4%! EC2F,1-.,%!;%,!/0&1.)%21331&10,!;&%.%2G!(7!%42%!*H&!;4%!A8)%,(2F!FH2,04F%!I6,40462! %42,0%))%2! J(! :K22%2>! L10&4(7! =4&;! M%&=%2;%0G! (7! ;4%! E(*0! 47! 922%&%2! ;%,! 9624,10462,M6)(7%2!M62!B%(-.04F:%40!*&%4!J(!.1)0%2>! $%&!422%&%G!:)%42%&%!<N)42;%&!;4%20!;%&!O8%&3&H*(2F!;%&!9,6)10462!;%,!P%&C0%,>!'4&;!%&! H8%&! ;4%! BC;%2! F%,%2:0G! ,6! M%&&42F%&0! ,4-.!;1,!1:04M%!9624,10462,M6)(7%2!1(*!;%2! -
The Donald A. Glaser Papers, 1943-2013, Bulk 1949-2003
http://oac.cdlib.org/findaid/ark:/13030/c8n01cbt No online items Finding Aid for the Donald A. Glaser Papers, 1943-2013, bulk 1949-2003 Bianca Rios and Mariella Soprano California Institute of Technology. Caltech Archives ©2017 1200 East California Blvd. Mail Code B215A-74 Pasadena, CA 91125 [email protected] URL: http://archives.caltech.edu/ Finding Aid for the Donald A. 10285-MS 1 Glaser Papers, 1943-2013, bulk 1949-2003 Language of Material: English Contributing Institution: California Institute of Technology. Caltech Archives Title: The Donald A. Glaser papers creator: Glaser, Donald Arthur Identifier/Call Number: 10285-MS Physical Description: 15.97 Linear feet (41 boxes) Date (inclusive): 1918-2016, bulk 1949-2003 Abstract: Donald Arthur Glaser (1926 – 2013) earned his PhD in Physics and Mathematics from the California Institute of Technology in 1950 and won the 1960 Nobel Prize in Physics for his invention of the bubble chamber. He then changed his research focus to molecular biology and went on to co-found Cetus Corporation, the first biotechnology company. In the 1980s he again switched his focus to neurobiology and the visual system. The Donald A. Glaser papers consist of research notes and notebooks, manuscripts and printed papers, correspondence, awards, biographical material, photographs, audio-visual material, and born-digital files. Conditions Governing Access The collection is open for research. Researchers must apply in writing for access. General The collection is fully digitized and will be made available online by the beginning of 2018. Conditions Governing Use Copyright may not have been assigned to the California Institute of Technology Archives. -
JUAN MANUEL 2016 NOBEL PEACE PRIZE RECIPIENT Culture Friendship Justice
Friendship Volume 135, № 1 Character Culture JUAN MANUEL SANTOS 2016 NOBEL PEACE PRIZE RECIPIENT Justice LETTER FROM THE PRESIDENT Dear Brothers, It is an honor and a privilege as your president to have the challenges us and, perhaps, makes us question our own opportunity to share my message with you in each edition strongly held beliefs. But it also serves to open our minds of the Quarterly. I generally try to align my comments and our hearts to our fellow neighbor. It has to start with specific items highlighted in each publication. This with a desire to listen, to understand, and to be tolerant time, however, I want to return to the theme “living our of different points of view and a desire to be reasonable, Principles,” which I touched upon in a previous article. As patient and respectful.” you may recall, I attempted to outline and describe how Kelly concludes that it is the diversity of Southwest’s utilization of the Four Founding Principles could help people and “treating others like you would want to be undergraduates make good decisions and build better treated” that has made the organization successful. In a men. It occurred to me that the application of our values similar way, Stephen Covey’s widely read “Seven Habits of to undergraduates only is too limiting. These Principles are Highly Effective People” takes a “values-based” approach to indeed critical for each of us at this particularly turbulent organizational success. time in our society. For DU to be a successful organization, we too, must As I was flying back recently from the Delta Upsilon be able to work effectively with our varied constituents: International Fraternity Board of Directors meeting in undergraduates, parents, alumni, higher education Arizona, I glanced through the February 2017 edition professionals, etc. -
Muonium Gravity Seminar Wichita-6-17
Antimatter Gravity MICE-U.S. Plans withDaniel Muons M. Kaplan US Spokesperson, MICE Collaboration Daniel M. Kaplan Physics Seminar WichitaMuTAC State Review Univ. June Fermilab16, 2017 16–17 March, 2006 Outline • Dramatis Personae • A Bit of History - antimatter, the baryon asymmetry of the universe, and all that... • The Ideas, The Issues, The Opportunities • Required R&D • Conclusions Our story’s a bit complicated, so please bear with me! ...and stop me if you have a question! D. M. Kaplan, IIT An#ma&er Gravity Seminar 2/41 Matter & Energy • After many decades of experimentation with subatomic particles, we now know whatDramatis everything is made of... Personae Baryons & antibaryons : p== uud & p uud ΛΛ==uds & uds ... Mesons : K00== ds & K ds B00== db & B db B+ == ub & B− ub ... ∓ ∓ ∓ Leptons : e , µ , τ , ν’s D. M. Kaplan, IIT An#ma&er Gravity Seminar 3/41 Matter & Energy • After many decades of experimentation with subatomic particles, we now know whatDramatis everything is made of... Personae “Imperfect mirror” Baryons & antibaryons : Antip== uud & p uud ΛΛ==uds & uds ... Mesons : Anti K00== ds & K ds B00== db & B db Anti B+ == ub & B− ub ... Antimatter Leptons : e∓, µ∓, τ∓, ν’s • And, don’t forget: antimatter and matter annihilate on contact D. M. Kaplan, IIT An#ma&er Gravity Seminar 3/41 Outline • Dramatis Personae ➡ • A Bit of History - antimatter, the baryon asymmetry of the universe, and all that... • The Ideas, The Issues, The Opportunities • Muonium Gravity Experiment • Required R&D • Conclusions D. M. Kaplan, IIT An#ma&er Gravity Seminar 4/41 Our story begins with.. -
Sensitivity Physics. D KAONS, Or
A PERIODICAL OF PARTICLE PHYSICS WINTER 1995 VOL. 25, NUMBER 4 Editors RENE DONALDSON, BILL KIRK Contributing Editor MICHAEL RIORDAN Editorial Advisory Board JAMES BJORKEN, GEORGE BROWN, ROBERT N. CAHN, DAVID HITLIN, JOEL PRIMACK, NATALIE ROE, ROBERT SIEMANN Illustrations page 4 TERRY ANDERSON Distribution CRYSTAL TILGHMAN The Beam Line is published quarterly by the Stanford Linear Accelerator Center, PO Box 4349, Stanford, CA 94309. Telephone: (415) 926-2585 INTERNET: [email protected] FAX: (415) 926-4500 Issues of the Beam Line are accessible electronically on uayc ou the World Wide Web at http://www.slac.stanford.edu/ pubs/beamline/beamline.html SLAC is operated by Stanford University under contract with the U.S. Department of Energy. The opinions of the authors do not necessarily reflect the policy of the Stanford Linear Accelerator Center. Cover: Martin Perl (left) and Frederick Reines (center) receive the 1995 Nobel Prize in physics from His Majesty the King of Sweden at the awards ceremony last December. (Photograph courtesy of Joseph Peri) Printed on recycled paper tj) . CONTENTS FEATURES "We conclude that the signature e-/. events cannot be explained either by the production and decay of any presently known particles 4 Discovery of the Tau or as coming from any of the well- THE ROLE OF MOTIVATION & understood interactions which can TECHNOLOGY IN EXPERIMENTAL conventionally lead to an e and a PARTICLE PHYSICS gu in the final state. A possible ex- One of this year's Nobel Prize in physics planation for these events is the recipients describes the discovery production and decay of a pair of of the tau lepton in his 1975 new particles, each having a mass SLAC experiment. -
Modern Physics, the Nature of the Interaction Between Particles Is Carried a Step Further
44.1 Some Properties of Nuclei 1385 are the same, apart from the additional repulsive Coulomb force for the proton– U(r ) (MeV) proton interaction. 40 Evidence for the limited range of nuclear forces comes from scattering experi- n–p system ments and from studies of nuclear binding energies. The short range of the nuclear 20 force is shown in the neutron–proton (n–p) potential energy plot of Figure 44.3a 0 r (fm) obtained by scattering neutrons from a target containing hydrogen. The depth of 1 567432 8 the n–p potential energy well is 40 to 50 MeV, and there is a strong repulsive com- Ϫ20 ponent that prevents the nucleons from approaching much closer than 0.4 fm. Ϫ40 The nuclear force does not affect electrons, enabling energetic electrons to serve as point-like probes of nuclei. The charge independence of the nuclear force also Ϫ60 means that the main difference between the n–p and p–p interactions is that the a p–p potential energy consists of a superposition of nuclear and Coulomb interactions as shown in Figure 44.3b. At distances less than 2 fm, both p–p and n–p potential The difference in the two curves energies are nearly identical, but for distances of 2 fm or greater, the p–p potential is due to the large Coulomb has a positive energy barrier with a maximum at 4 fm. repulsion in the case of the proton–proton interaction. The existence of the nuclear force results in approximately 270 stable nuclei; hundreds of other nuclei have been observed, but they are unstable. -
Spellman Is the Innovator of the High Voltage Industry
International Journal of High-Energy Physics CERN COURIER Silicon makes tracks for CMS CERN COMPUTING NEWS Z BOSON LHC cryogenic line Combating congestion LEP and SLD publish passes first tests p5 on the Internet pl7 combined results p23 Thinking Inside the Box With Every Spelh Bertan brand High Voltage Supply you get something extra inside: The "Know How" of the High Voltage People. For more than 50 years, Spellman is the innovator of the High Voltage industry. With our recent acquisition of the respected Bertan High Voltage brand, we offer the world's most comprehensive line of generators, rack instruments, modules and Monoblock X-Ray Sources". • Application Know How: Voltage: 250V to 36» Whether your field is X-Ray Analysis, Semiconductor Processing, Security Detection, Medical Imaging, Electron Microscopy, or Mass Spectrometry, Power: 1W to 120k we make a high voltage supply to meet your needs. Ripple: depending on Application • Engineering Know How: <.001%p-p We have the largest engineering team in the business and one of the Package: Rack, Module, PCB, most innovative design libraries in our industry. Benchtop, NIM, Custom • Manufacturing Know How: Interface: Analog, RS232, USB, Ethernet, IEEE We maintain world-class ISO9001 production facilities in the US, Europe and in Mexico. The High Voltage People of Spellman: responsive, professional and situated globally to support you. Put their know how to work for you today. For more on the inside story of Spellman's innovative high voltage solutions, call us or MONOBLOCK® is a registered trademark of Spellman High Voltage Electronics Corp. visit our website www.spellmanhv.com 475 Wireless Blvd. -
The Federal Government: a Nobel Profession
The Federal Government: A Nobel Profession A Report on Pathbreaking Nobel Laureates in Government 1901 - 2002 INTRODUCTION The Nobel Prize is synonymous with greatness. A list of Nobel Prize winners offers a quick register of the world’s best and brightest, whose accomplishments in literature, economics, medicine, science and peace have enriched the lives of millions. Over the past century, 270 Americans have received the Nobel Prize for innovation and ingenuity. Approximately one-fourth of these distinguished individuals are, or were, federal employees. Their Nobel contributions have resulted in the eradication of polio, the mapping of the human genome, the harnessing of atomic energy, the achievement of peace between nations, and advances in medicine that not only prolong our lives, but “This report should serve improve their quality. as an inspiration and a During Public Employees Recognition Week (May 4-10, 2003), in an effort to recognize and honor the reminder to us all of the ideas and accomplishments of federal workers past and present, the Partnership for Public Service offers innovation and nobility of this report highlighting 50 American Nobel laureates the work civil servants do whose award-winning achievements occurred while they served in government or whose public service every day and its far- work had an impact on their career achievements. They were honored for their contributions in the fields reaching impact.” of Physiology or Medicine, Economic Sciences, and Physics and Chemistry. Also included are five Americans whose work merited the Peace Prize. Despite this legacy of accomplishment, too few Americans see the federal government as an incubator for innovation and discovery. -
Edoardo Amaldi 1908-89
Edoardo Amaldi 1908-89 Edoardo Amaldi, right, with Gilberto Bernar- dini at a CERN Council session in 1965. Edoardo Amaldi, one of the driving forces of European science and a pioneer of CERN, died on 5 Decem• ber. He began his career in the 1930s with Enrico Fermi in Rome, where he helped discover that slow neutrons were more readily cap• tured in target nuclei. After the premature death of Et- tore Majorana and the decision of Fermi and other prominent Italian physicists to emigrate in the 1930s, Amaldi took essential steps to maintain the spirit of Ital• ian physics. Gian Carlo Wick was invited to take up the Rome chair left vacant after the departure of Fermi. Gilberto Bernardini at Bolog• na commuted regularly to the Ital• ian capital to continue the cosmic ray tradition pioneered by Bruno Rossi. Under their guidance, dra• matic wartime research exploits un• had led the small but vigorous ture. It took many years before fi• der difficult conditions nevertheless group of scientists and politicians nal agreement on the latter was made important contributions to who promoted the idea of a Euro• reached, but it was symbolic that physics, culminating in the epic pean Laboratory in the early Amaldi was President of the CERN 1946 discovery of the muon by 1950s, and it was fitting that he Council when the SPS was finally Marcello Conversi, Ettore Pancini held the position of Secretary Gen• approved in 1971. Subsequently find Oreste Piccioni. eral when CERN formally came into he was a regular visitor, still in• In 1955, while the experiment of being in 1954. -
QUANTUM FIELD THEORY from QED to the Standard Model Silvan S
P1: GSM 0521571995C19 0521571995-NYE March 6, 2002 13:59 19 QUANTUM FIELD THEORY From QED to the Standard Model Silvan S. Schweber Until the 1980s, it was usual to tell the story of the developments in physics during the twentieth century as “inward bound” – from atoms, to nuclei and electrons, to nucleons and mesons, and then to quarks – and to focus on conceptual advances. The typical exposition was a narrative beginning with Max Planck (1858–1947) and the quantum hypothesis and Albert Einstein (1879–1955) and the special theory of relativity, and culminating with the formulation of the standard model of the electroweak and strong interac- tions during the 1970s. Theoretical understanding took pride of place, and commitment to reductionism and unification was seen as the most impor- tant factor in explaining the success of the program. The Kuhnian model of the growth of scientific knowledge, with its revolutionary paradigm shifts, buttressed the primacy of theory and the view that experimentation and instrumentation were subordinate to and entrained by theory.1 The situation changed after Ian Hacking, Peter Galison, Bruno Latour, Simon Schaffer, and other historians, philosophers, and sociologists of science reanalyzed and reassessed the practices and roles of experimentation. It has become clear that accounting for the growth of knowledge in the physical sciences during the twentieth century is a complex story. Advances in physics were driven and secured by a host of factors, including contingent ones. Furthermore, it is often difficult to separate the social, sociological, and political factors from the technical and intellectual ones. In an important and influential book, Image and Logic, published in 1997, Peter Galison offered a framework for understanding what physics was about in the twentieth century. -
Thomas Ypsilantis—The Early Years
Nuclear Instruments and Methods in Physics Research A 502 (2003) 1–8 Thomas Ypsilantis—The early years Herbert Steiner Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA particularly his role in developing the RICH technology. I knew Tom for almost half a century. We first met in 1952 as graduate students in the Berkeley Physics Department, where we both chose to do our thesis research under the direction of Emilio Segre." After receiving our Ph.D. degrees in 1955/ 1956 we stayed on, first as post-docs and then as members of the Berkeley physics faculty. We shared an office at LBL for 15 years, and after Tom moved to Europe we stayed in touch by exchanging preprints and getting together when- ever one or the other traveled across the Atlantic. Tom was a very special person. From the very beginning he was imbued with an unquenchable optimism and a fertile imagination that he used to generate new ideas and tackle forefront problems that were outside the scope of the thinking of most of his colleagues. The word ‘‘impossible’’ entered Tom’s mind only when the laws of physics were violated, but never when technological or financial obstacles reared their ugly heads. In Tom’s view such obstacles had to be overcome and such problems had to be solved if the frontiers of physics were to be pushed back. He was never satisfied with just continuing along a well-defined 1. Introduction path, but instead he always looked for new directions, new fundamental issues to explore, Let me begin by thanking the organizers for and new techniques to develop.