The Ampère Angular Force and the Newton Hoax by Laurence Hecht
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Great Physicists
Great Physicists Great Physicists The Life and Times of Leading Physicists from Galileo to Hawking William H. Cropper 1 2001 1 Oxford New York Athens Auckland Bangkok Bogota´ Buenos Aires Cape Town Chennai Dar es Salaam Delhi Florence HongKong Istanbul Karachi Kolkata Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi Paris Sao Paulo Shanghai Singapore Taipei Tokyo Toronto Warsaw and associated companies in Berlin Ibadan Copyright ᭧ 2001 by Oxford University Press, Inc. Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. Library of Congress Cataloging-in-Publication Data Cropper, William H. Great Physicists: the life and times of leadingphysicists from Galileo to Hawking/ William H. Cropper. p. cm Includes bibliographical references and index. ISBN 0–19–513748–5 1. Physicists—Biography. I. Title. QC15 .C76 2001 530'.092'2—dc21 [B] 2001021611 987654321 Printed in the United States of America on acid-free paper Contents Preface ix Acknowledgments xi I. Mechanics Historical Synopsis 3 1. How the Heavens Go 5 Galileo Galilei 2. A Man Obsessed 18 Isaac Newton II. Thermodynamics Historical Synopsis 41 3. A Tale of Two Revolutions 43 Sadi Carnot 4. On the Dark Side 51 Robert Mayer 5. A Holy Undertaking59 James Joule 6. Unities and a Unifier 71 Hermann Helmholtz 7. The Scientist as Virtuoso 78 William Thomson 8. -
On the First Electromagnetic Measurement of the Velocity of Light by Wilhelm Weber and Rudolf Kohlrausch
Andre Koch Torres Assis On the First Electromagnetic Measurement of the Velocity of Light by Wilhelm Weber and Rudolf Kohlrausch Abstract The electrostatic, electrodynamic and electromagnetic systems of units utilized during last century by Ampère, Gauss, Weber, Maxwell and all the others are analyzed. It is shown how the constant c was introduced in physics by Weber's force of 1846. It is shown that it has the unit of velocity and is the ratio of the electromagnetic and electrostatic units of charge. Weber and Kohlrausch's experiment of 1855 to determine c is quoted, emphasizing that they were the first to measure this quantity and obtained the same value as that of light velocity in vacuum. It is shown how Kirchhoff in 1857 and Weber (1857-64) independently of one another obtained the fact that an electromagnetic signal propagates at light velocity along a thin wire of negligible resistivity. They obtained the telegraphy equation utilizing Weber’s action at a distance force. This was accomplished before the development of Maxwell’s electromagnetic theory of light and before Heaviside’s work. 1. Introduction In this work the introduction of the constant c in electromagnetism by Wilhelm Weber in 1846 is analyzed. It is the ratio of electromagnetic and electrostatic units of charge, one of the most fundamental constants of nature. The meaning of this constant is discussed, the first measurement performed by Weber and Kohlrausch in 1855, and the derivation of the telegraphy equation by Kirchhoff and Weber in 1857. Initially the basic systems of units utilized during last century for describing electromagnetic quantities is presented, along with a short review of Weber’s electrodynamics. -
Weberˇs Planetary Model of the Atom
Weber’s Planetary Model of the Atom Bearbeitet von Andre Koch Torres Assis, Gudrun Wolfschmidt, Karl Heinrich Wiederkehr 1. Auflage 2011. Taschenbuch. 184 S. Paperback ISBN 978 3 8424 0241 6 Format (B x L): 17 x 22 cm Weitere Fachgebiete > Physik, Astronomie > Physik Allgemein schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Weber’s Planetary Model of the Atom Figure 0.1: Wilhelm Eduard Weber (1804–1891) Foto: Gudrun Wolfschmidt in der Sternwarte in Göttingen 2 Nuncius Hamburgensis Beiträge zur Geschichte der Naturwissenschaften Band 19 Andre Koch Torres Assis, Karl Heinrich Wiederkehr and Gudrun Wolfschmidt Weber’s Planetary Model of the Atom Ed. by Gudrun Wolfschmidt Hamburg: tredition science 2011 Nuncius Hamburgensis Beiträge zur Geschichte der Naturwissenschaften Hg. von Gudrun Wolfschmidt, Geschichte der Naturwissenschaften, Mathematik und Technik, Universität Hamburg – ISSN 1610-6164 Diese Reihe „Nuncius Hamburgensis“ wird gefördert von der Hans Schimank-Gedächtnisstiftung. Dieser Titel wurde inspiriert von „Sidereus Nuncius“ und von „Wandsbeker Bote“. Andre Koch Torres Assis, Karl Heinrich Wiederkehr and Gudrun Wolfschmidt: Weber’s Planetary Model of the Atom. Ed. by Gudrun Wolfschmidt. Nuncius Hamburgensis – Beiträge zur Geschichte der Naturwissenschaften, Band 19. Hamburg: tredition science 2011. Abbildung auf dem Cover vorne und Titelblatt: Wilhelm Weber (Kohlrausch, F. (Oswalds Klassiker Nr. 142) 1904, Frontispiz) Frontispiz: Wilhelm Weber (1804–1891) (Feyerabend 1933, nach S. -
History (From Wikipedia)
History (from Wikipedia) November 13, 2019 There’s a reason math things are named after physicists: 1. Friedrich Wilhelm Bessel was a German astronomer, mathematician, physicist and geodesist. He was the first astronomer who determined reliable values for the distance from the sun to another star by the method of parallax. A special type of mathematical functions were named Bessel functions after Bessel’s death, though they had originally been discovered by Daniel Bernoulli and then generalised by Bessel. 2. Pierre-Simon, marquis de Laplace: was a French scholar whose work was important to the devel- opment of engineering, mathematics, statistics, physics, astronomy, and philosophy. He summarized and extended the work of his predecessors in his five-volume Mécanique Céleste (Celestial Mechanics) (1799–1825). This work translated the geometric study of classical mechanics to one based on calculus, opening up a broader range of problems. In statistics, the Bayesian interpretation of probability was developed mainly by Laplace. 3. Adrien-Marie Legendre: Whoops, he’s a mathemetician. But much of his work was completed by Gauss. Legendre is known for the Legendre transformation, which is used to go from the Lagrangian to the Hamiltonian formulation of classical mechanics. In thermodynamics it is also used to obtain the enthalpy and the Helmholz and Gibbs (free) energies from the internal energy. He is also the namesake of the Legendre polynomials, solutions to Legendre’s differential equation, which occur frequently in physics and engineering applications, e.g. electrostatics. 4. Carl Gottfried Neumann, while in Königsberg, studied physics with his father, and later as a working mathematician, dealt almost exclusively with problems arising from physics. -
Weber Quoting Maxwell
Weber quoting Maxwell Zur Anseinandcrsetzun!!; zwit;chen der Weberschen Theorie del" Elektrizitat lind der emfkommenden lVIaxwelIschen Elektrodynaillik Andf(~ Koch Torres Assis, Campinas, Sao Paulo, Brasil, and Karl Heinrich \Vicdcrkehr, Hamburg Zusamrnenfassung Die Abhandlllllg spt7:t sidl mit del' Ablos\lll!-\ der iilterPIl Ekktrodynamik vou \Vilhdill \Ve bef und Fran;. Npumunll durch die .\laxwf'lJschr Theoric im lebten Drittel des 19. .lahr h\llldf'rt~ aus!'inClIHirr. AuflliingrT fiir die Darst.ellllng der Pl'oblcl11<Jtik sind <iiI" w€nigen i':ltatp, dk sidl bci VI/ilhe]m \Ve!wr findcn. Di(' Diskuf'sioll wUrci(' daIllals h,mpt~iicblich (lurch Carl Nculllanu lind Johann Karl Friedrich Z;ii1hwr gcfUhrt" Ikidc warell cngagienE' und !eidpIIschaftlidlP AnhiiTlger lind Vertei<iiger (\r-~r \\"f'bcr~dlPII Sieht uml Darstl'lluIlg der Thl'orie von d('r ElekLrb:iUit" Streit,pnnkte waf(~n (1) dk N<l,hwirkungHtlH'orie, die mit dem \laxwell~c1wn Feldkoll7Ppt identiHch illt unci 1m Gegel1H<l,tz zur FermvirkUllg-~theorie (Pro toLyp: ~ewtonscheH Gravitati()lI~gesetz) c,t,anli, und (2) die Annalilne der ExiSlenz piner ~ub~tant.iellen EkktrizitiiL \V("\H'r beharrte his ;;ulpt7.t auf scinPHl Konzept nnt! entwickeite ein ,\t,omnH)(\ell, d,u.; ab Vor~tufe des Jlutherford-Hohr~chE'n At()lllIllOdcJl~ angesehen wer den kalln. Konsen~ bestand Lei den absoluten eiektrischpn :'\,Ia.i;sYHt,emen. J_ Cl. lvI~wel1 Ii\..'; au~ d('lll Kohlransch-\VclwT-E::qJPrinwnt die LirhtgeHthwindigkeit heraU'" die flir ~eine ('lektnJInagnl'tiHthc l .. ichttheorie cine wiehtige Stiitze war. Da.s absolnte elektrornagneLi~che I\IaJ~SVHr,em (\icnLe <lh Crul1dlagp fur die InternaLionalen 'l\Iar~einheiten 1881. -
Pilgrimage Through the History of German Natural Science, University
Pilgrimage through the History of German Natural Science, University City Bonn Kaoru Harada Kobe Shoin Women’s College, Sinoharaobanoyama-cho, Nada-ku, Kobe-city, 657-0015, Japan E-mail: [email protected] (Received 10 July 2001, Accepted 10 September 2001) Introduction scientists. The gravestone is a personal monument recording In the Roman days, Bonn was a citadel of Castra official and personal history. Visiting remains and various Bonnensia, and later the city of Bonn was a Teritory of the memorials of famous scholars gives me a satisfactory feeling. Archbishop of Koln for many years. In the year 1786, the The intellectual impression was quite different from that I got by University was established, but it was closed after 10 years. In reading a textbook dealing with the same subject, because grave the year 1818 a new University was established again in Bonn. visiting is a personal contact with historical person. I would like Since then, Bonn has been a University town. Therefore, to call such a visit a “pilgrimage” through the history of natural University of Bonn is relatively new in Germany as is the sciences. We may learn sciences through the pilgrimage, and University of Berlin (established 1810). But many famous also learn history through the pilgrimage. scholars have emerged from the University. The university is In this article, famous scientists are the main target of our officially called “Rheinisch Friedrich-Wilhelm-Universitat zu “pilgrimage”, however, some famous nonscientists are also Bonn” by the name of the founder. However, the organization is included because they are also contributors to our human history. -
The Double Helix Theory of the Magnetic Field
The Double Helix Theory of the Magnetic Field Frederick David Tombe Belfast, Northern Ireland, United Kingdom [email protected] 15th February 2006, Philippine Islands Abstract. The historical linkage between optics and electromagnetism can be traced back to a paper published in the year 1856 by Wilhelm Eduard Weber and Rudolf Kohlrausch. By discharging a Leyden Jar (a capacitor), they showed that the ratio of the electromagnetic and electrostatic units of charge is numerically equal to the directly measured speed of light. Weber interpreted this result as meaning that the speed of light is a kind of escape velocity for electricity in motion, such as would enable the associated magnetic force to overcome the electrostatic force. An alternative interpretation was advanced a few years later by James Clerk-Maxwell who connected the result to the elasticity in an all pervading solid medium that serves as the carrier of light waves. As a consequence, he concluded that light waves are electromagnetic undulations. These two perspectives can be reconciled by linking the speed of light to the circumferential speed of the molecular vortices which Maxwell believed to be the constituent particles of the solid luminiferous medium. If we consider these molecular vortices to be tiny electric current circulations, magnetic repulsion can then be explained in terms of centrifugal force. And if these molecular vortices should take the form of an electron and a positron in mutual orbit, we can then also explain magnetic attraction in terms of the more fundamental electrostatic force being channeled through space along double helix chains that constitute magnetic lines of force. -
Questions for Science
www.YoYoBrain.com - Accelerators for Memory and Learning Questions for science Category: Default - (50 questions) Who was Edward B. Taylor (1832-1917) - wrote some the founding texts in anthropology and held Oxford University's first position in anthropology Who was Lewis Henry Morgan (1818-1881) pioneered anthropology in United States Who was Franz Boas (1858-1942) founded modern American anthropology and provided enduring principle of cultural relativity Who was: Bronislaw Malinowski (1884-1942) Polish born, studied in Austria; studied the Trobriand islanders off the east coast of New Guinea. Who was Margaret Mead (1901-1978) became the public face of anthropology. She studied the Somoan society and published her findings in Coming of Age in Samoa. Who is Richard Dawkins sociobiologist who coined the phrase "the selfish gene" Who was Benjamin Lee Whorf (1897-1941) a part time linguist (anthropology) and fire insurance investigator who developed hypothesis around how language structures the way we look at things. Who was Claudius Ptolemy 2 AD - ancient Greek astronomer and geographer. Wrote Almagest which was a treatise on astronomy that put Earth at center of universe. Wrote Geography which was a compilation of everything known about geography in Roman empire Who was Antoni van Leeuwenhoek (lay' ven huk) (1632-1723) Man who first discovered microbes by developing microscopes What is the Coppenhagen interpretation of nature, at the most fundamental level, is quantum mechanics probabilistic, not deterministic Define: use of spectrometer identifies the frequencies of light Define: use of interferometer allows scientists to measure extremely small distances What did the color-corrected microscope enabled high-power magnification without allow scientists to do blurring Define: dynamism the notion that change is a normal state What 3 papers did Einstein write in 1905 1.) paper on Brownian motion where he convinced many of reality of atoms 2.) photoelectric effect - explained the phenomenon that certain materials that when exposed to light, give off electrons. -
18. the 2Nd & 3Rd Laws of Thermodynamics
18. The 2nd & 3rd Laws of Thermodynamics Introduction and Summary The oldest statement of the 2nd Law comes from the German physicist and mathematician Rudolf Clausius. He said that "heat can flow spontaneously from a hot object to a cold object; heat does not flow spontaneously from a cold object to a hot object." (P.416 Giancoli and also http://en.wikipedia.org/wiki/Second_law_of _thermodynamics) At first glance, this appears to be a restatement of the 0th Law but it is in fact a little different. Heat can be made to flow from a cold object to a warm object--for example, in a refrigerator or with an air conditioner. However, this does not happen spontaneously--that is, by itself--since work must be done for this to happen. The 2nd Law is a little strange since it is a statement about something that does not happen. 2 18. The 2nd & 3rd Laws of Thermo dynamics Rev2.nb Another statement of the 2nd Law, made by the English physicist Lord Kelvin, is that a quantity of heat Q cannot be converted entirely into work W. 18. The 2nd & 3rd Laws of Thermo dynamics Rev2.nb 3 Some of the heat must leave the engine and be expelled into the environment as waste heat. Since efficiency equals the work done divided by the heat put in, the 2nd Law says a heat engine cannot be 100% efficient. It is perhaps surprising, that if you assume the Clausius statement of the 2nd Law is true, then you can prove that the Kelvin statement is also true and vice-versa. -
Research Papers-Mechanics / Electrodynamics/Download/7797
The Full Significance of the Speed of Light Frederick David Tombe, Northern Ireland, United Kingdom, [email protected] 15th June 2019 Abstract. In the year 1855, German physicists Wilhelm Eduard Weber and Rudolf Kohlrausch performed a landmark experiment of profound significance. By discharging a Leyden jar (a capacitor), they linked the speed of light to the ratio between electrostatic and electrodynamic units of charge. This experiment was electromagnetism’s Rosetta Stone because the result can be used to, (i) identify the speed of light as the speed of circulation of electric current, (ii) identify the speed of light as the speed of electromagnetic waves through a dielectric solid that pervades all of space, while noting that inertial centrifugal force and dipole fields share in common an inverse cube law in distance. The result can also be used to, (iii) identify magnetic repulsion as a centrifugal force, and hence to establish the double helix pattern that characterizes magnetic lines of force. Weber’s Interpretation I. Weber and Kohlrausch’s 1855 experiment involved discharging a Leyden jar (a capacitor) that had been storing a known amount of charge in electrostatic units, and then seeing how long it took for a unit of electric current, as measured in electrodynamic units, to produce the same deflection in a galvanometer [1]. From these readings they discovered that the ratio of the two systems of units was equal to c√2 where c is the directly measured speed of light, although it’s not clear that they immediately noticed the numerical value of c explicitly. Had they however used electromagnetic units instead of electrodynamic units for the electric current, the result would have stood out as c exactly. -
Applied Electromagnetics
Dan Sievenpiper - UCSD, 858-822-6678,[email protected] Applied Electromagnetics Dan Sievenpiper, 2018-10-29 1 Dan Sievenpiper - UCSD, 858-822-6678,[email protected] History: A Few of the Early Pioneers in Electromagnetics Andre-Marie Ampere Michael Faraday James C. Maxwell Heinrich Hertz Invented telegraph Invented electric motor Unified electricity, magnetism Proved existence of (among many other things) (among many other things) and light into one theory electromagnetic waves Guglielmo Many, many others: Nicola Tesla Marconi • Alessandro Volta • James Prescott Joule • Georg Simon Ohm • Charles William Siemens • Charles-Augustin Coulomb • Joseph Henry • Wilhelm Eduard Weber • Hans Christian Orsted Invented AC, wireless Invented radio • … communication 2 power transfer Dan Sievenpiper - UCSD, 858-822-6678,[email protected] Courses in Applied Electromagnetics • Undergrad Courses – ECE107 – Electromagnetism – ECE123 – Antenna Systems Engineering – ECE166 – Microwave Systems and Circuits – ECE182 – Electromagnetic Optics, Guided-wave and Fiber Optics • Graduate Courses – ECE221 – Magnetic Materials Principles and Applications – ECE222A – Antennas and their System Applications – ECE222B – Electromagnetic Theory – ECE222C – Computational Methods for Electromagnetics – ECE222D – Advanced Antenna Design 3 Dan Sievenpiper - UCSD, 858-822-6678,[email protected] ECE107 Electromagnetism • Electrostatics, magnetostatics • Vector analysis • Maxwell’s equations • Plane waves, reflection, refraction • Electromagnetic -
Thermodynamics of Life
Firenze University Press www.fupress.com/substantia Research Articles Thermodynamics of Life Citation: Henry M. (2021) Thermodynam- ics of Life. Substantia 5(1) : 43-71. doi: Marc Henry 10.36253/Substantia-959 Laboratoire de Chimie Moléculaire de l’Etat Solide, UMR 7140, Université de Strasbourg, Received: Jun 02, 2020 France E-mail: [email protected] Revised: Aug 25, 2020 Just Accepted Online: Aug 26, 2020 Abstract. Biology is currently plagued by several fossil concepts that may be responsi- ble for the current stagnation in medicine. Through a careful screening of the origins Published: Mar 01, 2021 of thermodynamics, such fossils concepts have been identified: assumption that heat is Copyright: © 2021 Henry M. This is an a form of energy, assimilation of entropy to disorder, assimilation of death to states of open access, peer-reviewed article maximum entropy, assimilation of ATP to the energy currency of living cells, non-rec- published by Firenze University Press ognition of entropy as a state function of the whole universe, belief that free energies are (http://www.fupress.com/substantia) another kind of energy, self-referencing in the definition of life, ignorance of basic princi- and distributed under the terms of the ples of quantum physics and more particularly of the importance of intrinsic spin, confu- Creative Commons Attribution License, sion between three different forms of reversibility, non-recognition that irreversibility is which permits unrestricted use, distri- at the heart of living systems. After stowing of these concepts in the cabinet of useless bution, and reproduction in any medi- um, provided the original author and and nasty notions, a fresh new look is proposed showing how life is deep-rooted trough source are credited.