Questions for Science

Total Page:16

File Type:pdf, Size:1020Kb

Questions for Science www.YoYoBrain.com - Accelerators for Memory and Learning Questions for science Category: Default - (50 questions) Who was Edward B. Taylor (1832-1917) - wrote some the founding texts in anthropology and held Oxford University's first position in anthropology Who was Lewis Henry Morgan (1818-1881) pioneered anthropology in United States Who was Franz Boas (1858-1942) founded modern American anthropology and provided enduring principle of cultural relativity Who was: Bronislaw Malinowski (1884-1942) Polish born, studied in Austria; studied the Trobriand islanders off the east coast of New Guinea. Who was Margaret Mead (1901-1978) became the public face of anthropology. She studied the Somoan society and published her findings in Coming of Age in Samoa. Who is Richard Dawkins sociobiologist who coined the phrase "the selfish gene" Who was Benjamin Lee Whorf (1897-1941) a part time linguist (anthropology) and fire insurance investigator who developed hypothesis around how language structures the way we look at things. Who was Claudius Ptolemy 2 AD - ancient Greek astronomer and geographer. Wrote Almagest which was a treatise on astronomy that put Earth at center of universe. Wrote Geography which was a compilation of everything known about geography in Roman empire Who was Antoni van Leeuwenhoek (lay' ven huk) (1632-1723) Man who first discovered microbes by developing microscopes What is the Coppenhagen interpretation of nature, at the most fundamental level, is quantum mechanics probabilistic, not deterministic Define: use of spectrometer identifies the frequencies of light Define: use of interferometer allows scientists to measure extremely small distances What did the color-corrected microscope enabled high-power magnification without allow scientists to do blurring Define: dynamism the notion that change is a normal state What 3 papers did Einstein write in 1905 1.) paper on Brownian motion where he convinced many of reality of atoms 2.) photoelectric effect - explained the phenomenon that certain materials that when exposed to light, give off electrons. Set foundation for quantum theory 3.) special theory of relativity - time and space are relations What 2 principles are foundation of Einstein's 1.) Relativity of motion - for 2 observers who Special Theory of Relativity and conclusion are traveling at uniform speed and subject to uniform laws, the laws of physics will be the same2.) Accept that the speed of light is the same for all observers, regardless of their motions. Conclusions: space and time are relationships, not things. Matter is convertible to energy and visa-versa Describe Einstein's General Theory of 1.)The mass of an object is, in some way, Relativity dependent on the total distribution of mass in the universe. 2.) When a star explodes, that event changes the shape of space throughout the universe. 3.) Space has a shape; it is not featureless in all directions. The shape is a function of the distribution of matter and energy in space. 4.) Space is not infinite. What major contribution did Max Planck solved the blackbody radiation problem by make to physics proposing that electromagnetic energy could be emitted or absorbed only in discrete "packets" What major contribution did Niels Bohr make Postulated that orbital electrons do not to quantum theory radiate electromagnetic energy. They radiate only when they change orbits. Further, electrons can occupy only specific orbits around the nucleus of a given atom; In other words, their orbital energy is quantitized. How does quantum mechanics describe has both particle-like characteristics and electromagnetic energy wave-like characteristics What did Einstein and Bohr argue about they are random orbital transitions by electrons What was significance of Louis de Broglie predicts that matter, like electromagnetic 1923 paper to physics energy, has a dual character and may behave as both a particle and a wave Describe the products of radioactivity alpha, beta, and gamma raysalpha rays - stripped helium atoms - combinations of 2 protons and 2 neutrons beta rays - actually released electrons when a radioactive nucleus splits gamma rays - extremely high-energy photons What is QED in physics quantum electrodynamics - a quantum version of Maxwell's electromagnetic theory consistent with the special theory of relativity What 2 fundamental scientific concepts were 1.) concept of causality - at the quantum challenged by QED level, events occured that had no assignable cause. Introduced randomness into fundamental natural processes. 2.)concept of continuity - insists that natural phenomena are discrete not continous. What is the unit used to discuss the energy electron volt of particles the energy equivalent of an electron is about 500,000 ev What is the quantum idea of tunneling a phenomenon where there is a small but nontrivial probability that a weak particle can get past an energy barrier Define: cyclotron particle accelerator that works by moving the particle in a circle and applying energy in resonance to boost speeds Define: synchro-cyclotron particle accelerators that generates pulses of protons rather than a continous beam Define: QCD in physics quantum chromodynamics - reduces all material particles to one of 2 elementary types and drops protons and neutrons from the ranks of elementary particles. What are 2 elementary particle types under leptons - which include electrons QCD hadrons - various combinations of 6 truly elementary particles called quarks and antiquarks, bound by mass-less particles called gluons What are the 4 fundamental forces of gravitationalelectromagneticweak force universe in physics associated with nuclear processes, such as decay of neutron into a proton, electron, and neutrinostrong force that holds atomic nucleus together How many quarks are there and what are up, down names strange, charm bottom, top What did Sheldon Glashow predict as the 3 particles called intermediate vector bosons carrier of weak force in physics (IVBs) one would have a positive charge, one would have a negative charge and one is neutral; all 3 have mass Define: IVBs in physics intermediate vector bosons - 3 particles that act as the carrier of weak force What is the standard-model of matter-energy unification of the electro-weak theory and in physics QCD in this view, photons and IVBs become the assymetric "debris" of a the collapse of an earlier force now called the Higgs field Contribution of Paul Berg performed the first successful recombinant DNA experiment in 1972 When were X-rays discovered 1896 by Roentgen Contribution of Auguste Comte 19th century figure that invented the word sociology, and beginning in the 1820s formulated a truly grand theory of humanity's cognitive evolution within whichhis theory of society found its basis. Contribution of Emile Durkeim stands out as the first "modern" sociologist. Society was a name for the network of relationships that caused the members of that society to behave in specific ways. Further, a primary objective of every society was to communicate to its members a sense of solidarity. Society is a much more concrete entity. Network of relationships can excercise forces on people in subtle ways. Define: holism systems have properties that do not exist at the level of individual elements of the system Jean Lamark French biologist who proposed that evolution occurred because animals had an "inner need" to change and that acquired characteristics were passed to offspring. His theory of use and disuse was true, but the passing of acquired characteristics to offspring was not supported by evolutionary evidence. Matthias Schleiden German botanist who stated that all plants are made of cells (1838) Theodor Schwann Discovered that all animals are made of cells Rudolf Virchow First proposed that every cell comes from another living cell What did Kurt Godel prove in mathematics that any axiomatic system necessarily generated statements that could not be proven to be either true or false within that system What mathematical proof did Alan Turing do that no effective decision procedure existed for solving all problems in mathematics What was Edwin Hubble's contribution Discovered the universe had many galaxies. Discovered the universe was expanding. Where did genetic testing put origin of man all current humans descend from just 3 lineages within a breeding population of, perhaps, 2000 Homo Sapiens living in eastern Africa some 150,000 years ago Who is Thomas Young (1773-1829) British polymath, was a medical doctor whose most famous work was in optics. Most important contribution was to revive and defend the wave theory of light in 1800 and to formulate the principle of the interference of light. Category: Default1 - (7 questions) Who is William Whewell (1794-1866) British scientist, philosopher and historian of science. Put forward what is called Whewell's Hypothetico-Deductivism. Wrote The History of the Inductive Sciences and The Philosophy of the Inductive Sciences. Define: Whewell's Hypothetico-Deductivism Step 1 - discovery of the hypothesis by colligation of the facts Step 2 - 3 conditions which justify the inference of the truth of the hypothesis 1. hypothesis should explain both observed phenomenon but predict unobserved phenomenon 2. Explain and predict phenomenon that are different from the kind used to form the hypothesis 3. The theory should be more coherent over time versus more fragmented to explain all known phenomenon. Who is Karl Popper (1902-1994) British/Austrian philosopher of science. Put forward the theory that science is defined by it's emperical falsifiability. If you can't test a theory by empirical observations then it is not science. Define: geodesy branch of geology applying mathematics to determine the shape and size of the Earth and its varying magnetism and gravity Who was DanielBurnoulli (Groningen, February 8, 1700 – Basel, March 17, 1782) was a Dutch-born mathematician who spent much of his life in Basel, Switzerland. He worked with Leonhard Euler on the equations bearing their names. Bernoulli's principle is of critical use in aerodynamics. It is applicable to steady, inviscid, incompressible flow, along a streamline.
Recommended publications
  • Great Physicists
    Great Physicists Great Physicists The Life and Times of Leading Physicists from Galileo to Hawking William H. Cropper 1 2001 1 Oxford New York Athens Auckland Bangkok Bogota´ Buenos Aires Cape Town Chennai Dar es Salaam Delhi Florence HongKong Istanbul Karachi Kolkata Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi Paris Sao Paulo Shanghai Singapore Taipei Tokyo Toronto Warsaw and associated companies in Berlin Ibadan Copyright ᭧ 2001 by Oxford University Press, Inc. Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. Library of Congress Cataloging-in-Publication Data Cropper, William H. Great Physicists: the life and times of leadingphysicists from Galileo to Hawking/ William H. Cropper. p. cm Includes bibliographical references and index. ISBN 0–19–513748–5 1. Physicists—Biography. I. Title. QC15 .C76 2001 530'.092'2—dc21 [B] 2001021611 987654321 Printed in the United States of America on acid-free paper Contents Preface ix Acknowledgments xi I. Mechanics Historical Synopsis 3 1. How the Heavens Go 5 Galileo Galilei 2. A Man Obsessed 18 Isaac Newton II. Thermodynamics Historical Synopsis 41 3. A Tale of Two Revolutions 43 Sadi Carnot 4. On the Dark Side 51 Robert Mayer 5. A Holy Undertaking59 James Joule 6. Unities and a Unifier 71 Hermann Helmholtz 7. The Scientist as Virtuoso 78 William Thomson 8.
    [Show full text]
  • Pilgrimage Through the History of German Natural Science, University
    Pilgrimage through the History of German Natural Science, University City Bonn Kaoru Harada Kobe Shoin Women’s College, Sinoharaobanoyama-cho, Nada-ku, Kobe-city, 657-0015, Japan E-mail: [email protected] (Received 10 July 2001, Accepted 10 September 2001) Introduction scientists. The gravestone is a personal monument recording In the Roman days, Bonn was a citadel of Castra official and personal history. Visiting remains and various Bonnensia, and later the city of Bonn was a Teritory of the memorials of famous scholars gives me a satisfactory feeling. Archbishop of Koln for many years. In the year 1786, the The intellectual impression was quite different from that I got by University was established, but it was closed after 10 years. In reading a textbook dealing with the same subject, because grave the year 1818 a new University was established again in Bonn. visiting is a personal contact with historical person. I would like Since then, Bonn has been a University town. Therefore, to call such a visit a “pilgrimage” through the history of natural University of Bonn is relatively new in Germany as is the sciences. We may learn sciences through the pilgrimage, and University of Berlin (established 1810). But many famous also learn history through the pilgrimage. scholars have emerged from the University. The university is In this article, famous scientists are the main target of our officially called “Rheinisch Friedrich-Wilhelm-Universitat zu “pilgrimage”, however, some famous nonscientists are also Bonn” by the name of the founder. However, the organization is included because they are also contributors to our human history.
    [Show full text]
  • 18. the 2Nd & 3Rd Laws of Thermodynamics
    18. The 2nd & 3rd Laws of Thermodynamics Introduction and Summary The oldest statement of the 2nd Law comes from the German physicist and mathematician Rudolf Clausius. He said that "heat can flow spontaneously from a hot object to a cold object; heat does not flow spontaneously from a cold object to a hot object." (P.416 Giancoli and also http://en.wikipedia.org/wiki/Second_law_of _thermodynamics) At first glance, this appears to be a restatement of the 0th Law but it is in fact a little different. Heat can be made to flow from a cold object to a warm object--for example, in a refrigerator or with an air conditioner. However, this does not happen spontaneously--that is, by itself--since work must be done for this to happen. The 2nd Law is a little strange since it is a statement about something that does not happen. 2 18. The 2nd & 3rd Laws of Thermo dynamics Rev2.nb Another statement of the 2nd Law, made by the English physicist Lord Kelvin, is that a quantity of heat Q cannot be converted entirely into work W. 18. The 2nd & 3rd Laws of Thermo dynamics Rev2.nb 3 Some of the heat must leave the engine and be expelled into the environment as waste heat. Since efficiency equals the work done divided by the heat put in, the 2nd Law says a heat engine cannot be 100% efficient. It is perhaps surprising, that if you assume the Clausius statement of the 2nd Law is true, then you can prove that the Kelvin statement is also true and vice-versa.
    [Show full text]
  • Thermodynamics of Life
    Firenze University Press www.fupress.com/substantia Research Articles Thermodynamics of Life Citation: Henry M. (2021) Thermodynam- ics of Life. Substantia 5(1) : 43-71. doi: Marc Henry 10.36253/Substantia-959 Laboratoire de Chimie Moléculaire de l’Etat Solide, UMR 7140, Université de Strasbourg, Received: Jun 02, 2020 France E-mail: [email protected] Revised: Aug 25, 2020 Just Accepted Online: Aug 26, 2020 Abstract. Biology is currently plagued by several fossil concepts that may be responsi- ble for the current stagnation in medicine. Through a careful screening of the origins Published: Mar 01, 2021 of thermodynamics, such fossils concepts have been identified: assumption that heat is Copyright: © 2021 Henry M. This is an a form of energy, assimilation of entropy to disorder, assimilation of death to states of open access, peer-reviewed article maximum entropy, assimilation of ATP to the energy currency of living cells, non-rec- published by Firenze University Press ognition of entropy as a state function of the whole universe, belief that free energies are (http://www.fupress.com/substantia) another kind of energy, self-referencing in the definition of life, ignorance of basic princi- and distributed under the terms of the ples of quantum physics and more particularly of the importance of intrinsic spin, confu- Creative Commons Attribution License, sion between three different forms of reversibility, non-recognition that irreversibility is which permits unrestricted use, distri- at the heart of living systems. After stowing of these concepts in the cabinet of useless bution, and reproduction in any medi- um, provided the original author and and nasty notions, a fresh new look is proposed showing how life is deep-rooted trough source are credited.
    [Show full text]
  • Conceptualizing Energy
    EHIND B TH Y E Conceptualizing Energy R S O C T I Conservation of Mechanical Energy E S N E C E H and the Introduction of Potential Energy T William Thomson Most students who have taken high school chemistry or century, many French engineers had realized that the total physics know the First Law of Thermodynamics: “Energy work a moving body could perform was equal to half of its can neither be created nor destroyed.” But at the vis viva.These engineers redefined “work” as ½ mv2 . beginning of the nineteenth century, physicists had not yet formulated this fundamental law of nature. Moreover, at One of the most important French engineers of the early this time the term “energy” did not have a precise scientific nineteenth century was a man named Sadi Carnot (1796- definition, and most physicists thought matter and force 1832). As a young man, Carnot watched his home country were the only concepts needed to understand the natural lose the Napoleonic Wars to England. He was convinced world. that England's military superiority was due entirely to its industrial superiority, in particular its steam engines. The idea that mechanical energy is conserved and the Carnot became interested in how France could improve its introduction of potential energy transformed the study of own steam engines, and began thinking about the physics energy into one of the most important and exciting areas of behind the way engines worked. nineteenth-century physics. But assigning credit for developing these principles is difficult. The great Scottish ! physicist William Thomson (1824-1907) is generally given Science and technology are not the same, but credit for stating the first law, but to do so he drew on the they do significantly impact one another.
    [Show full text]
  • The Concept of Entropy, from Its Origins to Teachers
    EDUCATION Revista Mexicana de F´ısica E 61 (2015) 69–80 JULY–DECEMBER 2015 The concept of entropy, from its origins to teachers F. Flores Camachoa, N. Ulloa Lugob, and H. Covarrubias Mart´ıneza aCentro de Ciencias Aplicadas y Desarrollo Tecnologico,´ Universidad Nacional Autonoma´ de Mexico,´ 04510 Mexico,´ D.F., Mexico.´ bFacultad de Estudios Superiores-Iztacala, Universidad Nacional Autonoma´ de Mexico,´ 54090 Tlalnepantla, Edo. de Mexico,´ Mexico.´ Received 10 April 2015; accepted 3 June 2015 Research on alternative conceptions shows that the entropy concept is among the most difficult for students to understand. Entropy is a concept with a complex history and has been the subject of diverse reconstructions and interpretations. This paper presents a brief review of the origin of the concept (Clausius and Boltzmann), a description of some influential textbooks (Planck, Fermi and Gibbs) and a comparative review on textbooks and how the concept of entropy is conceived and taught by university teachers. The results show that there is a great variety in the descriptions and meanings of entropy provided in textbooks, confusing students and teachers. A brief discussion focuses on new conceptual approaches to entropy. We conclude by suggesting how history can contribute to teachers and students’ awareness about changes in the meaning of entropy and their acceptance of a more relevant commitment in their understanding of physical concepts. Keywords: Entropy in education; science in school. PACS: 01.40 E-; 01.40.fk 1. Introduction persion in its conceptualization. Considering all of these fac- tors, we can formulate some questions: What remains of the At virtually all education levels, research on thermodynamics original interpretations of entropy and its historical develop- concepts indicates that students have difficulties understand- ment? How have original ideas of entropy been transformed ing them.
    [Show full text]
  • Theory of Electricity by Rudolf Clausius in the Development of Thermodynamics
    Eri Yagi and Rika Tadokoro Theory of Electricity by Rudolf Clausius in the Development of Thermodynamics Abstract Clausius’s four papers (1852-57) on the theory of electricity are analyzed by the help of our own database. These papers are classified by him under the mechanical theory of heat together with his papers on thermodynamics and gas theory. The first law and the essential part of the second law of thermodynamics were established in his first Abhandlung (1850). The first law is applied to these four papers on the theory of electricity, where heat, produced by electricity, is considered as the equivalent with the mechanical work. The essential part of the second law is applied to the 12th paper on thermoelectric current. The current between two different metals is treated by the similar method to heat flow. Here the temperature dependence is expressed as dt/C which is the maximum work of the infinitesimal Carnot cycle. 1. Introduction R. Clausius’s published papers, books (1847-85) and his manuscripts at the Library of the Deutsches Museum were studied,9-16 and the role of his papers on the theory of electricity was made clear. The so called “Clausius’s mechanical theory of heat” (die Mechanische Waermetheorie) consists of three fields, e.g., thermodynamics, the theory of electricity, and gas theory. Two volumes of his collected papers, compiled his 16 papers.1 Among these 16 papers, the 1st to the 9th papers (1850-65) are on thermodynamics, the 10th to the 13th papers (1852-7) on the theory of electricity, and the 14th to the 16th papers (1857-62) on gas theory.2 Clausius presented the first law of thermodynamics in his first paper on the mechanical theory of heat in 1850,2(I) in the differential form.
    [Show full text]
  • Infografik Als PDF Herunterladen
    beginnt seine publiziert „Über die Erhaltung tritt Physiologie- Ausbildung schließt seine der Kraft“ (1. Hauptsatz der Professur als Militärarzt Doktorarbeit über die Thermodynamik) Helmholtz und seine Zeit in Königsberg an. Nervenfasern ab 1847 Das 19. Jahrhundert ist geprägt von wissenschaftlichem, 1838 heiratet technischem und industriellem Fortschritt, aber auch von arbeitet als Chirurg an Olga von Velten der Charité und dient bis Krisen. Unsere Infografik zeigtHelmholtz� Meilensteine Hermann 1848 als Militärarzt in 1849 und die seiner Weggefährten. Helmholtz Potsdam und Berlin wird in Potsdam geboren 1842 31.08.1821 1848/49 Deutsche Revolution hermann 1845 1820 Gründung der Physikalischen Gesellschaft zu Berlin Hans Christian Ørsted (heute Deutsche Physikalische 200 jahre 1847 1804 entdeckt den Gesellschaft (heute: DPG)) Helmholtz Elektromagnetismus Werner Siemens und Johann Halske Richard Trevithick gründen die Telegrafenanstalt (Ursprung der Firma Siemens) erfindet die Dampflokomotive tritt Physiologie-Professur publiziert zu Wirbel bewegungen in Bonn an in Flüssigkeiten publiziert „Die Lehre von den Tonempfindungen“ 1855 baut einen Apparat zur Bestimmung von Klangfarben 1863 (= erster Synthesizer) Tod seiner Frau Olga konstruiert den Augenspiegel entwickelt die publiziert Handbuch tritt Physiologie-Professur 1859 heiratet misst als erster die publiziert Theorie Dreifarbentheorie der physiologischen in Heidelberg an Anna von Nerven leit geschwindigkeit der Elektrodynamik Optik Mohl 1852 1858 1850 1856 1861 1870 1867 1870/71 Karl Marx 1867 Deutsch-französischer Krieg 1858 1860 publiziert 1859 „Das Kapital“ Werner Siemens Louis Pasteur Rudolf Virchow 1864 entdeckt das dynamoelektrische entwickelt Theorie der Charles Darwin weist nach, dass Mikro- 1850/51 Julius Lothar Meyer Prinzip und begründet damit Zellularpathologie publiziert organismen die Ursache Rudolf Clausius und William Thomson Evolutionstheorie vieler Erkrankungen sind entwickelt das Periodensystem die moderne Starkstromtechnik.
    [Show full text]
  • Physics and Philosophy  Issn: 1863-7388  2007  Id: 008
    Physics and Philosophy Issn: 1863-7388 2007 Id: 008 Article The Controversial Universe: A Historical Perspective on the Scientic Status of Cosmology Helge Kragh (Steno Institute, University of Aarhus, Denmark. E-mail: [email protected]) Abstract: The domain of cosmology is the universe, a singular concept, and basically for this reason cosmology is a science that diers from other sciences. For a long time there have been critical voices which argue that cosmology cannot be a proper science on par with, say, nuclear physics or hydrodynamics. This kind of critique goes a long way back in time, and I review it here in a historical perspective, focusing on the century from 1870 to 1970. I suggest that there are no good reasons to deny cosmology the status of a proper science. On the other hand, I also consider it natural, and a sign of health, that such foundational questions continue to be part of the cosmological discourse. Keywords: Cosmology, history of modern cosmology, science, universe, Kant 1 During the last fty years or so, cosmology has developed greatly and is today recognized to be a mature and fundamental part of the physical sciences. With the Nobel prizes in physics awarded in 1978 and 2006 to work related to big- bang cosmology it may seem pointless to argue that cosmology is not a proper science. After all, it is hard to imagine that Nobel laureates in physics should earn the prize for doing work that doesn't even qualify as science. It is generally recognized, often with a considerable measure of self-congratulation, that The discovery of the cosmic microwave background in the 1960s established the big bang theory and made cosmology into an empirical science, such as stated in an article in Scientic American from 1992 (Brush 1992, p.
    [Show full text]
  • Die Idee Des Humanen Rudolf Virchow Und Hermann Von Helmholtz
    Der Reichskanzler der Physik: Leben und Wirken von Hermann von Helmholtz Es ist Kaiser Wilhelm I., der im Jahre 1883 den 1821 in Potsdam gebo­ renen Hermann Helmholtz in den Adelsstand erhebt, kurz nachdem der als Mediziner ausgebildete, als Sinnesphysiologe erfolgreiche, als Philosoph beeindruckende, als Physiker überragende und sich in vie­ len populär gehaltenen Schrifen um die Vermittlung seines Wissens­ schatzes bemühende Universalgelehrte zusammen mit Industriellen und Freunden eine Denkschrif verfasst hat, in der vorgeschlagen wird, ein »Institut für die experimentelle Förderung der exakten Naturfor­ schung und Präzisionstechnik« zu gründen. Das Vorhaben kann mit Erfolg durchgeführt werden und hat die berühmte Physikalisch­Tech­ nische Reichsanstalt entstehen lassen, zu deren erstem Präsidenten der preußische Staat 1887 den verehrten Bildungsbürger und Kulturträger Hermann von Helmholtz beruf. Ihm wird dafür sogar ein exorbitan­ tes Salär zugebilligt, dessen Höhe Helmholtz selbst vorgeschlagen hat. Die Physikalisch-Technische Reichsanstalt (jetzt: Physikalisch-Technische Bun- desanstalt) wird 1887 auf maßgebliche Initiative von Werner von Siemens in Berlin gegründet. Hermann von Helmholtz ist ihr erster Präsident. 122 Er meint, dass ihm dies als »Reichskanzler der Physik«, wie er in An­ spielung auf Bismarck von seinen Kollegen respektvoll genannt wird, zustehe. Schließlich habe er eine Gelehrtenrepublik zu regieren wie der Reichskanzler seine Nation, und tatsächlich beklagt sich niemand über die Besoldung des Präsidenten. Man betrachtet sie wohl als angemessen angesichts des Arbeitspensums, das Helmholtz als Leiter der großange­ legten Institution zu bewältigen hat. Unter seiner Leitung führen Wis­ senschafler eine Fülle von Forschungsarbeiten durch, um den Einsatz von Elektrizität zu erproben oder zu einem besseren Verständnis von Wärme und Licht zu gelangen.
    [Show full text]
  • 1 Introduction to Energy
    Corso di Laurea in FISICA Basic on the physics of energy transformaons at micro and nanoscales Luca Gammaitoni ICT-Energy Summer school 2016, Aalborg Prof. Luca Gammaitoni University of Perugia (IT) AD 1308 Florence Roma Perugia 4 Lectures 1) Introduction to energy 2) Energy transformations at micro scales 3) The physics of computing: fundamental limits on energy 4) Energy dissipation in present ICT devices Corso di Laurea in FISICA 1 Introduc2on to energy Luca Gammaitoni ICT-Energy Summer school 2016, Aalborg Corso di EnergyLaurea in FISICA What is it? Corso di EnergyLaurea in FISICA In physics, energy (Ancient Greek: ἐνέργεια energeia "activity, operation”) is an indirectly observed quantity that is often understood as the ability of a physical system to do work on other physical systems Capability of doing WORK… WORK = FORCE x Displacement Corso di EnergyLaurea in FISICA In physics, energy (Ancient Greek: ἐνέργεια energeia "activity, operation”) is an indirectly observed quantity that is often understood as the ability of a physical system to do work on other physical systems Capability of doing WORK… WORK = FORCE x Displacement Energy ? Energy ? Energy ? Corso di EnergyLaurea in FISICA "It is important to realize that in physics today, we have no knowledge what energy is." Richard Feynman, in The Feynman Lectures on Physics (1964) Volume I, 4-1 Energy: a hint of history The vis viva (living force), which Goried Leibniz defined as the product of the mass of an object and its velocity squared; he believed that total vis viva was conserved. To account for slowing due to fric2on, Leibniz theorized that thermal energy consisted of the random moon of the constuent parts of maer, a view shared by Isaac Newton, although it would be more than a century un2l this was generally accepted.
    [Show full text]
  • CLAUSIUS INEQUALITY and ENTROPY – with a Little History Thrown In
    CLAUSIUS INEQUALITY AND ENTROPY – with a little history thrown in. CARNOT PROPOSED THAT HEAT MUST ALWAYS BE WASTED IN ORDER FOR A HEAT ENGINE TO PRODUCE NET WORK, BUT HE DID NOT QUANTIFY HOW MUCH HEAT HAD TO BE WASTED. IN ~ 1850 RUDOLF CLAUSIUS CONFIRMED THE EXISTING THEORIES: 1. ENERGY IS CONSERVED (1ST LAW) WAS QUANTIFIED AS Q – W = ΔU 2. HEAT FLOWS NATURALLY FROM HOT TO COLD (NOT QUANTIFIED) AND ADDED AN IMPORTANT CONTRIBUTION: CLAUSIUS KNEW THAT SOME HEAT HAD TO BE REJECTED FROM A REVERSIBLE (CARNOT) HEAT ENGINE (QL), AS CARNOT PROPOSED, AND HE KNEW THAT ST QL = Wnet – QH (1 LAW) BUT NO PRINCIPLE FIXED THE ABSOLUTE AMOUNT OF REJECTED HEAT. CLAUSIUS THEN OBSERVED THAT FOR REVERSIBLE HEAT ENGINES, THE RATIO OF THE HEAT INPUT TO THE REJECTED HEAT WAS CONSISTENTLY EQUAL TO THE RATIO OF THE ABSOLUTE TEMPERATURES OF THE HIGH AND LOW TEMPERATURE RESERVOIRS: 1 Q T H = H (1) QL TL If and only if the temperature of the high (TH) and low (TL) temperature reservoirs are always expressed in degrees Kelvin. REARRANGING (1) FOR A REVERSIBLE HEAT ENGINE: Q Q H = L (2) TH TL CLAUSIUS THEN EXAMINED IRREVERSIBLE PROCESSES AND FOUND THAT THE RELATION (2) DID NOT HOLD. HE REASONED, FOR EXAMPLE, IF 10 JOULES 0F HEAT FLOW FROM A HOT OBJECT AT 350K INTO A COOL ROOM AT 300K, THEN THE HEAT TRANSFER TERM FOR HEAT LEAVING THE OBJECT AND HEAT TRANSFERRED INTO THE ROOM IS THE SAME AND Q Q 10 10 < or < (3) THLT 350 300 That is, for irreversible processes, the ratio of heat over absolute temperature increases in the direction of natural heat flow.
    [Show full text]