Informatyka 1

Total Page:16

File Type:pdf, Size:1020Kb

Informatyka 1 Informatyka 1 Politechnika Białostocka --WydziałWydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne I stopnia Rok akademicki 2018/2019 Wykład nr 11 (24.05.2019) dr inż. Jarosław Forenc Informatyka 1, studia stacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 11 2/51 Plan wykładu nr 11 Budowa komputera § jednostka centralna, płyta główna, procesory § moduły pamięci , obudowa (AT, ATX) § interfejsy wewnętrzne i zewnętrzne Informatyka 1, studia stacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 11 3/51 Zestaw komputerowy Monitor Mikrofon, słuchawki Jednostka Pendrive centralna Myszka Dysk Kamera zewnętrzny internetowa Klawiatura Skaner Drukarka UPS Głośniki Informatyka 1, studia stacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 11 4/51 Jednostka centralna Napęd Zasilacz DVD Procesor Pamięć Stacja RAM dyskietek Płyta Dysk główna twardy Karta graficzna Informatyka 1, studia stacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 11 5/51 Płyta główna ((motherboardmotherboard)) --przykładyprzykłady Model GigabyteGA-7N400-L GigabyteGA-X58A-UD5 GigabyteG1-Assassin 2 Rok 2003 2009 2011 Gniazdo SocketA Socket1366 Socket2011 Procesor AMD Athlon, Athlon XP Intel Core i7 Intel Core i7 Northbridge nVIDIA nForce 2 Ultra 400 Intel X58 Express Chipset Intel X79 Southbridge nVIDIA nForce 2 MCP Intel ICH10R 4 x 184-pin DDR DIMM 6 x 1.5V DDR3 DIMM 4 x 1.5V DDR3 DIMM Pamięć sockets, max. 3 GB sockets, max. 24 GB sockets, max. 32 GB Format ATX ATX ATX 4 × PCIe x16, 2 × PCIe x1, 3 × PCIe x16, 2 × PCIe x1, PCI, 8 × SATA II 3 Gb/s, PCI, 4 × SATA II 3 Gb/s, AGP, 5 × PCI, 2 × IDE, FDD, 2 × SATA II 6 Gb/s, 4 × SATA III 6 Gb/s, Inne LPT, 2 × COM, 6 × USB, 2 × eSATA, IDE, FDD, 2 × eSATA, RJ45, IrDA, RJ45, 2 × PS/2 2 × RJ45, 10 × USB 2.0, 9 × USB 2.0, 2 × USB 3.0, 2 × PS/2 3 × USB 3.0, PS/2 Informatyka 1, studia stacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 11 6/51 Gigabyte GA--7N4007N400--LL Audio LAN BIOS SIOSIO PCI Socket AA AGP NorthBridge CMOS battery DIMM SouthBridge socket Power źródło: http://www.3cvillage.com IDEIDE FDD Informatyka 1, studia stacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 11 7/51 Gigabyte GA--7N4007N400--LL źródło: GA-7N400 Pro2 / GA-7N400 / GA-7N400-L AMD Socket A Processor Motherboard User’s Manual Informatyka 1, studia stacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 11 8/51 Gigabyte GA--7N4007N400--LL źródło: GA-7N400 Pro2 / GA-7N400 / GA-7N400-L AMD Socket A Processor Motherboard User’s Manual Informatyka 1, studia stacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 11 9/51 Gigabyte GA--X58AX58A--UD5UD5 NorthBridge LAN PCIe x1x1 Intel X58(IOH) SIOSIO 88--PinPin BIOS Power PCI FDD LGA1366 PCIe x16x16 SouthBridge DDR3 Intel ICH10R socket IDEIDE CMOS battery SATA 3 GbGb/s/s 2424--PinPin Power Informatyka 1, studia stacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 11 10/51 Gigabyte GA--X58AX58A--UD5UD5 źródło: GA-X58A-UD5 LGA1366 socket motherboard for Intel ® Core ™ i7 processor family User's Manual Informatyka 1, studia stacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 11 11/51 Gigabyte G1G1--AssassinAssassin 2 PCIe x1x1 LAN Audio PCIe x16x16 PCI DDR3 socket CMOS battery LGA2011 I/O Controller 88--PinPin Power Intel X79 DDR3 socket SATA 2424--PinPin Power Informatyka 1, studia stacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 11 12/51 Gigabyte G1G1--AssassinAssassin 2 źródło: Gigabyte G1.Assassin 2, User's Manual, Rev. 1001 Informatyka 1, studia stacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 11 13/51 Płyty główne --standardystandardy Standard Rok Wymiary 12 × 11–13 in ATAT 1984 (IBM) 305 × 279–330 mm 8.5 × 10–13 in BabyBaby--ATAT 1985 (IBM) 216 × 254 –330 mm 12 × 9.6 in ATX 1996 (Intel) 305 × 244 mm 9.6 × 9.6 in MicroMicro--ATXATX 1996 244 × 244 mm 6.7 × 6.7 in MiniMini--ITXITX 2001 (VIA) 170 × 170 mm max. 4.7 × 4.7 in NanoNano--ITXITX 2003 (VIA) 120 × 120 mm PicoPico--ITXITX 2007 (VIA) 100 × 72 mm max. źródło: http://en.wikipedia.org Informatyka 1, studia stacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 11 14/51 Płyty główne --standardystandardy Informatyka 1, studia stacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 11 15/51 Procesory Intel --mikroarchitekturymikroarchitektury Mikroarchitektura - organizacja procesora Proces Mikroarchitektura Nazwa kodowa Data Procesory 45 nm Nehalem 2008-11-17 Bloomfield, Lynnfield, Clarksfield Nehalem Westmere 2010-01-04 Westmere-EX, -EP, Gulftown, Clarkdale 32 nm Sandy Bridge 2011-01-09 Sandy Bridge-EP, -E, -M, Sandy Bridge Sandy Bridge Ivy Bridge 2012-04-29 Ivy Bridge-EX, -EP, -E, -M, Ivy Bridge 22 nm Haswell 2013-06-02 Haswell-EX, -EP, -E, -DT, -MB, -LP Haswell Broadwell 2014-09-05 Broadwell-EX, -EP, -E Skylake 2015-08-05 Skylake-EX, -EP Kaby Lake 2016-10 Kabylake-X 14 nm Coffee Lake 2017-10-05 CoffeLake-S Skylake Whiskey Lake Whiskey Lake-U 2018-08-28 Amber Lake AmberLake-Y Cascade Lake 2019-04-02 Cascade Lake-X Cannonlake 2018-05 Cannon Lake-U 10 nm Icelake 2019 / 2020 Icelake Tigerlake Informatyka 1, studia stacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 11 16/51 Procesory Intel --mikroarchitekturymikroarchitektury Mikroarchitektura - organizacja procesora Proces Mikroarchitektura Nazwa kodowa Nazwa marketingowa 45 nm Nehalem Nehalem Core i3, i5, i7, Pentium, Celeron, Xeon Westmere 32 nm Sandy Bridge Core i3, i5, i7 (2 gen.), Pentium, Celeron, Xeon Sandy Bridge Ivy Bridge Core i3, i5, i7 (3 gen.), Pentium, Celeron, Xeon 22 nm Haswell Core i3, i5, i7 (4 gen.), Pentium, Celeron, Xeon Haswell Broadwell Core i3, i5, i7 (5 gen.), Core M, Pentium, Celeron, Xeon Skylake Core i3, i5, i7 (6 gen.), Core M, Pentium, Celeron, Xeon Kaby Lake Core i3, i5, i7 (7/8 gen.), Celeron, Pentium, Xeon 14 nm Coffee Lake Core i3, i5, i7, i9 (8/9 gen.), Celeron, Pentium Gold Skylake Whiskey Lake Core i3, i5, i7 (8 gen.) Amber Lake Cascade Lake Core i7, i9, Xeon Cannonlake 10 nm Icelake Icelake Tigerlake Informatyka 1, studia stacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 11 17/51 Procesory Intel --gniazdagniazda LGA (Land Grid Array) - na procesorze złocone, miedziane, płaskie styki, dociskane do pinów w gnieździe na płycie głównej Gniazdo Data Piny Uwagi LGA 1150 ( Socket H3) czerwiec 2013 1150 Haswell (22 nm ), Broadwell (14 nm ) Skylake (14 nm), Kaby Lake (14 nm), LGA 1151 ((SocketSocket H4) sierpień 2015 1151 wsparcie DDR4 i DDR3(L) LGA 2011 ((SocketSocket R)R) listopad 2011 Sandy Bridge (22 nm), Ivy Bridge LGA 20112011--11 luty 2014 2011 (14 nm), Haswell (22 nm), LGA 20112011--v3v3 sierpień 2014 PCI Express 3.0 Skylake-X, Kaby Lake-X, Skylake-SP, LGA 2066 ((SocketSocket R4) czerwiec 2017 2066 Cascade Lake-X Informatyka 1, studia stacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 11 18/51 Procesory Intel --gniazdagniazda LGA (Land Grid Array) - na procesorze złocone, miedziane, płaskie styki, dociskane do pinów w gnieździe na płycie głównej LGA 1151 LGA 2011 Informatyka 1, studia stacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 11 19/51 Procesory AMD --gniazdagniazda PGA-ZIF - nóżki znajdują się na procesorze Gniazdo Data Piny Uwagi mikroarchitektura Bulldozer, Socket AM3+ 2011 942 procesory: Athlon II, Phenom II, FX mikroarchitektura: Zen, Excavator, obsługa: Socket AM4 2017 1331 DDR4 Memory, PCIe Gen 3, USB 3.1 Gen2 podstawka LGA , Socket Threadripper 4, Socket Socket TRTR sierpień 2017 4094 SP3r2, procesory: Zen, Ryzen Threadripper AMD Trinity, APU - połączenie tradycyjnego Socket FM2 wrzesień 2012 904 procesora x86 z proc. graficznym AMD Kaveri, APU - połączenie tradycyjnego Socket FM2+ 2013 906 procesora x86 z proc. graficznym Informatyka 1, studia stacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 11 20/51 Procesory AMD --gniazdagniazda PGA-ZIF - nóżki znajdują się na procesorze Socket AM4 Socket FM2 Informatyka 1, studia stacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 11 21/51 Moduły pamięci DIP Dual In-line Package zastosowanie: XT, AT rok: 1981 SIPP Single In-line Pin Package liczba pinów: 30 zastosowanie: AT, 286, 386 rok: 1983 Informatyka 1, studia stacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 11 22/51 Moduły pamięci SIMM (30(30--pins)pins) Single Inline Memory Module liczba styków: 30 (te same styki po obu stronach modułu) pojemność: 256 KB, 1 MB, 4 MB, 16 MB zastosowanie: 286, 386, 486 rok: 1994 Informatyka 1, studia stacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 11 23/51 Moduły pamięci SIMM (72(72--pins)pins) Single Inline Memory Module liczba styków: 72 (te same styki po obu stronach modułu) pojemność [MB]: 1, 2, 4, 8, 16, 32, 64, 128 zastosowanie: 486, Pentium, AMD K5, AMD K6 rok: 1996 Informatyka 1, studia stacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 11 24/51 Moduły pamięci DIMM Dual In-Line Memory Module styki po przeciwnych stronach modułu mają inne znaczenie najczęściej stosowane moduły DIMM: § 72-pinowe, stosowane w SO-DIMM (32-bitowe) § 144-pinowe, stosowane w SO-DIMM (64-bitowe) § 168-pinowe, stosowane w SDR SDRAM § 184-pinowe, stosowane w DDR SDRAM § 240-pinowe, stosowane w DDR2 SDRAM § 240-pinowe, stosowane w DDR3 SDRAM § 288-pinowe, stosowane w DDR4 SDRAM Informatyka 1, studia stacjonarne I stopnia dr inż.
Recommended publications
  • Microcode Revision Guidance August 31, 2019 MCU Recommendations
    microcode revision guidance August 31, 2019 MCU Recommendations Section 1 – Planned microcode updates • Provides details on Intel microcode updates currently planned or available and corresponding to Intel-SA-00233 published June 18, 2019. • Changes from prior revision(s) will be highlighted in yellow. Section 2 – No planned microcode updates • Products for which Intel does not plan to release microcode updates. This includes products previously identified as such. LEGEND: Production Status: • Planned – Intel is planning on releasing a MCU at a future date. • Beta – Intel has released this production signed MCU under NDA for all customers to validate. • Production – Intel has completed all validation and is authorizing customers to use this MCU in a production environment.
    [Show full text]
  • Class-Action Lawsuit
    Case 3:20-cv-00863-SI Document 1 Filed 05/29/20 Page 1 of 279 Steve D. Larson, OSB No. 863540 Email: [email protected] Jennifer S. Wagner, OSB No. 024470 Email: [email protected] STOLL STOLL BERNE LOKTING & SHLACHTER P.C. 209 SW Oak Street, Suite 500 Portland, Oregon 97204 Telephone: (503) 227-1600 Attorneys for Plaintiffs [Additional Counsel Listed on Signature Page.] UNITED STATES DISTRICT COURT DISTRICT OF OREGON PORTLAND DIVISION BLUE PEAK HOSTING, LLC, PAMELA Case No. GREEN, TITI RICAFORT, MARGARITE SIMPSON, and MICHAEL NELSON, on behalf of CLASS ACTION ALLEGATION themselves and all others similarly situated, COMPLAINT Plaintiffs, DEMAND FOR JURY TRIAL v. INTEL CORPORATION, a Delaware corporation, Defendant. CLASS ACTION ALLEGATION COMPLAINT Case 3:20-cv-00863-SI Document 1 Filed 05/29/20 Page 2 of 279 Plaintiffs Blue Peak Hosting, LLC, Pamela Green, Titi Ricafort, Margarite Sampson, and Michael Nelson, individually and on behalf of the members of the Class defined below, allege the following against Defendant Intel Corporation (“Intel” or “the Company”), based upon personal knowledge with respect to themselves and on information and belief derived from, among other things, the investigation of counsel and review of public documents as to all other matters. INTRODUCTION 1. Despite Intel’s intentional concealment of specific design choices that it long knew rendered its central processing units (“CPUs” or “processors”) unsecure, it was only in January 2018 that it was first revealed to the public that Intel’s CPUs have significant security vulnerabilities that gave unauthorized program instructions access to protected data. 2. A CPU is the “brain” in every computer and mobile device and processes all of the essential applications, including the handling of confidential information such as passwords and encryption keys.
    [Show full text]
  • Multiprocessing Contents
    Multiprocessing Contents 1 Multiprocessing 1 1.1 Pre-history .............................................. 1 1.2 Key topics ............................................... 1 1.2.1 Processor symmetry ...................................... 1 1.2.2 Instruction and data streams ................................. 1 1.2.3 Processor coupling ...................................... 2 1.2.4 Multiprocessor Communication Architecture ......................... 2 1.3 Flynn’s taxonomy ........................................... 2 1.3.1 SISD multiprocessing ..................................... 2 1.3.2 SIMD multiprocessing .................................... 2 1.3.3 MISD multiprocessing .................................... 3 1.3.4 MIMD multiprocessing .................................... 3 1.4 See also ................................................ 3 1.5 References ............................................... 3 2 Computer multitasking 5 2.1 Multiprogramming .......................................... 5 2.2 Cooperative multitasking ....................................... 6 2.3 Preemptive multitasking ....................................... 6 2.4 Real time ............................................... 7 2.5 Multithreading ............................................ 7 2.6 Memory protection .......................................... 7 2.7 Memory swapping .......................................... 7 2.8 Programming ............................................. 7 2.9 See also ................................................ 8 2.10 References .............................................
    [Show full text]
  • System Builder's Guide for D-Series
    Matrox® Display Wall Mura™ IPX Series • D-Series™ System Builder’s Guide 20315-101-0110 2021.07.28 www.matrox.com/video Contents Product overview .....................................................................................................................................................4 Hardware summary – Mura IPX Series.....................................................................................................................................................................4 MURAIPXI-E4SF/MURAIPXI-E4SHF ...............................................................................................................................................4 MURAIPXI-E2MF/MURAIPXI-E2MHF ...........................................................................................................................................5 MURAIPXI-D2MF/MURAIPXI-D2MHF..................................................................................................................................................6 MURAIPXI-E4JF/MURAIPXI-E4JHF ................................................................................................................................................7 MURAIPXI-D4JF/MURAIPXI-D4JHF ..............................................................................................................................................8 Hardware summary – Matrox D-Series ....................................................................................................................................................................9
    [Show full text]
  • The Intel X86 Microarchitectures Map Version 2.0
    The Intel x86 Microarchitectures Map Version 2.0 P6 (1995, 0.50 to 0.35 μm) 8086 (1978, 3 µm) 80386 (1985, 1.5 to 1 µm) P5 (1993, 0.80 to 0.35 μm) NetBurst (2000 , 180 to 130 nm) Skylake (2015, 14 nm) Alternative Names: i686 Series: Alternative Names: iAPX 386, 386, i386 Alternative Names: Pentium, 80586, 586, i586 Alternative Names: Pentium 4, Pentium IV, P4 Alternative Names: SKL (Desktop and Mobile), SKX (Server) Series: Pentium Pro (used in desktops and servers) • 16-bit data bus: 8086 (iAPX Series: Series: Series: Series: • Variant: Klamath (1997, 0.35 μm) 86) • Desktop/Server: i386DX Desktop/Server: P5, P54C • Desktop: Willamette (180 nm) • Desktop: Desktop 6th Generation Core i5 (Skylake-S and Skylake-H) • Alternative Names: Pentium II, PII • 8-bit data bus: 8088 (iAPX • Desktop lower-performance: i386SX Desktop/Server higher-performance: P54CQS, P54CS • Desktop higher-performance: Northwood Pentium 4 (130 nm), Northwood B Pentium 4 HT (130 nm), • Desktop higher-performance: Desktop 6th Generation Core i7 (Skylake-S and Skylake-H), Desktop 7th Generation Core i7 X (Skylake-X), • Series: Klamath (used in desktops) 88) • Mobile: i386SL, 80376, i386EX, Mobile: P54C, P54LM Northwood C Pentium 4 HT (130 nm), Gallatin (Pentium 4 Extreme Edition 130 nm) Desktop 7th Generation Core i9 X (Skylake-X), Desktop 9th Generation Core i7 X (Skylake-X), Desktop 9th Generation Core i9 X (Skylake-X) • Variant: Deschutes (1998, 0.25 to 0.18 μm) i386CXSA, i386SXSA, i386CXSB Compatibility: Pentium OverDrive • Desktop lower-performance: Willamette-128
    [Show full text]
  • Informatyka 1, Studia Niestacjonarne I Stopnia Dr Inż
    Informatyka 1, studia niestacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 5 2/59 Plan wykładu nr 5 Informatyka 1 Język C § pętla for, operatory ++ i – Klasyfikacja systemów komputerowych (Flynna) Architektura von Neumanna i architektura harwardzka Politechnika Białostocka --WydziałWydział Elektryczny Budowa komputera § jednostka centralna Elektrotechnika, semestr II, studia niestacjonarne I stopnia § płyta główna Rok akademicki 2018/2019 § procesor (mikroarchitektury) Wykład nr 5 (05.04.2019) dr inż. Jarosław Forenc Informatyka 1, studia niestacjonarne I stopnia dr inż. Jarosław Forenc Informatyka 1, studia niestacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 5 3/59 Rok akademicki 2018/2019, Wykład nr 5 4/59 Język C --sumasuma kolejnych 10 liczb: 1+2+…+10 Język C --sumasuma kolejnych 100 liczb: 1+2+…+100 Suma wynosi: 55 Suma wynosi: 5050 #include <stdio.h> #include <stdio.h> int main(void ) int main(void ) { { int suma; int suma=0, i; suma = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10; for (i=1; i<=100; i=i+1) suma = suma + i; printf("Suma wynosi: %d\n" ,suma); printf("Suma wynosi: %d\n" ,suma); return 0; } return 0; } Informatyka 1, studia niestacjonarne I stopnia dr inż. Jarosław Forenc Informatyka 1, studia niestacjonarne I stopnia dr inż. Jarosław Forenc Rok akademicki 2018/2019, Wykład nr 5 5/59 Rok akademicki 2018/2019, Wykład nr 5 6/59 Język C --pętlapętla for Język C --pętlapętla for Najczęściej stosowana postać pętli for for (wyr1; wyr2; wyr3) wyr1 instrukcja int i; for (i = 0; i < 10; i = i + 1) NIE wyr 2 ≠ 0 instrukcja wyr1 , wyr2 , wyr3 - dowolne wyrażenia w języku C TAK Instrukcja zostanie wykonana 10 razy Instrukcja: instrukcja (dla i = 0, 1, 2, … 9 ) § prosta - jedna instrukcja Funkcje pełnione przez wyrażenia zakończona średnikiem wyr3 § złożona - jedna lub kilka instrukcji objętych nawiasami klamrowymi for (inicjalizacja ;test ;aktualizacja ) instrukcja Informatyka 1, studia niestacjonarne I stopnia dr inż.
    [Show full text]
  • Lista Sockets.Xlsx
    Data de Processadores Socket Número de pinos lançamento compatíveis Socket 0 168 1989 486 DX 486 DX 486 DX2 Socket 1 169 ND 486 SX 486 SX2 486 DX 486 DX2 486 SX Socket 2 238 ND 486 SX2 Pentium Overdrive 486 DX 486 DX2 486 DX4 486 SX Socket 3 237 ND 486 SX2 Pentium Overdrive 5x86 Socket 4 273 março de 1993 Pentium-60 e Pentium-66 Pentium-75 até o Pentium- Socket 5 320 março de 1994 120 486 DX 486 DX2 486 DX4 Socket 6 235 nunca lançado 486 SX 486 SX2 Pentium Overdrive 5x86 Socket 463 463 1994 Nx586 Pentium-75 até o Pentium- 200 Pentium MMX K5 Socket 7 321 junho de 1995 K6 6x86 6x86MX MII Slot 1 Pentium II SC242 Pentium III (Cartucho) 242 maio de 1997 Celeron SEPP (Cartucho) K6-2 Socket Super 7 321 maio de 1998 K6-III Celeron (Socket 370) Pentium III FC-PGA Socket 370 370 agosto de 1998 Cyrix III C3 Slot A 242 junho de 1999 Athlon (Cartucho) Socket 462 Athlon (Socket 462) Socket A Athlon XP 453 junho de 2000 Athlon MP Duron Sempron (Socket 462) Socket 423 423 novembro de 2000 Pentium 4 (Socket 423) PGA423 Socket 478 Pentium 4 (Socket 478) mPGA478B Celeron (Socket 478) 478 agosto de 2001 Celeron D (Socket 478) Pentium 4 Extreme Edition (Socket 478) Athlon 64 (Socket 754) Socket 754 754 setembro de 2003 Sempron (Socket 754) Socket 940 940 setembro de 2003 Athlon 64 FX (Socket 940) Athlon 64 (Socket 939) Athlon 64 FX (Socket 939) Socket 939 939 junho de 2004 Athlon 64 X2 (Socket 939) Sempron (Socket 939) LGA775 Pentium 4 (LGA775) Pentium 4 Extreme Edition Socket T (LGA775) Pentium D Pentium Extreme Edition Celeron D (LGA 775) 775 agosto de
    [Show full text]
  • The Intel X86 Microarchitectures Map Version 2.2
    The Intel x86 Microarchitectures Map Version 2.2 P6 (1995, 0.50 to 0.35 μm) 8086 (1978, 3 µm) 80386 (1985, 1.5 to 1 µm) P5 (1993, 0.80 to 0.35 μm) NetBurst (2000 , 180 to 130 nm) Skylake (2015, 14 nm) Alternative Names: i686 Series: Alternative Names: iAPX 386, 386, i386 Alternative Names: Pentium, 80586, 586, i586 Alternative Names: Pentium 4, Pentium IV, P4 Alternative Names: SKL (Desktop and Mobile), SKX (Server) Series: Pentium Pro (used in desktops and servers) • 16-bit data bus: 8086 (iAPX Series: Series: Series: Series: • Variant: Klamath (1997, 0.35 μm) 86) • Desktop/Server: i386DX Desktop/Server: P5, P54C • Desktop: Willamette (180 nm) • Desktop: Desktop 6th Generation Core i5 (Skylake-S and Skylake-H) • Alternative Names: Pentium II, PII • 8-bit data bus: 8088 (iAPX • Desktop lower-performance: i386SX Desktop/Server higher-performance: P54CQS, P54CS • Desktop higher-performance: Northwood Pentium 4 (130 nm), Northwood B Pentium 4 HT (130 nm), • Desktop higher-performance: Desktop 6th Generation Core i7 (Skylake-S and Skylake-H), Desktop 7th Generation Core i7 X (Skylake-X), • Series: Klamath (used in desktops) 88) • Mobile: i386SL, 80376, i386EX, Mobile: P54C, P54LM Northwood C Pentium 4 HT (130 nm), Gallatin (Pentium 4 Extreme Edition 130 nm) Desktop 7th Generation Core i9 X (Skylake-X), Desktop 9th Generation Core i7 X (Skylake-X), Desktop 9th Generation Core i9 X (Skylake-X) • New instructions: Deschutes (1998, 0.25 to 0.18 μm) i386CXSA, i386SXSA, i386CXSB Compatibility: Pentium OverDrive • Desktop lower-performance: Willamette-128
    [Show full text]
  • 2 Basic Compiler Optimizations.Pdf
    What’s New for Intel compilers 19.1? Advance Support for Intel® Architecture – Use Intel compiler to generate optimized code for Intel Atom® processor through Intel® Xeon® Scalable processor and Intel® Xeon Phi™ processor families Achieve Superior Parallel Performance – Vectorize & thread your code (using OpenMP*) to take full advantage of the latest SIMD-enabled hardware, including Intel® Advanced Vector Extensions 512 (Intel® AVX-512) What’s New in C++ What’s New in Fortran Initial C++20, and full C++ 17 enabled Substantial Fortran 2018 support ▪ Enjoy advanced lambda and constant expression support ▪ Enjoy enhanced C-interoperability features for effective mixed language ▪ Standards-driven parallelization for C++ developers development Initial OpenMP* 5.0, and full OpenMP* 4.5 ▪ Use advanced coarray features to parallelize your modern Fortran code support Initial OpenMP* 5.0, and substantial OpenMP* 4.5 ▪ Modernize your code by using the latest parallelization support specifications ▪ Customize your reduction operations by user-defined reductions 2 Optimization Notice Copyright © 2020, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Common optimization options Linux* Disable optimization -O0 Optimize for speed (no code size increase) -O1 Optimize for speed (default) -O2 High-level loop optimization -O3 Create symbols for debugging -g Multi-file inter-procedural optimization -ipo Profile guided optimization (multi-step build) -prof-gen -prof-use Optimize for speed across the entire program (“prototype switch”) -fast same as: fast options definitions changes over time! -ipo –O3 -no-prec-div –static –fp-model fast=2 -xHost) OpenMP support -qopenmp Automatic parallelization -parallel Optimization Notice Copyright © 2020, Intel Corporation.
    [Show full text]
  • Microcode Revision Guidance April2 2018 MCU Recommendations the Following Table Provides Details of Availability for Microcode Updates Currently Planned by Intel
    microcode revision guidance april2 2018 MCU Recommendations The following table provides details of availability for microcode updates currently planned by Intel. Changes since the previous version are highlighted in yellow. LEGEND: Production Status: • Planning – Intel has not yet determined a schedule for this MCU. • Pre-beta – Intel is performing early validation for this MCU. • Beta – Intel has released this production signed MCU under NDA for all customers to validate. • Production – Intel has completed all validation and is authorizing customers to use this MCU in a production environment. • Stopped – After a comprehensive investigation of the microarchitectures and microcode capabilities for these products, Intel has determined to not release microcode updates for these products for one or more reasons including, but not limited to the following: • Micro-architectural characteristics that preclude a practical implementation of features mitigating Variant 2 (CVE-2017-5715) • Limited Commercially Available System Software support • Based on customer inputs, most of these products are implemented as “closed systems” and therefore are expected to have a lower likelihood of exposure to these vulnerabilities. Pre-Mitigation Production MCU: • For products that do not have a Production MCU with mitigations for Variant 2 (Spectre), Intel recommends using this version of MCU. This does not impact mitigations for Variant 1 (Spectre) and Variant 3 (Meltdown). STOP deploying these MCU revs: • Intel recommends to discontinue using these select versions of MCU that were previously released with mitigations for Variant 2 (Spectre) due to system stability issues. • Lines with “***” were previously recommended to discontinue use. Subsequent testing by Intel has determined that these were unaffected by the stability issues and have been re-released without modification.
    [Show full text]
  • Intel: Manufacturing, Chip Design Expertise Driving Innovation and Integration, Historic Change to Computers
    Intel: Manufacturing, Chip design Expertise Driving Innovation and Integration, Historic Change to Computers SAN FRANCISCO, Sep 22, 2009 (BUSINESS WIRE) -- Intel Corporation executives today said Moore's Law, driven by Intel's advances in 32 and 22 nanometer (nm)-manufacturing technologies, is leading to a broader and faster pace of "innovation and integration." Future Intel(R) Atom(TM), Core(R) and Xeon(R) processors and System on Chip (SoC) products will make computers smaller, smarter, more capable and easier to use. For example, among a number of other innovations on tap, Intel will integrate graphics into some of its future chip products for the first time ever. "Over the past 40 years, the opportunities enabled by Moore's Law have gone beyond just impressive performance increases," said Sean Maloney, executive vice president and general manager of the Intel Architecture Group. "The rapidly increasing number of transistors and processor instructions we add have made possible the integration of more and more capabilities and features within our processors. This has driven an incredible amount of innovation throughout the industry, with the real winners being the consumers, gamers and businesses which buy these Intel-based computers." Next Generation Processors - Westmere and Sandy Bridge In his Intel Developer Forum keynote, Maloney demonstrated a Westmere-based PC that showed a marked increase in responsiveness on simple, everyday tasks such as Web-surfing with multiple windows open. Moreover, Westmere is Intel's first 32nm processor, and historic in that it is the first-ever Intel processor to integrate graphics die right into the processor's package.
    [Show full text]
  • Intel I7 Core Processor – a New Order Processor Level
    © 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002 Intel i7 core processor – A new order processor level Arpit Yadav ; Anurag Parmar; Abhishek Sharma Electronics and Communication Engineering ABSTRACT: The paper bestowed up here may be a higher and economical compactibility , advanced complete exposure to the exactly used technologies in response towards the users demand. Now, the Intel i7 core processor.Intel i7 processor may be a fresh question arise why solely Intel core? .. Intel on the market and latest core processor gift within the Penrynmicroarchitecture includes Core a pair of market. It uses all the new technologies gift with within family of the processors that was the primary thought the corporative world. it's redesigned by a high repetitive quality of software package technocrats so it's . Intel microarchitecture isbased on the 45nm subtle style of all of the core processors gift.Intel Core i7 fabrication method. this enables Intel to create the sometimes applies to any or all families of desktop and next performance vary of processorsthat apace portable computer 64-bit x86-64processors that uses the consumes similar or less power than the antecedently Westmere , Nehalaem , Ivy , Sandy Bridge and also the generation processors. Intel Core primarily may be a Haswell microarchitectures. The Core i7 complete brand that Intel uses for the assorted vary of middle principally targets all the business and high-end to high-end customers and business based mostly shopper markets for each desktop and portable microprocessors. Generally, processors computer computers, and is distinguished from the oversubscribed within the name of Core square (entry-level consumer)Core i3, (mainstream consumer) Core i5, and (server and workstation) Xeon brands.
    [Show full text]