ABSTRACT BISSINGER, BROOKE WITTING. Novel Methods Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
4Th National IPM Symposium
contents Foreword . 2 Program Schedule . 4 National Roadmap for Integrated Pest Management (IPM) . 9 Whole Systems Thinking Applied to IPM . 12 Fourth National IPM Symposium . 14 Poster Abstracts . 30 Poster Author Index . 92 1 foreword Welcome to the Fourth National Integrated Pest Management The Second National IPM Symposium followed the theme “IPM Symposium, “Building Alliances for the Future of IPM.” As IPM Programs for the 21st Century: Food Safety and Environmental adoption continues to increase, challenges facing the IPM systems’ Stewardship.” The meeting explored the future of IPM and its role approach to pest management also expand. The IPM community in reducing environmental problems; ensuring a safe, healthy, has responded to new challenges by developing appropriate plentiful food supply; and promoting a sustainable agriculture. The technologies to meet the changing needs of IPM stakeholders. meeting was organized with poster sessions and workshops covering 22 topic areas that provided numerous opportunities for Organization of the Fourth National Integrated Pest Management participants to share ideas across disciplines, agencies, and Symposium was initiated at the annual meeting of the National affiliations. More than 600 people attended the Second National IPM Committee, ESCOP/ECOP Pest Management Strategies IPM Symposium. Based on written and oral comments, the Subcommittee held in Washington, DC, in September 2001. With symposium was a very useful, stimulating, and exciting experi- the 2000 goal for IPM adoption having passed, it was agreed that ence. it was again time for the IPM community, in its broadest sense, to come together to review IPM achievements and to discuss visions The Third National IPM Symposium shared two themes, “Putting for how IPM could meet research, extension, and stakeholder Customers First” and “Assessing IPM Program Impacts.” These needs. -
Mosquito Repellents for Travellers. BMJ (Clinical Research Ed), 350
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by LSHTM Research Online Stanczyk, NM; Behrens, RH; Chen-Hussey, V; Stewart, SA; Logan, JG (2015) Mosquito repellents for travellers. BMJ (Clinical research ed), 350. h99. ISSN 0959-8138 DOI: 10.1136/bmj.h99 Downloaded from: http://researchonline.lshtm.ac.uk/2121428/ DOI: 10.1136/bmj.h99 Usage Guidelines Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alterna- tively contact [email protected]. Available under license: Creative Commons Attribution Non-commercial http://creativecommons.org/licenses/by-nc/2.5/ BMJ 2015;350:h99 doi: 10.1136/bmj.h99 (Published 19 February 2015) Page 1 of 4 Practice PRACTICE THERAPEUTICS Mosquito repellents for travellers 1 1 2 Nina M Stanczyk research fellow , Ron H Behrens senior lecturer , Vanessa Chen-Hussey research 1 3 scientist and clinical trials manager , Sophie A Stewart senior research scientist and clinical trials 3 1 3 coordinator , James G Logan senior lecturer 1Department of Disease Control, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; 2Hospital for Tropical Diseases, London, UK; 3Arthropod Control Product Test Centre, London School of Hygiene and Tropical Medicine, London, UK This is one of a series of occasional articles on therapeutics for common isolated as a byproduct of Eucalyptus citriodora (lemon or serious conditions, covering new drugs and old drugs with important eucalyptus). new indications or concerns. The series advisers are Robin Ferner, honorary professor of clinical pharmacology, University of Birmingham Icaridin—Icaridin (hydroxyethyl isobutyl piperidine and Birmingham City Hospital, and Albert Ferro, professor of carboxylate) is also known by the trade names Bayrepel, cardiovascular clinical pharmacology, King’s College London. -
Reflexion on Bio-Sourced Mosquito Repellents: Nature, Activity, and Preparation Claude Grison, David Carrasco, Franck Pelissier, Alexandra Moderc
Reflexion on Bio-Sourced Mosquito Repellents: Nature, Activity, and Preparation Claude Grison, David Carrasco, Franck Pelissier, Alexandra Moderc To cite this version: Claude Grison, David Carrasco, Franck Pelissier, Alexandra Moderc. Reflexion on Bio-Sourced Mosquito Repellents: Nature, Activity, and Preparation. Frontiers in Ecology and Evolution, Fron- tiers Media S.A, 2020, 8, 10.3389/fevo.2020.00008. hal-03051738 HAL Id: hal-03051738 https://hal.archives-ouvertes.fr/hal-03051738 Submitted on 10 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License fevo-08-00008 February 5, 2020 Time: 16:18 # 1 REVIEW published: 07 February 2020 doi: 10.3389/fevo.2020.00008 Reflexion on Bio-Sourced Mosquito Repellents: Nature, Activity, and Preparation Claude Grison1*, David Carrasco2, Franck Pelissier1 and Alexandra Moderc1 1 Laboratory of Bio-inspired Chemistry and Ecological Innovations, ChimEco (UMR 5021), University of Montpellier, CNRS, Montpellier, France, 2 MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France Over the last decades, the geographical distribution of certain mosquito species carrying vector-borne diseases has considerably expanded. They represent a major health concern as they transmit pathogens causing alarming epidemics. -
Phylogenetic Analysis of Nematodes of the Genus Pratylenchus Using Nuclear 26S Rdna
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of February 1997 Phylogenetic Analysis of Nematodes of the Genus Pratylenchus Using Nuclear 26S rDNA Luma Al-Banna University of Jordan, [email protected] Valerie M. Williamson University of California, Davis, [email protected] Scott Lyell Gardner University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Al-Banna, Luma; Williamson, Valerie M.; and Gardner, Scott Lyell, "Phylogenetic Analysis of Nematodes of the Genus Pratylenchus Using Nuclear 26S rDNA" (1997). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 52. https://digitalcommons.unl.edu/parasitologyfacpubs/52 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Molecular Phylogenetics and Evolution (ISSN: 1055-7903), vol. 7, no. 1 (February 1997): 94-102. Article no. FY960381. Copyright 1997, Academic Press. Used by permission. Phylogenetic Analysis of Nematodes of the Genus Pratylenchus Using Nuclear 26S rDNA Luma Al-Banna*, Valerie Williamson*, and Scott Lyell Gardner1 *Department of Nematology, University of California at Davis, Davis, California 95676-8668 1H. W. Manter Laboratory, Division of Parasitology, University of Nebraska State Museum, W-529 Nebraska Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0514; [email protected] Fax: (402) 472-8949. -
Mosquito Repellent Thermal Stability, Permeability and Air Volatility
Published as: António B Mapossa, Walter W Focke, Alcides Sitoe, Homa Izadi, Elizbé du Toit, René Androsch, Chanita Sungkapreecha, L. van der Merwe. Mosquito repellent thermal stability, permeability and air volatility. Pest Management Science, 76, 1112-1120. Mosquito repellent thermal stability, permeability and air volatility António B Mapossa1,2, Alcides Sitoe1,2,3, Walter W Focke1,2,*, Homa Izadi1, Elizabeth L du Toit1, René Androsch4, Chanita Sungkapreecha4, Elizabet M. van der Merwe5 1Institute of Applied Materials, Department of Chemical Engineering, University of Pretoria, Lynnwood Road, Pretoria, South Africa 2UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa, Pretoria, South Africa 3Department of Chemistry, Eduardo Mondlane University, Maputo, Mozambique 4Interdisciplinary Center for Transfer-oriented Research in Natural Sciences, Martin Luther University Halle- Wittenberg, D-06099 Halle/Saale, Germany 5Department of Chemistry, University of Pretoria, Lynnwood Road, Pretoria, South Africa Abstract BACKGROUND: The effectiveness of mosquito repellents, whether applied topically on the skin or released from a wearable device, is crucially determined by the evaporation rate. This is because a repellent has to be present in the form of vapour in the vicinity of the exposed skin that needs protection. Therefore, gravimetric techniques were used to investigate the direct evaporation of selected liquid repellents, their permeation through polymer films, and their release from a microporous polyethylene matrix. RESULTS: Evaporation of a repellent into quiescent air is determined by its air permeability. It is defined as the product of the vapour pressure and the diffusion coefficient, i.e. = . It was found that the repellent ranking, in terms of decreasing volatility, was ethyl anthranilate > citriodiol > dimethyl phthalate > DEET > decanoic acid > ethyl butylacetylaminopropionate > Icaridin. -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Insect Repellent Essentials
Insect Repellent Essentials: A Brief Guide Insect repellents are substances that, when used as directed, can reduce tick, mosquito, and other insect bites. Preventing bites will help you avoid disease-causing pathogens carried by these animals. WHY SHOULD YOU USE INSECT REPELLENT? You can protect yourself from ticks and mosquitoes by properly applying insect repellents when outdoors during times of year when these critters are most active. Repellents used on your skin generally work by How do they making it harder for biting insects and ticks to work? smell or find you. Not all ticks and mosquitoes carry disease-causing agents, but there are a few in the Northeast that can be harmful: Several mosquito species in the Northeast can transmit: West Nile virus Eastern equine encephalitis virus LaCrosse encephalitis virus Jamestown Canyon virus Blacklegged (aka deer) ticks: Lone star ticks: Lyme disease Ehrlichiosis Anaplasmosis Tularemia Babesiosis Heartland virus Ehrlichiosis Powassan virus disease American dog ticks: Brown dog ticks: Tularemia Rocky Mountain Rocky Mountain Spotted Fever Spotted Fever Visit www.cdc.gov/ncezid/dvbd to learn more about these vector-borne diseases WHEN SHOULD YOU APPLY INSECT REPELLENT? Apply insect repellent when you are outdoors in tick or mosquito habitats. Ticks in the Northeast can be active year-round and any time of day. They are most active during the warmer months of the year, and can be as small as poppy seeds during the spring and summer. You can still be bitten by a tick in the winter! If the temperature is warm enough and the snow has started to melt, ticks can be active. -
Amyris and Siam-Wood Essential Oils: Insect Activity of Sesquiterpenes Gretchen E
Entomology Publications Entomology 12-20-2009 Amyris and Siam-wood Essential Oils: Insect Activity of Sesquiterpenes Gretchen E. Paluch Iowa State University Junwei Zhu United States Department of Agriculture Lyric Bartholomay Iowa State University, [email protected] Joel R. Coats Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/ent_pubs Part of the Entomology Commons, Other Pharmacology, Toxicology and Environmental Health Commons, Parasitic Diseases Commons, and the Plant Sciences Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ ent_pubs/363. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Book Chapter is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Amyris and Siam-wood Essential Oils: Insect Activity of Sesquiterpenes Abstract Recent investigations on the sesquiterpene-rich Amyris (Amyris balsamifera L.) and Siam-wood (Fokienia hodginsii L.) essential oils revealed significant arthropod repellency and toxicity responses. Amyris essential oil and one of its major components, elemol, were evaluated in laboratory bioassays and identified as effective mosquito repellents, specifically characterized by high levels of contact and minimal spatial repellency. Mosquito responses to catnip (Nepeta cataria L.) essential oil are characterized with high spatial activity, but lack significant contact repellency. Sampling within the staticair bioassay chamber with solid-phase microextraction provided measurements of the relative concentration and distribution of volatiles. -
Argasidae Soft Ticks
Lect.5 Arthropoda 3rd class Dr.Omaima Argasidae Soft ticks Soft ticks are a group of ticks that belong to the tick family called Argasids. They are less abundant than hard ticks and are usually not a major issue for livestock, horses or pets, but can be a problem in traditional or outdoor poultry operations in endemic regions. There are about 185 soft tick species worldwide. Biology and life cycle of soft ticks They are called "soft" ticks because they have a "leathery" consistence. Soft ticks are significantly different from hard ticks in their anatomy, but also in their feeding and host-finding behavior. In contrast with in hardticks, the capitulum is below the abdomen and can't be seen from upside, and sof ticks dont' have a dorsal shield (scutum). Soft ticks behave more like poultry mites than like hard ticks. They build populations close to their hosts, in cracks and crevices of buildings and caves, or in bird nests. They can survive for very long periods without feeding, waiting for their hosts to come back to their nests or shelters. As all ticks, they undergo a metamorphosis and develop through the typical stages of larvae, nymphs (various stages) and adults. The life cycle (i.e. from eggs to eggs of the next generation) can be completed in a few months or many years, depending on species and climatic and ecological conditions, but especially on the presence or absence of suitable hosts. In contrast with hard ticks mating occurs off the host. Females lay a few hundred eggs in several batches. -
Biodiversity Profile of Afghanistan
NEPA Biodiversity Profile of Afghanistan An Output of the National Capacity Needs Self-Assessment for Global Environment Management (NCSA) for Afghanistan June 2008 United Nations Environment Programme Post-Conflict and Disaster Management Branch First published in Kabul in 2008 by the United Nations Environment Programme. Copyright © 2008, United Nations Environment Programme. This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. United Nations Environment Programme Darulaman Kabul, Afghanistan Tel: +93 (0)799 382 571 E-mail: [email protected] Web: http://www.unep.org DISCLAIMER The contents of this volume do not necessarily reflect the views of UNEP, or contributory organizations. The designations employed and the presentations do not imply the expressions of any opinion whatsoever on the part of UNEP or contributory organizations concerning the legal status of any country, territory, city or area or its authority, or concerning the delimitation of its frontiers or boundaries. Unless otherwise credited, all the photos in this publication have been taken by the UNEP staff. Design and Layout: Rachel Dolores -
Key for Identification of the Ladybirds (Coleoptera: Coccinellidae) of European Russia and the Russian Caucasus (Native and Alien Species)
Zootaxa 4472 (2): 233–260 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4472.2.2 http://zoobank.org/urn:lsid:zoobank.org:pub:124F0491-F1CB-4031-8822-B444D874D555 Key for identification of the ladybirds (Coleoptera: Coccinellidae) of European Russia and the Russian Caucasus (native and alien species) A.O. BIEŃKOWSKI Institute of Animal Ecology and Evolution, Russian Academy of Sciences, Leninsky pr., 33, Moscow, 119071, Russia. E-mail: bien- [email protected] Abstract Although ladybirds of European Russia and the Caucasus have been the subject of numerous ecological and faunistic in- vestigations, there is an evident lack of appropriate identification keys. New, original keys to subfamilies, tribes, genera, and species of ladybirds (Coccinellidae) of European Russia and the Russian Caucasus are presented here. The keys in- clude all native species recorded in the region and all introduced alien species. Some species from adjacent regions are added. In total, 113 species are treated and illustrated with line drawings. Photographs of rare and endemic species are provided. Information on the distribution of species within the region under consideration is provided. Chilocorus kuwa- nae Silvestri, 1909 is recognized as a subjective junior synonym (syn. nov.) of Ch. renipustulatus (Scriba, 1791). Key words: Lady beetles, Coccinellids, determination, aborigenous species, introduced species Introduction The family Coccinellidae Latreille (ladybird beetles, lady beetles, ladybug, lady-cow) includes more than 6000 species, distributed throughout the world (Vandenberg 2002). One hundred and five species have been recorded in European Russia and the Russian Caucasus (Krasnodar Krai, Stavropol Krai, Adygea, Kabardino-Balkaria, Karachay-Cherkessia, North Ossetia, Chechnya, Dagestan, Ingushetia) (Zaslavski 1965; Iablokoff-Khnzorian 1983; Savojskaja 1984; Kovář 2007; Korotyaev et al. -
Abstracts 501-750
150 salivary glands was greatly reduced by ron2 silencing, despite sporogony, and accompanying upregulation of PfRad51, PfRad54, PfRPA1L and sporozoite release into hemocoel and their motility were normal. These PfRPA1S at the level of transcript and protein. This study provides new results showed that RON2 is required for salivary gland invasion. This is the insights into the role of putative Rad51-interacting proteins involved in first genetical approach to show that RON2 has an important role in target homologous recombination and emphasizes physiological role of DNA cell invasion. damage repair during the growth of parasites. We are now characterizing the recombiantion macromolecular complex which is likely to be important 499 in DNA damage and repair and validating molecular interactions between PfRad51 and its putative interacting partners. Besides understanding IDENTIFICATION AND CHARACTERIZATION OF A molecular machinery involved in DNA repair and recombination, we wish PLASMODIUM FALCIPARUM ORTHOLOGUE OF THE YEAST to extend our studies to understand the biochemical and genetic basis of UBIQUINONE-BINDING PROTEIN, COQ10P gene rearrangements at the var gene locus associated with phenomenon like antigenic variation. Bethany J. Jenkins, Joanne M. Morrisey, Thomas M. Daly, Michael W. Mather, Akhil B. Vaidya, Lawrence W. Bergman 501 Drexel University College of Medicine, Philadelphia, PA, United States Coenzyme Q (CoQ, ubiquinone) is a central electron carrier in A SINGLE NUCLEOTIDE POLYMORPHISM IN THE PROMOTER mitochondrial respiration. CoQ is synthesized through multiple steps OF STROMAL CELL-DERIVED FACTOR (SDF)-1α (C-1002T) IS involving a number of different proteins. The prevailing view that the ASSOCIATED WITH PROTECTION AGAINST PLASMODIUM CoQ used in respiration exists as a free pool that diffuses throughout FALCIPARUM INFECTION IN KENYAN CHILDREN the mitochondrial inner membrane bilayer has recently been challenged.