SMITHIANA Publications in Aquatic Biodiversity

Total Page:16

File Type:pdf, Size:1020Kb

SMITHIANA Publications in Aquatic Biodiversity SMITHIANA Publications in Aquatic Biodiversity Bulletin 3 August 2004 Revision of the Indian Ocean Dottyback Fish Genera Chlidichthys and Pectinochromis (Perciformes: Pseudochromidae: Pseudoplesiopinae) Anthony C. Gill and Alasdair J. Edwards Published by the South African Institute for Aquatic Biodiversity Margaret Mary Smith (1916 - 1987), James Leonard Brierley Smith (1897 - 1968) with their dog, Marlin The publication series (Monographs, Bulletins & Special Publications) of the SAIAB (formerly the JLB Smith Insitute of Ichthyology), in its new format honors James Leonard Brierley Smith and Margaret Mary Smith with the name Smithiana, in rec- ognition of their many years of devoted service to African aquatic biology. Their life’s work, a team effort, established modern ichthyology in southern Africa and laid the groundwork for the expansion of aquatic biology throughout the region. © 2004, The South African Institute for Aquatic Biodiversity, Grahamstown, South Africa Front cover photograph: Scales of a preserved coelacanth specimen by James Stapley. © James Stapley, 2002 Revision of the Indian Ocean Dottyback Fish Genera Chlidichthys and Pectinochromis (Perciformes: Pseudochromidae: Pseudoplesiopinae) Anthony C. Gill1 & Alasdair J. Edwards2 ABSTRACT Chlidichthys Smith includes the following 13 species: C. abruptus Lubbock (St Brandon’s Shoals); C. auratus Lubbock (Red Sea); C. bibulus (Smith) (east coast of Africa, Aldabra and Socotra); C. cacatuoides Gill & Randall (Socotra and southern Oman); C. chagosensis new species (Chagos Archipelago); C. clibanarius new species (Comoro Ids, Madagascar and Aldabra); C. foudioides new species (Rodrigues); C. inornatus Lubbock (Maldive Ids and Sri Lanka); C. johnvoelckeri Smith (Comoro Ids and Tanzania to Mozambique, East Africa); C. pembae Smith (Comoro Ids and Tanzania to Natal, East Africa); C. randalli Lubbock (Mauritius); C. rubiceps Lubbock (Red Sea); C. smithae Lubbock (Mauritius). Pectinochromis Gill & Edwards includes a single species: P. lubbocki (Edwards & Randall) (Red Sea). 1 Fish Research Group, Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K. Present address: School of Life Sciences, PO Box 874501, Arizona State University, Tempe, AZ 85287-4501, USA. 2 School of Biology, Ridley Building, University of Newcastle, Newcastle upon Tyne NE1 7RU, U.K. CONTENTS Introduction .................................................................................................................................................. 1 Materials and Methods ............................................................................................................................... 1 Chlidichthys Smith ........................................................................................................................................ 3 Key to species of Chlidichthys ......................................................................................................... 4 Chlidichthys abruptus Lubbock ........................................................................................................ 5 Chlidichthys auratus Lubbock .......................................................................................................... 7 Chlidichthys bibulus (Smith) ............................................................................................................. 9 Chlidichthys cacatuoides Gill & Randall ....................................................................................... 11 Chlidichthys chagosensis new species ........................................................................................... 14 Chlidichthys clibanarius new species ............................................................................................ 15 Chlidichthys foudioides new species ............................................................................................. 17 Chlidichthys inornatus Lubbock ..................................................................................................... 19 Chlidichthys johnvoelckeri Smith.................................................................................................... 20 Chlidichthys pembae Smith ............................................................................................................. 22 Chlidichthys randalli Lubbock ....................................................................................................... 25 Chlidichthys rubiceps Lubbock ....................................................................................................... 26 Chlidichthys smithae Lubbock ........................................................................................................ 27 Pectinochromis Gill & Edwards .................................................................................................................29 Pectinochromis lubbocki (Edwards & Randall).............................................................................. 29 Acknowledgements ................................................................................................................................... 32 References ................................................................................................................................................... 32 Revision of the Indian Ocean Dottyback Fish Genera Chlidichthys and Pectinochromis (Perciformes: Pseudochromidae: Pseudoplesiopinae) Anthony C. Gill & Alasdair J. Edwards INTRODUCTION the caudal peduncle at the vertical through the posterior edge of the dorsal hypural plate. Head length was The Pseudoplesiopinae is one of 4 subfamilies measured from the snout tip to the posteriormost edge of recognised in the Indo-Pacific fish family the opercular membrane. Snout length was measured Pseudochromidae. They are distinguished from members over the shortest distance from the snout tip to the orbital of the other subfamilies (Anisochrominae, rim, without constricting the fleshy rim of the latter. Orbit Congrogadinae and Pseudochrominae) in having a single diameter was measured as its fleshy horizontal length. tubed lateral-line scale, which is positioned just behind Interorbital width was measured as the least fleshy the gill opening. Of the 4 subfamilies, the width. Upper jaw length was measured from the snout Pseudoplesiopinae is the least known subfamily tip to the posterior edge of the maxilla. Predorsal, preanal taxonomically, despite being well represented in and prepelvic lengths were measured from the snout tip museum collections. The present study is our second in to the base of the first spine of the relevant fin. Body a series of papers that aim to revise the width was measured between the posttemporal pores Pseudoplesiopinae. In the first paper (Gill & Edwards, (Fig. 1). Caudal peduncle length was measured from the 1999), we provided an historical review of the base of the last anal-fin ray to the ventral edge of the systematics of the Pseudoplesiopinae, cladistically caudal fin at the vertical through the posterior edge of diagnosed the subfamily and its 5 included genera, and the ventral hypural plate. Caudal peduncle depth was proposed a scheme of intergeneric relationships. The aim measured obliquely between the bases of the last dorsal- of the present paper is to revise 2 of the genera, and last anal-fin rays. Measurements of fin rays Chlidichthys Smith and Pectinochromis Gill & Edwards. excluded any filamentous membranes. Pectoral fin length Our intention is to revise the remaining 3 genera was measured as the length of the longest middle ray. (Amsichthys Gill & Edwards, Lubbockichthys Gill & Caudal fin length was measured as the length of the Edwards, and Pseudoplesiops Bleeker) in future papers. lowermost ray on the dorsal hypural plate. The genera revised in the present paper represent a Frequency distributions for selected meristic convenient grouping among pseudoplesiopines. They characters are given in Tables 1-15. Counts of dorsal-, are sister taxa, sharing 5 unequivocal synapomorphies: anal- and pelvic-fin spines (unsegmented rays) and 3 epurals; infraorbital 2 reduced or absent; laterosensory- segmented rays are presented, respectively, as Roman canal-bearing bones weakly developed; second and Arabic numerals. If the last dorsal- or anal-fin ray preopercle pore absent; and 10 precaudal vertebrae (Gill was divided at its base it was counted as a single ray. & Edwards, 1999). They are also geographically distinct Counts of branched, segmented rays in the dorsal and in being restricted to the western and central Indian anal fins included unbranched rays behind the first Ocean (including the Red Sea); the remaining branched ray. A value was not recorded if, due to tip pseudoplesiopine genera occur only marginally in the damage, a branched or unbranched condition could not central Indian Ocean, and are otherwise restricted to the be determined for the segmented ray preceding the eastern Indian and Pacific Oceans. anteriormost branched ray. As in most actinopterygian fishes, the upper ray in the pectoral fin is rudimentary MATERIALS AND METHODS and rotated so that its asymmetrical medial and lateral hemitrichs appear to represent 2 separate rays; these were Specimens examined are listed under Material Examined counted as a single ray. Procurrent caudal-fin ray counts for each species; institutional codes follow Leviton et al. were of the rays above (“upper”) and below (“lower”) (1985). Lists of paratypes of new species are arranged the principal caudal-fin
Recommended publications
  • Reef Fishes of the Bird's Head Peninsula, West
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • Wainwright-Et-Al.-2012.Pdf
    Copyedited by: ES MANUSCRIPT CATEGORY: Article Syst. Biol. 61(6):1001–1027, 2012 © The Author(s) 2012. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: [email protected] DOI:10.1093/sysbio/sys060 Advance Access publication on June 27, 2012 The Evolution of Pharyngognathy: A Phylogenetic and Functional Appraisal of the Pharyngeal Jaw Key Innovation in Labroid Fishes and Beyond ,∗ PETER C. WAINWRIGHT1 ,W.LEO SMITH2,SAMANTHA A. PRICE1,KEVIN L. TANG3,JOHN S. SPARKS4,LARA A. FERRY5, , KRISTEN L. KUHN6 7,RON I. EYTAN6, AND THOMAS J. NEAR6 1Department of Evolution and Ecology, University of California, One Shields Avenue, Davis, CA 95616; 2Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605; 3Department of Biology, University of Michigan-Flint, Flint, MI 48502; 4Department of Ichthyology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024; 5Division of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85069; 6Department of Ecology and Evolution, Peabody Museum of Natural History, Yale University, New Haven, CT 06520; and 7USDA-ARS, Beneficial Insects Introduction Research Unit, 501 South Chapel Street, Newark, DE 19713, USA; ∗ Correspondence to be sent to: Department of Evolution & Ecology, University of California, One Shields Avenue, Davis, CA 95616, USA; E-mail: [email protected]. Received 22 September 2011; reviews returned 30 November 2011; accepted 22 June 2012 Associate Editor: Luke Harmon Abstract.—The perciform group Labroidei includes approximately 2600 species and comprises some of the most diverse and successful lineages of teleost fishes.
    [Show full text]
  • Developing Marine Reserves for Biodiversity Conservation and Sustainable Fisheries in Rodrigues
    Developing Marine Reserves for Biodiversity Conservation and Sustainable Fisheries in Rodrigues Impacts of Marine Reserves in Rodrigues: Report of a training visit to Shoals Rodrigues, September 2005 Dr. R. Charles Anderson Atoll Wildlife 24 Amberley, Bury Road Newmarket, Suffolk CB8 7BU UK [email protected] October 2005 Contents Executive Summary ……………………………………….. 3 1. Background ………………………………………………… 4 2. Underwater estimation of fish lengths ……………………... 4 3. Biodiversity documentation ………………………………... 7 4. Cetaceans …………………………………………………... 8 5. Other issues ………………………………………………… 9 6. Acknowledgements ………………………………………… 9 7. References ………………………………………………….. 9 Annex 1. Summary of results from fish-length estimation 11 training sessions ………………………………….. Annex 2. Fish species caught by different fisheries ………….. 16 Annex 3. Fishes of Rodrigues – potential updates to checklist 18 of Heemstra et al. (2004) ………………………… Annex 4. Cetacean records …………………………………… 24 Annex 5. Itinerary …………………………………………….. 25 2 Executive Summary 1. The author made a visit to Rodrigues under the Darwin Initiative project Developing marine reserves for biodiversity conservation and sustainable fisheries in Rodrigues during September 2005. Local support was provided by Shoals Rodrigues. 2. Monitoring fish size changes associated with the introduction of marine reserves was identified as one key skill where local expertise was lacking. Training of staff from Shoals Rodrigues and the Fisheries Protection Service (FPS) to monitor live fish sizes was carried out using wooden models of known sizes. All participants showed marked improvements in size estimation over a series of in-water training sessions. Recommendations for further action are made, including continued snorkel training for FPS staff, continued size estimation training for all potential fish surveyors, and minimum standards for surveyors. A provisional list of fish species suitable for size monitoring is presented.
    [Show full text]
  • Jan 2021 ZSL Stocklist.Pdf (699.26
    Zoological Society of London - January 2021 stocklist ZSL LONDON ZOO Status at 01.01.2021 m f unk Invertebrata Aurelia aurita * Moon jellyfish 0 0 150 Pachyclavularia violacea * Purple star coral 0 0 1 Tubipora musica * Organ-pipe coral 0 0 2 Pinnigorgia sp. * Sea fan 0 0 20 Sarcophyton sp. * Leathery soft coral 0 0 5 Sinularia sp. * Leathery soft coral 0 0 18 Sinularia dura * Cabbage leather coral 0 0 4 Sinularia polydactyla * Many-fingered leather coral 0 0 3 Xenia sp. * Yellow star coral 0 0 1 Heliopora coerulea * Blue coral 0 0 12 Entacmaea quadricolor Bladdertipped anemone 0 0 1 Epicystis sp. * Speckled anemone 0 0 1 Phymanthus crucifer * Red beaded anemone 0 0 11 Heteractis sp. * Elegant armed anemone 0 0 1 Stichodactyla tapetum Mini carpet anemone 0 0 1 Discosoma sp. * Umbrella false coral 0 0 21 Rhodactis sp. * Mushroom coral 0 0 8 Ricordea sp. * Emerald false coral 0 0 19 Acropora sp. * Staghorn coral 0 0 115 Acropora humilis * Staghorn coral 0 0 1 Acropora yongei * Staghorn coral 0 0 2 Montipora sp. * Montipora coral 0 0 5 Montipora capricornis * Coral 0 0 5 Montipora confusa * Encrusting coral 0 0 22 Montipora danae * Coral 0 0 23 Montipora digitata * Finger coral 0 0 6 Montipora foliosa * Hard coral 0 0 10 Montipora hodgsoni * Coral 0 0 2 Pocillopora sp. * Cauliflower coral 0 0 27 Seriatopora hystrix * Bird nest coral 0 0 8 Stylophora sp. * Cauliflower coral 0 0 1 Stylophora pistillata * Pink cauliflower coral 0 0 23 Catalaphyllia jardinei * Elegance coral 0 0 4 Euphyllia ancora * Crescent coral 0 0 4 Euphyllia glabrescens * Joker's cap coral 0 0 2 Euphyllia paradivisa * Branching frog spawn 0 0 3 Euphyllia paraancora * Branching hammer coral 0 0 3 Euphyllia yaeyamaensis * Crescent coral 0 0 4 Plerogyra sinuosa * Bubble coral 0 0 1 Duncanopsammia axifuga + Coral 0 0 2 Tubastraea sp.
    [Show full text]
  • Pseudochromis Yamasakii, New Species of Dottyback Fish from Japan (Teleostei: Pseudochromidae: Pseudochrominae)
    Zootaxa 4173 (3): 296–300 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Correspondence ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4173.3.8 http://zoobank.org/urn:lsid:zoobank.org:pub:32D5D495-FAF1-457F-A650-8C38F79EF677 Pseudochromis yamasakii, new species of dottyback fish from Japan (Teleostei: Pseudochromidae: Pseudochrominae) ANTHONY C. GILL1,2 & HIROSHI SENOU3 1Macleay Museum and School of Life and Environmental Sciences, A12 – Macleay Building, The University of Sydney, New South Wales 2006, Australia. E-mail: [email protected] 2Ichthyology, Australian Museum, 1 William Street, Sydney, New South Wales 2010, Australia. 3Kanagawa Prefectural Museum of Natural History, 499 Iryuda, Odawara, Kanagawa 250-0031, Japan. E-mail: [email protected] Gill (2004) recognised fifty-seven species in the Indo-Pacific genus Pseudochromis Rüppell (1835) but noted that the genus is undiagnosed cladistically and effectively serves as a catch-all for species that can’t be placed in other pseudochromine genera (sensu Gill 2013). Since publication of Gill’s revision, 13 additional species of Pseudochromis have been described, mostly based on recent collections from the highly diverse Coral Triangle area of the West Pacific (Gill & Allen 2004, 2011; Allen et al. 2008; Gill et al. 2009, 2012a,b; Gill & Williams 2011; Gill & Zajonz 2011; Allen & Erdmann 2012). We herein describe an additional new species, which is known on the basis of a single specimen from Kii Peninsula, Honshu, Japan, and from several photographs from the Kii Peninsula and Izu Islands, Japan. Materials and methods Methods of counting, measuring and presentation follow Gill (2004).
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Zootaxa 3718
    Zootaxa 3718 (2): 128–136 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3718.2.2 http://zoobank.org/urn:lsid:zoobank.org:pub:87B12108-9A55-487B-9C47-48CAA711A9F6 Classification and relationships of Assiculus and Assiculoides (Teleostei: Pseudochromidae) ANTHONY C. GILL1,2 1Macleay Museum and School of Biological Sciences, A12 – Macleay Building, The University of Sydney, New South Wales 2006, Aus- tralia. Email: [email protected] 2Ichthyology, Australian Museum, 6 College Street, Sydney, New South Wales 2010, Australia. Abstract The monotypic Australian pseudochromid fish genera Assiculus and Assiculoides had been previously included in the sub- family Pseudochrominae on the basis of symplesiomorphic characters. Osteological synapomorphies are identified in sup- port of a closer relationship to the remaining pseudochromid subfamilies. Two synapomorphies (five or fewer infraorbital bones, haemal spine of preural vertebra 2 attached to centrum) diagnose a clade consisting of Assiculoides, Pseudople- siopinae, Anisochrominae and Congrogadinae. Two additional synapomorphies (parhypural not separate from hypurals 1+2, total caudal-fin rays modally 27 or fewer) diagnose a more inclusive clade that also includes Assiculus. Two new subfamilies are erected to reflect these relationships. Key words: osteology; Assiculoidinae new subfamily; Assiculinae new subfamily; Australia; systematics Introduction The Indo-Pacific reef-fish family Pseudochromidae is currently divided into four subfamilies, three of which are demonstrably monophyletic: Anisochrominae (Gill & Fricke 2001); Congrogadinae (Godkin & Winterbottom 1985); Pseudoplesiopinae (Gill & Edwards 1999). The fourth subfamily, Pseudochrominae, is by far the largest with 10 genera and nearly 100 described species, but is diagnosed only by symplesiomorphic characters (Gill 2004): pelvic-fin rays I,5 (versus I,4 or fewer); all segmented pelvic-fin rays branched (vs.
    [Show full text]
  • Appendix I, Date of Publication: March, 2012 APPENDIX I NEW SPECIES DESCRIPTIONS
    SUNFISHES – MOLIDAE Reef Fishes of the East Indies, Appendix I, Date of Publication: March, 2012 APPENDIX I NEW SPECIES DESCRIPTIONS 1101 descriptions of twenty-five new species of reef fishes from the east Indian region IntroductIon The following section includes descriptions of new taxa, just posterior to the gill opening; snout length is measured collected during recent investigations in the East Indian from the anterior end of the upper lip to the anterior edge region. Fourteen of these were taken at the Bird’s Head of the eye; eye diameter is the horizontal fleshy diameter, Peninsula of West Papua, Indonesia in connection with and interorbital width the least fleshy width unless stated Conservation International-sponsored faunal surveys. The otherwise; upper jaw length is taken from the front of the various new taxa are presented in phylogenetic order by family upper lip to the posterior end of the maxilla; caudal peduncle and in alphabetical order within families. depth is the least depth, and caudal peduncle length is the horizontal distance between verticals at the rear base of the Species (family) Page anal fin and the caudal fin base; lengths of fin spines and rays Scorpaenodes bathycolus (Scorpaenidae) 1104 are measured to their extreme bases (i.e., not from the point Pseudanthias mica (Serranidae) 1106 where the ray or spine emerges from a basal scaly sheath if Pseudochromis tigrinus (Pseudochromidae) 1110 present); caudal fin length is the horizontal length from the Ostorhinchus tricinctus (Apogonidae) 1114 posterior edge
    [Show full text]
  • Major Coral Reef Fish Species of the South Pacific with Basic Information on Their Biology and Ecology
    COMPONENT 2A - Project 2A2 Improve knowledge and capacity for a better management of reef ecosystems May 2011 SCIENTIFIC REPORT MAJOR CORAL REEF FISH SPECIES OF THE SOUTH PACIFIC WITH BASIC INFORMATION ON THEIR BIOLOGY AND ECOLOGY Authors: Michel Kulbicki, Gérard Mou-Tham, Laurent Vigliola, Laurent Wantiez, Esther Manaldo, Pierre Labrosse, Yves Letourneur Photo credit: Eric Clua The CRISP Coordinating Unit (CCU) was integrated into the Secretariat of the Pacifi c Community in April 2008 to insure maximum coordination and synergy in work relating to coral reef management in the region. The CRISP programme is implemented as part of the policy developed by the Secretariat of the Pacifi c Regional Envi- ronment Programme for a contribution to conservation and sustainable development of coral reefs in the Pacifi c. he Initiative for the Protection and Management of Coral Reefs in the Pacifi c (CRISP), T sponsored by France and prepared by the French Development Agency (AFD) as part of an inter-ministerial project from 2002 onwards, aims to develop a vision for the future of these unique ecosystems and the communities that depend on them and to introduce strategies and projects to conserve their biodiversity, while developing the economic and environmental services that they provide both locally and globally. Also, it is designed as a factor for integration between developed countries (Australia, New Zealand, Japan and USA), French overseas territories and Pacifi c Island developing countries. The CRISP Programme comprises three major components,
    [Show full text]
  • National Report on the Fish Stocks and Habitats of Regional, Global
    United Nations UNEP/GEF South China Sea Global Environment Environment Programme Project Facility NATIONAL REPORT on The Fish Stocks and Habitats of Regional, Global, and Transboundary Significance in the South China Sea THAILAND Mr. Pirochana Saikliang Focal Point for Fisheries Chumphon Marine Fisheries Research and Development Center 408 Moo 8, Paknum Sub-District, Muang District, Chumphon 86120, Thailand NATIONAL REPORT ON FISHERIES – THAILAND Table of Contents 1. MARINE FISHERIES DEVELOPMENT........................................................................................2 / 1.1 OVERVIEW OF THE FISHERIES SECTOR ...................................................................................2 1.1.1 Total catch by fishing area, port of landing or province (by species/species group).7 1.1.2 Fishing effort by gear (no. of fishing days, or no. of boats) .......................................7 1.1.2.1 Trawl ...........................................................................................................10 1.1.2.2 Purse seine/ring net....................................................................................10 1.1.2.3 Gill net.........................................................................................................12 1.1.2.4 Other gears.................................................................................................12 1.1.3 Economic value of catch..........................................................................................14 1.1.4 Importance of the fisheries sector
    [Show full text]
  • Congrogadus Subducens (Richardson, 1843) - Carpet Eel Blenny [=Machaerium Subducens Richardson [J.], 1843:176, Pl
    FAMILY Congrogadidae Günther 1862 - eel blennies GENUS Blennodesmus Gunther, 1872 - eel blennies [=Blennodesmus Günther [A.], 1872:667] Notes: [Proceedings of the Zoological Society of London 1871 (pt 3) (art. 1) (for 21 Nov. 1871); ref. 1997] Masc. Blennodesmus scapularis Günther, 1872. Type by monotypy. •Valid as Blennodesmus Günther, 1872 -- (Winterbottom 1986:5 [ref. 5727], Gill 1999:2558 [ref. 24817], Gill 1999:2559 [ref. 24817], Hoese & Gill 2006:1059 [ref. 29083], Motomura 2009:95 [ref. 30446]). Current status: Valid as Blennodesmus Günther, 1872. Congrogadidae. Species Blennodesmus scapularis Gunther, 1872 - ocellate eel blenny [=Blennodesmus scapularis Günther [A.], 1872:667, Pl. 67 (fig. A)] Notes: [Proceedings of the Zoological Society of London 1871 (pt 3) (art. 1) (for 21 Nov. 1871); ref. 1997] Port Mackay, Queensland, Australia [Coral Sea, southwestern Pacific]. Current status: Valid as Blennodesmus scapularis Günther, 1872. Congrogadidae. Distribution: Eastern Indian Ocean, western Pacific: Andaman Sea, northern Western Australia to Queensland (Australia). Habitat: marine. GENUS Congrogadus Gunther, 1862 - eel blennies [=Congrogadus Günther [A.], 1862:388, Congrogadoides Borodin [N. A.], 1933:141, Hierichthys Jordan [D. S.] & Fowler [H. W.], 1902:744, Machaerium Richardson [J.], 1843:176, Pilbaraichthys (subgenus of Congrogadus) Gill [A. C.], Mooi [R. D.] & Hutchins [J. B.], 2000:71, Stenophus Castelnau [F. L.], 1875:26] Notes: [Catalogue of the fishes in the British Museum v. 4; ref. 1969] Masc. Machaerium subducens Richardson, 1843. Type by being a replacement name. Replacement for Machaerium Richardson, 1843, preoccupied by Machaerium Holliday, 1832 in Diptera. Misspelled Conyrodus and Congrodus in literature. •Valid as Congrogadus Günther, 1862 -- (Winterbottom et al. 1984:1607 [ref. 5140], Amaoka in Masuda et al.
    [Show full text]
  • HANDBOOK of FISH BIOLOGY and FISHERIES Volume 1 Also Available from Blackwell Publishing: Handbook of Fish Biology and Fisheries Edited by Paul J.B
    HANDBOOK OF FISH BIOLOGY AND FISHERIES Volume 1 Also available from Blackwell Publishing: Handbook of Fish Biology and Fisheries Edited by Paul J.B. Hart and John D. Reynolds Volume 2 Fisheries Handbook of Fish Biology and Fisheries VOLUME 1 FISH BIOLOGY EDITED BY Paul J.B. Hart Department of Biology University of Leicester AND John D. Reynolds School of Biological Sciences University of East Anglia © 2002 by Blackwell Science Ltd a Blackwell Publishing company Chapter 8 © British Crown copyright, 1999 BLACKWELL PUBLISHING 350 Main Street, Malden, MA 02148‐5020, USA 108 Cowley Road, Oxford OX4 1JF, UK 550 Swanston Street, Carlton, Victoria 3053, Australia The right of Paul J.B. Hart and John D. Reynolds to be identified as the Authors of the Editorial Material in this Work has been asserted in accordance with the UK Copyright, Designs, and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs, and Patents Act 1988, without the prior permission of the publisher. First published 2002 Reprinted 2004 Library of Congress Cataloging‐in‐Publication Data has been applied for. Volume 1 ISBN 0‐632‐05412‐3 (hbk) Volume 2 ISBN 0‐632‐06482‐X (hbk) 2‐volume set ISBN 0‐632‐06483‐8 A catalogue record for this title is available from the British Library. Set in 9/11.5 pt Trump Mediaeval by SNP Best‐set Typesetter Ltd, Hong Kong Printed and bound in the United Kingdom by TJ International Ltd, Padstow, Cornwall.
    [Show full text]