Pseudochromis</I> (Pisces: Pseudochromidae) from Western
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Marine Animal Behaviour in a High CO2 Ocean
Vol. 536: 259–279, 2015 MARINE ECOLOGY PROGRESS SERIES Published September 29 doi: 10.3354/meps11426 Mar Ecol Prog Ser REVIEW Marine animal behaviour in a high CO2 ocean Jeff C. Clements*, Heather L. Hunt Department of Biology, University of New Brunswick Saint John Campus, 100 Tucker Park Road, Saint John E2L 4L5, NB, Canada ABSTRACT: Recently, the effects of ocean acidification (OA) on marine animal behaviour have garnered considerable attention, as they can impact biological interactions and, in turn, ecosystem structure and functioning. We reviewed current published literature on OA and marine behaviour and synthesize current understanding of how a high CO2 ocean may impact animal behaviour, elucidate critical unknowns, and provide suggestions for future research. Although studies have focused equally on vertebrates and invertebrates, vertebrate studies have primarily focused on coral reef fishes, in contrast to the broader diversity of invertebrate taxa studied. A quantitative synthesis of the direction and magnitude of change in behaviours from current conditions under OA scenarios suggests primarily negative impacts that vary depending on species, ecosystem, and behaviour. The interactive effects of co-occurring environmental parameters with increasing CO2 elicit effects different from those observed under elevated CO2 alone. Although 12% of studies have incorporated multiple factors, only one study has examined the effects of carbonate system variability on the behaviour of a marine animal. Altered GABAA receptor functioning under elevated CO2 appears responsible for many behavioural responses; however, this mechanism is unlikely to be universal. We recommend a new focus on determining the effects of elevated CO2 on marine animal behaviour in the context of multiple environmental drivers and future carbonate system variability, and the mechanisms governing the association between acid-base regulation and GABAA receptor functioning. -
Pseudochromis Yamasakii, New Species of Dottyback Fish from Japan (Teleostei: Pseudochromidae: Pseudochrominae)
Zootaxa 4173 (3): 296–300 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Correspondence ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4173.3.8 http://zoobank.org/urn:lsid:zoobank.org:pub:32D5D495-FAF1-457F-A650-8C38F79EF677 Pseudochromis yamasakii, new species of dottyback fish from Japan (Teleostei: Pseudochromidae: Pseudochrominae) ANTHONY C. GILL1,2 & HIROSHI SENOU3 1Macleay Museum and School of Life and Environmental Sciences, A12 – Macleay Building, The University of Sydney, New South Wales 2006, Australia. E-mail: [email protected] 2Ichthyology, Australian Museum, 1 William Street, Sydney, New South Wales 2010, Australia. 3Kanagawa Prefectural Museum of Natural History, 499 Iryuda, Odawara, Kanagawa 250-0031, Japan. E-mail: [email protected] Gill (2004) recognised fifty-seven species in the Indo-Pacific genus Pseudochromis Rüppell (1835) but noted that the genus is undiagnosed cladistically and effectively serves as a catch-all for species that can’t be placed in other pseudochromine genera (sensu Gill 2013). Since publication of Gill’s revision, 13 additional species of Pseudochromis have been described, mostly based on recent collections from the highly diverse Coral Triangle area of the West Pacific (Gill & Allen 2004, 2011; Allen et al. 2008; Gill et al. 2009, 2012a,b; Gill & Williams 2011; Gill & Zajonz 2011; Allen & Erdmann 2012). We herein describe an additional new species, which is known on the basis of a single specimen from Kii Peninsula, Honshu, Japan, and from several photographs from the Kii Peninsula and Izu Islands, Japan. Materials and methods Methods of counting, measuring and presentation follow Gill (2004). -
Reef Fishes of the Bird's Head Peninsula, West Papua, Indonesia
Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT). -
From Crypsis to Mimicry: Changes in Colour and the Configuration of the Visual System During Ontogenetic Habitat Transitions in a Coral Reef Fish
J Exp Biol Advance Online Articles. First posted online on 15 June 2016 as doi:10.1242/jeb.139501 Access the most recent version at http://jeb.biologists.org/lookup/doi/10.1242/jeb.139501 From crypsis to mimicry: changes in colour and the configuration of the visual system during ontogenetic habitat transitions in a coral reef fish Fabio Cortesi1,2,3*, Zuzana Musilová3,4, Sara M. Stieb1, Nathan S. Hart5, Ulrike E. Siebeck6, Karen L. Cheney2, Walter Salzburger3,7, N. Justin Marshall1 1Queensland Brain Institute and 2School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia. 3Zoological Institute, University of Basel, Basel 4051, Switzerland. 4Department of Zoology, Charles University in Prague, 128 44 Prague, Czech Republic. 5Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia. 6School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia 7Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway *Correspondence to: [email protected] Keywords: vision, development, gene duplication, opsin, colour change, coexpression Journal of Experimental Biology • Advance article © 2016. Published by The Company of Biologists Ltd. SUMMARY The dusky dottyback goes through various cryptic stages and modifications of its visual system before turning into one of the most successful fish mimics on tropical coral reefs. ABSTRACT Animals often change their habitat throughout ontogeny; yet, the triggers for habitat transitions and how these correlate with developmental changes – e.g. physiological, morphological, and behavioural – remain largely unknown. Here, we investigated how ontogenetic changes in body colouration and of the visual system relate to habitat transitions in a coral-reef fish. -
Zootaxa 3718
Zootaxa 3718 (2): 128–136 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3718.2.2 http://zoobank.org/urn:lsid:zoobank.org:pub:87B12108-9A55-487B-9C47-48CAA711A9F6 Classification and relationships of Assiculus and Assiculoides (Teleostei: Pseudochromidae) ANTHONY C. GILL1,2 1Macleay Museum and School of Biological Sciences, A12 – Macleay Building, The University of Sydney, New South Wales 2006, Aus- tralia. Email: [email protected] 2Ichthyology, Australian Museum, 6 College Street, Sydney, New South Wales 2010, Australia. Abstract The monotypic Australian pseudochromid fish genera Assiculus and Assiculoides had been previously included in the sub- family Pseudochrominae on the basis of symplesiomorphic characters. Osteological synapomorphies are identified in sup- port of a closer relationship to the remaining pseudochromid subfamilies. Two synapomorphies (five or fewer infraorbital bones, haemal spine of preural vertebra 2 attached to centrum) diagnose a clade consisting of Assiculoides, Pseudople- siopinae, Anisochrominae and Congrogadinae. Two additional synapomorphies (parhypural not separate from hypurals 1+2, total caudal-fin rays modally 27 or fewer) diagnose a more inclusive clade that also includes Assiculus. Two new subfamilies are erected to reflect these relationships. Key words: osteology; Assiculoidinae new subfamily; Assiculinae new subfamily; Australia; systematics Introduction The Indo-Pacific reef-fish family Pseudochromidae is currently divided into four subfamilies, three of which are demonstrably monophyletic: Anisochrominae (Gill & Fricke 2001); Congrogadinae (Godkin & Winterbottom 1985); Pseudoplesiopinae (Gill & Edwards 1999). The fourth subfamily, Pseudochrominae, is by far the largest with 10 genera and nearly 100 described species, but is diagnosed only by symplesiomorphic characters (Gill 2004): pelvic-fin rays I,5 (versus I,4 or fewer); all segmented pelvic-fin rays branched (vs. -
Appendix I, Date of Publication: March, 2012 APPENDIX I NEW SPECIES DESCRIPTIONS
SUNFISHES – MOLIDAE Reef Fishes of the East Indies, Appendix I, Date of Publication: March, 2012 APPENDIX I NEW SPECIES DESCRIPTIONS 1101 descriptions of twenty-five new species of reef fishes from the east Indian region IntroductIon The following section includes descriptions of new taxa, just posterior to the gill opening; snout length is measured collected during recent investigations in the East Indian from the anterior end of the upper lip to the anterior edge region. Fourteen of these were taken at the Bird’s Head of the eye; eye diameter is the horizontal fleshy diameter, Peninsula of West Papua, Indonesia in connection with and interorbital width the least fleshy width unless stated Conservation International-sponsored faunal surveys. The otherwise; upper jaw length is taken from the front of the various new taxa are presented in phylogenetic order by family upper lip to the posterior end of the maxilla; caudal peduncle and in alphabetical order within families. depth is the least depth, and caudal peduncle length is the horizontal distance between verticals at the rear base of the Species (family) Page anal fin and the caudal fin base; lengths of fin spines and rays Scorpaenodes bathycolus (Scorpaenidae) 1104 are measured to their extreme bases (i.e., not from the point Pseudanthias mica (Serranidae) 1106 where the ray or spine emerges from a basal scaly sheath if Pseudochromis tigrinus (Pseudochromidae) 1110 present); caudal fin length is the horizontal length from the Ostorhinchus tricinctus (Apogonidae) 1114 posterior edge -
Major Coral Reef Fish Species of the South Pacific with Basic Information on Their Biology and Ecology
COMPONENT 2A - Project 2A2 Improve knowledge and capacity for a better management of reef ecosystems May 2011 SCIENTIFIC REPORT MAJOR CORAL REEF FISH SPECIES OF THE SOUTH PACIFIC WITH BASIC INFORMATION ON THEIR BIOLOGY AND ECOLOGY Authors: Michel Kulbicki, Gérard Mou-Tham, Laurent Vigliola, Laurent Wantiez, Esther Manaldo, Pierre Labrosse, Yves Letourneur Photo credit: Eric Clua The CRISP Coordinating Unit (CCU) was integrated into the Secretariat of the Pacifi c Community in April 2008 to insure maximum coordination and synergy in work relating to coral reef management in the region. The CRISP programme is implemented as part of the policy developed by the Secretariat of the Pacifi c Regional Envi- ronment Programme for a contribution to conservation and sustainable development of coral reefs in the Pacifi c. he Initiative for the Protection and Management of Coral Reefs in the Pacifi c (CRISP), T sponsored by France and prepared by the French Development Agency (AFD) as part of an inter-ministerial project from 2002 onwards, aims to develop a vision for the future of these unique ecosystems and the communities that depend on them and to introduce strategies and projects to conserve their biodiversity, while developing the economic and environmental services that they provide both locally and globally. Also, it is designed as a factor for integration between developed countries (Australia, New Zealand, Japan and USA), French overseas territories and Pacifi c Island developing countries. The CRISP Programme comprises three major components, -
An Overview of Marine Ornamental Fish Breeding As a Potential Support to the Aquarium Trade and to the Conservation of Natural Fish Populations
L.M. Domínguez & Á.S. Botella, Int. J. Sus. Dev. Plann. Vol. 9, No. 4 (2014) 608–632 AN OVERVIEW OF MARINE ORNAMENTAL FISH BREEDING AS A POTENTIAL SUPPORT TO THE AQUARIUM TRADE AND TO THE CONSERVATION OF NATURAL FISH POPULATIONS L.M. DOMÍNGUEZ & Á.S. BOTELLA Grupo de Investigación en Acuicultura, ULPGC & ICCM, Telde, Canary Islands. ABSTRACT The aquarium fi sh trade moves more than two billion live fi sh worldwide per year. For fresh water organisms, more than 90% of them are captive bred, but over 90% of commercial marine organisms are wild-caught. Wild-caught organisms come mainly from coral reefs and adjacent areas. Destructive collection techniques, such as cyanide, quinaldine, even dynamite or explosives, are commonly used. These techniques not only affect the target fi sh but causes terrible damages to the ecosystems and the reef habitat itself, as well as coral and crustacean bleaching. This damage has not been assessed globally, but locally, where populations have been overharvested; it has created environmental imbalances due to the selective fi sheries focused on a few species, sexes or ages with high market value. A number of measures can be taken in order to reduce the environmental damage. The most important depend largely on the efforts by local governments, community groups, environ- mental organisations and the private sector. The fi nal objective of these measures is to place the ornamental trade on a sustainable basis. Moreover, new research into aquaculture technology on target species with the aim of diminishing the fi shing pressure on wild stocks as well as increasing the effectiveness of aquaculture facili- ties must be carried out. -
Pictichromis Dinar, a New Dottyback
aqua, International Journal of Ichthyology Pictichromis dinar , a new dottyback (Perciformes: Pseudochromidae) from Indonesia John E. Randall 1 and Jennifer K. Schultz 2 1) B ishop Museum, 1525 Bernice St., Honolulu, HI 96817-2704, USA . E-mail: [email protected] 2) Hawaii Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawaii, P.O. Box 1346, Kaneohe, HI 96744, USA Received: 02 April 2009 – Accepted: 06 September 2009 Abstract Arten haben keine Haplotypen gemeinsam; die inner - A new pseudochromid fish species, Pictichromis dinar , is artliche Divergenz der Sequenzen ist um eine Größenord - described from five specimens from the western side of the nung niedriger (d = 0,003) als die zwischenartliche (d = Gulf of Tomini, Sulawesi , Indonesia, where it occurred on a 0,06). Dies ist mit der Isolierung bei der Fortpflanzung drop-off in 15 to 25 m. It is bright purple anteriorly and und der Zuerkennung des Art-Status' vereinbar. abruptly bright yellow posteriorly in life, hence remarkably similar to P. paccagnellae (range from Bali and Sulawesi to Résumé Vanuatu ), and to P. coralensis (range from Queensland to Une nouvelle espèce de Pseudochromidé, Pictichromis New Caledonia ). The demarcation of purple and yellow is dinar, est décrite sur base de cinq spécimens originaires du generally more anterior and more slanting in P. dinar . The côté ouest du Golfe de Tomini, Sulawesi, Indonésie, où elle caudal fin of P. paccagnellae and P. coralensis varies from survient sur un tombant entre 15 et 25 m. In vivo, elle est slightly rounded to slightly emarginate, compared to dis - pourpre clair antériurement et abruptement jaune clair po- tinctly emarginate in P. -
Bayesian Node Dating Based on Probabilities of Fossil Sampling Supports Trans-Atlantic Dispersal of Cichlid Fishes
Supporting Information Bayesian Node Dating based on Probabilities of Fossil Sampling Supports Trans-Atlantic Dispersal of Cichlid Fishes Michael Matschiner,1,2y Zuzana Musilov´a,2,3 Julia M. I. Barth,1 Zuzana Starostov´a,3 Walter Salzburger,1,2 Mike Steel,4 and Remco Bouckaert5,6y Addresses: 1Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway 2Zoological Institute, University of Basel, Basel, Switzerland 3Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic 4Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand 5Department of Computer Science, University of Auckland, Auckland, New Zealand 6Computational Evolution Group, University of Auckland, Auckland, New Zealand yCorresponding author: E-mail: [email protected], [email protected] 1 Supplementary Text 1 1 Supplementary Text Supplementary Text S1: Sequencing protocols. Mitochondrial genomes of 26 cichlid species were amplified by long-range PCR followed by the 454 pyrosequencing on a GS Roche Junior platform. The primers for long-range PCR were designed specifically in the mitogenomic regions with low interspecific variability. The whole mitogenome of most species was amplified as three fragments using the following primer sets: for the region between position 2 500 bp and 7 300 bp (of mitogenome starting with tRNA-Phe), we used forward primers ZM2500F (5'-ACG ACC TCG ATG TTG GAT CAG GAC ATC C-3'), L2508KAW (Kawaguchi et al. 2001) or S-LA-16SF (Miya & Nishida 2000) and reverse primer ZM7350R (5'-TTA AGG CGT GGT CGT GGA AGT GAA GAA G-3'). The region between 7 300 bp and 12 300 bp was amplified using primers ZM7300F (5'-GCA CAT CCC TCC CAA CTA GGW TTT CAA GAT GC-3') and ZM12300R (5'-TTG CAC CAA GAG TTT TTG GTT CCT AAG ACC-3'). -
Description of Two New Species of Pseudochrominae from Northern Palawan and Mindoro, Philippine Islands (Teleostei: Perciformes: Pseudochromidae)
Zootaxa 3140: 49–59 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) Description of two new species of Pseudochrominae from northern Palawan and Mindoro, Philippine Islands (Teleostei: Perciformes: Pseudochromidae) ANTHONY C. GILL1,2 & JEFFREY T. WILLIAMS3 1Macleay Museum and School of Biological Sciences, A12 - Macleay Building, The University of Sydney, New South Wales 2006, Aus- tralia. E-mail: [email protected] 2Ichthyology, The Australian Museum, 6 College Street, Sydney, New South Wales 2010, Australia 3Division of Fishes, Department of Vertebrate Zoology, National Museum of Natural History, 4210 Silver Hill Road, Suitland, MD 20746, USA. E-mail: [email protected] Abstract Pseudochromis fuligifinis is described from 12 specimens from Verde Island, west coast of Mindoro and Apo Reef in the Philippines. It closely resembles P. elongatus Lubbock from Indonesia and P. striatus Gill, Shao & Chen from the Batanes Islands, Taiwan and the Ryukyu Islands, but differs in various meristic and coloration details. Manonichthys scintilla is described from five specimens from Coron Island and Apo Reef. It differs from congeners in fin shape and live coloration details. Key words: Pseudochromis, Manonichthys, new species, systematics, Philippines, fish Introduction The Philippine Islands has a diverse ichthyofauna with over 3,017 marine fish species reported from the islands (Froese and Pauly, 2011). Recent fieldwork by the second author and associates has yielded several new species, including two new species of the pseudochromid subfamily Pseudochrominae. This subfamily was revised by Gill (2004), who recognised 80 species in 10 genera, though additional new species have been described subsequently (e.g., Allen & Erdmann 2007, Allen et al. -
The Coral Triangle As a Net Source of Indo-Pacific Coral Reef Biodiversity
1 Electronic Supplementary Material: Evans et al. Patterns of species range evolution in Indo-Pacific reef assemblages reveal the Coral Triangle 2 as a net source of transoceanic diversity 3 4 Table S1. Sources of data used in analyses. Full references are provided below. 5 Class Species Common name Total Total Mean Data type Reference Genbank Accessions locations sequences sequences per location Actinopterygii Acanthurus triostegus convict tang 11 173 15.7 Control Region 1 KJ779749- KJ779871 Actinopterygii Amphiprion perideraion pink anenomefish 12 182 15.2 Control Region 2 JX513647- JX513875; DQ343940 Actinopterygii Apogon doederleini Doederlein's cardinalfish 3 54 18.0 Control Region 3 JF717921- JF717974 Actinopterygii Chaetodon auriga threadfin butterflyfish 9 239 26.6 Cytochrome b 4 KM488667- KM488795 Actinopterygii Chaetodon citrinellus speckled butterflyfish 3 77 25.7 Control Region 5 JX231274- JX231350 Actinopterygii Chaetodon lunulatus oval butterflyfish 3 79 26.3 Control Region 5 JX231351- JX231429 Actinopterygii Chaetodon trifascialis chevron butterflyfish 3 79 26.3 Control Region 5 JX231430- JX231508 Actinopterygii Chaetodon vagabundus vagabond butterflyfish 3 75 25.0 Control Region 5 JX231509- JX231583 Actinopterygii Chlorurus sordidus daisy parrotfish 8 175 21.9 Control Region 6 AY392560- AY392744 Actinopterygii Chromis atripectoralis black-axil chromis 3 105 35.0 Control Region 5 JX231169- JX231273 Actinopterygii Chromis viridis green chromis 3 90 30.0 Control Region 5 JX231584- JX231673 Actinopterygii Dascyllus trimaculatus