Carassius Ve Střední Evropě

Total Page:16

File Type:pdf, Size:1020Kb

Carassius Ve Střední Evropě MASARYKOVA UNIVERZITA Přírodovědecká fakulta Ivo PAPOUŠEK MOLEKULÁRNĚ-GENETICKÉ ANALÝZY DRUHŮ RODU CARASSIUS VE STŘEDNÍ EVROPĚ Přílohy k disertační práci Školitel: prof. RNDr. Jiřina Relichová, CSc. Školitel-specialista: RNDr. Věra Lusková, CSc. Brno, 2008 PŘÍLOHY – SOUBOR PUBLIKACÍ Příloha I Papoušek, I., Vetešník, L., Halačka, K., Lusková, V., Humpl, M. & Mendel, J. (2008). Identification of natural hybrids of gibel carp Carassius auratus gibelio (Bloch) and crucian carp Carassius carassius (L.) from lower Dyje River floodplain (Czech Republic). Journal of Fish Biology 72, 1230-1235. Příloha II Vetešník, L., Papoušek, I., Halačka, K., Lusková, V. & Mendel, J. (2007). Morphometric and genetic analysis of Carassius auratus complex from an artificial wetland in Morava River floodplain, Czech Republic. Fisheries Science 73, 817-822. Příloha III Papoušek, I., Lusková, V., Halačka, K., Koščo, J., Vetešník, L., Lusk, S. & Mendel, J. (2008). Genetic diversity of the Carassius auratus complex (Teleostei: Cyprinidae) in the central Europe. Journal of Fish Biology (submitted 10/2008). Příloha I Papoušek, I., Vetešník, L., Halačka, K., Lusková, V., Humpl, M. & Mendel, J. (2008). Identification of natural hybrids of gibel carp Carassius auratus gibelio (Bloch) and crucian carp Carassius carassius (L.) from lower Dyje River floodplain (Czech Republic). Journal of Fish Biology 72, 1230-1235. Journal of Fish Biology (2008) 72, 1230–1235 doi:10.1111/j.1095-8649.2007.01783.x, available online at http://www.blackwell-synergy.com Identification of natural hybrids of gibel carp Carassius auratus gibelio (Bloch) and crucian carp Carassius carassius (L.) from lower Dyje River floodplain (Czech Republic) I. PAPOUSˇEK*, L. VETESˇNI´K,K.HALACˇKA,V.LUSKOVA´,M.HUMPL AND J. MENDEL Department of Ichthyology, Institute of Vertebrate Biology, Czech Academy of Sciences, v.v.i., Kveˇtna´ 8, 603 65 Brno, Czech Republic (Received 13 July 2007, Accepted 28 November 2007) Morphometric and genetic variation were examined in parental Carassius auratus gibelio and Carassius carassius individuals, and their natural hybrids. Of meristic traits, only the number of gill rakers clearly distinguished hybrids (39Á4 Æ 1Á4) from parental C. a. gibelio (48Á3 Æ 0Á7) and C. carassius (28Á6 Æ 1Á1). MtDNA sequences showed that the hybrids were descendants of female C. a. gibelio. Microsatellite analysis confirmed the presence in hybrids of variants typical of C. a. gibelio and C. carassius. # 2008 The Authors Journal compilation # 2008 The Fisheries Society of the British Isles Key words: crucian carp; gibel carp; gill rakers; hybrids; microsatellites; mtDNA. The genus Carassius is represented in Europe by four taxa, native crucian carp Carassius carassius (L.), introduced goldfish Carassius auratus auratus (L.), gibel carp Carassius auratus gibelio (Bloch) and rare ‘ginbuna’ Carassius auratus langsdorfii Temminck & Schlegel (Szczerbowski, 2002; Kalous et al., 2007; Vetesˇnı´k et al., 2007). Even though C. a. gibelio and C. carassius are widely dis- tributed, published reports of hybrids between them are rare. Kux (1982) described the occurrence of such hybrids from the Danube Delta, and Goryunova & Skakun (2002) found hybrids of these taxa in natural lakes in Kazakhstan. In Polesi waters (Ukraine), several hybrids were found by Mezherin & Liseckij (2004). Ha¨nfling & Harley (2003) and Ha¨nfling et al. (2005) report the frequent occurrence of diploid hybrids arising from C. auratus and C. carassius in Great Britain. Despite the general prevalence of C. a. auratus and C. a. gibelio in Europe, information on the occurrence of natural hybrids with native C. carassius is scarce. This limited information may not reflect the *Author to whom correspondence should be addressed. Tel.: þ420 543 422 529; email: [email protected] 1230 # 2008 The Authors Journal compilation # 2008 The Fisheries Society of the British Isles IDENTIFICATION OF NATURAL CARASSIUS HYBRIDS 1231 extent of hybridization or may indicate that insufficient attention has been paid to hybrid identification. The aim of the present study was to identify with mor- phometric and genetic analyses natural hybrids of gibel carp and crucian carp in the lower Dyje River floodplain (Czech Republic). A total of 634 individuals attributed to genus Carassius [visually identified as C. a. gibelio (n ¼ 594), C. carassius (n ¼ 25) and possible hybrids (n ¼ 15)] were caught by electrofishing in the parapotamon side arm in the aluvium of the lower Dyje River (48°439250 N, 16°539200 E; in an area of 0Á45 ha). Analyses of ploidy levels were performed by means of computer-assisted microscopic image cytometry according to Flajsˇhans (1997) and Halacˇka & Luskova´ (2000). Blood smears were stained by Harris hematoxyline (Sigma-Aldrich, Prague, Czech Republic) for 10 min. Ploidy diagnostic dimension (i.e. erythrocyte nuclear area) was determined by bright field microscopy, imaging by a charge-coupled device (CCD) camera and image processing in Olympus MicroImage 4.0 analyser. The ploidy status was determined in 75 fish, including C. a. gibelio [17 diploid males (m), 15 diploid and 43 triploid females (f)], 10 C. carassius (6 m and 4 f) and 15 hybrids (6 m and 9 f). Meristic traits were assessed according to Holcˇı´k (1989) in 12 individuals (6 m and 6 f) of diploid C. a. gibelio, eight individuals (4 m and 4 f) of C. carassius and 12 hybrids (5 m and 7 f). For the meristic analyses, individuals were killed by overdose of anaesthetic (2-phenoxy-ethanol) and preserved in 4% formaldehyde. Differences in values of meristic traits among C. a. gibelio, C. carassius and hybrids were tested using ANOVA in Statistica Cz 7 and detrended correspondence analysis (DCA) Canoco 3.10. All data were checked for normalcy before analyses. DNA analyses were performed on two C. carassius individuals (1 m and 1 f), two C. a. gibelio individuals (1 m and 1 f) and nine putative hybrids (4 m and 5 f). Tested fish were fin-clipped and the clips were stored in ethanol for genetic analyses. Total genomic DNA was isolated from fin clips by phenol-chloroform extraction according to Sambrook et al. (1989) with minor modifications. Frag- ments of mtDNA representing the hypervariable part of the control region (D-loop) were amplified using primers CarU32 (59-CCAAAGCCAGAATTCTAAAC-39) and CarL509 (59-CATGTGGGGTAATGA-39). Polymerase chain reaction (PCR) was performed in total volume of 50 ml, which contained 200 mMofeach primer, 200 mM dNTP, 1Á5 mM MgCl2,1Â reaction buffer, 100 ng of total genomic DNA and 1Á5 U Taq polymerase. The following protocol for amplifica- tion was used: denaturation 95° C 1 min, 32 cycles 94° C 45 s/50° C30s/72° C 45 s, final extension 72° C for 7 min. PCR fragments were purified using poly- ethyleneglycol (PEG)/MgCl2/NaAc and sequenced on an automatic sequencer ABI PRISM 310 (Applied Biosystems, Foster City, CA, U.S.A.). Sequences (493 bp) were aligned by MEGA 3.1 (Kumar et al., 2004) and compared with GenBank sequences of C. a. gibelio (accession number AJ 388413.1), C. a. auratus (NC 006580), C. a. langsdorfii (AB 052327.1) and Carassius auratus cuvieri Temminck & Schlegel (AB 052334.1), and unpublished sequences of C. carassius. Microsatellite loci GF17, GF29, MFW2 and MFW7 were amplified with previ- ously published primer sequences (Zheng et al., 1995; Crooijmans et al., 1997). PCR was performed according to Ha¨nfling et al. (2005). Resulting genotypes were compared with allele size ranges of C. carassius and C. a. gibelio as in Ha¨nfling et al. (2005). # 2008 The Authors Journal compilation # 2008 The Fisheries Society of the British Isles, Journal of Fish Biology 2008, 72, 1230–1235 1232 I. PAPOUSˇEK ET AL. Carassius carassius body colour was greenish with a golden tinged, luteous abdomen; C. a. gibelio had a dark grey back and silvery sides. Body colouring of hybrid individuals was similar to C. a. gibelio, with a tinge of dark grey and black on head, torso and fins. The upper line of the dorsal fin was convex and the upper edge was rounded in C. carassius, whereas in C. a. gibelio the upper line of the dorsal fin was ventrally slightly concave. The dorsal fin of hybrid individuals merged traits of both parental species: the cranial half of the dorsal fin was convex and corresponded to the fin of C. carassius; the caudal half of the dorsal fin was slightly concave as in C. a. gibelio. The inner side of the abdominal cavity (peritoneum) was light and unpigmented in C. carassius but was black with a pearly sheen in C. a. gibelio. Peritoneal colouring of the hybrids was variable – some individuals had darker and some had lighter colouring. The average number of gill rakers (Sp.br.) reached 48Á3 in diploid C. a. gibelio, 28Á6inC. carassius and 39Á4 in hybrids (Table I). This trait clearly distin- guished hybrids from parental species. Comparison of other meristic traits without Sp.br. discriminates C. a. gibelio from both C. carassius and hybrids, but C. carassius and hybrids could not be distinguished without Sp.br. (Table I). DCA of the number of gill rakers demonstrated clear differences between C. a. gibelio, C. carassius and their hybrids (Fig. 1). The number of gill rakers is useful for the identification of species and hy- brids of the genus Carassius (Berg, 1932). The average number of gill rakers found in diploid C. a. gibelio individuals is consistent with data published by other authors (Vasileva, 1990; Vetesˇnı´k, 2005). Only Kux (1982) found 41 gill rakers in a single hybrid of these species. This number is close to the average number (39Á4) Sp.br. of the hybrid individuals. The analysis of four microsatellite markers in control samples of C. a. gibelio and C. carassius produced alleles within or close to the size ranges described by Ha¨nfling et al. (2005); only MFW7 had an allele that was significantly different in size, but this allele was nevertheless consistent with alleles in C.
Recommended publications
  • Biogeography and Evolution of the Carassius Auratus-Complex in East
    Takada et al. BMC Evolutionary Biology 2010, 10:7 http://www.biomedcentral.com/1471-2148/10/7 RESEARCH ARTICLE Open Access Biogeography and evolution of the Carassius auratus-complex in East Asia Mikumi Takada1,2*, Katsunori Tachihara1, Takeshi Kon2, Gunji Yamamoto2, Kei’ichiro Iguchi3, Masaki Miya4, Mutsumi Nishida2 Abstract Background: Carassius auratus is a primary freshwater fish with bisexual diploid and unisexual gynogenetic triploid lineages. It is distributed widely in Eurasia and is especially common in East Asia. Although several genetic studies have been conducted on C. auratus, they have not provided clear phylogenetic and evolutionary descriptions of this fish, probably due to selection bias in sampling sites and the DNA regions analysed. As the first step in clarifying the evolutionary entity of the world’s Carassius fishes, we attempted to clarify the phylogeny of C. auratus populations distributed in East Asia. Results: We conducted a detailed analysis of a large dataset of mitochondrial gene sequences [CR, 323 bp, 672 sequences (528 sequenced + 144 downloaded); CR + ND4 + ND5 + cyt b, 4669 bp in total, 53 sequences] obtained from C. auratus in East Asia. Our phylogeographic analysis revealed two superlineages, one distributed mainly among the Japanese main islands and the other in various regions in and around the Eurasian continent, including the Ryukyus and Taiwan. The two superlineages include seven lineages with high regional specificity that are composed of endemic populations indigenous to each region. The divergence time of the seven lineages was estimated to be 0.2 million years ago (Mya) by a fossil-based method and 1.0-1.9 Mya by the molecular clock method.
    [Show full text]
  • Table S2.Xlsx
    Species Family DNA content Chromosome References (pg/nuclei) number Actinopterygii Ptychobarbus dipogon Cyprinidae ‐ 446 [1] Acipenser baerii Acipenseridae 15.02 437 present study Acipenser mikadoi Acipenseridae 12.9 402 [2*, 3] Acipenser brevirostrum Acipenseridae 13.07 372 [4, 5*] Acipenser baerii Acipenseridae 12.7 368 [6*, 7] Acipenser transmontanus Acipenseridae 9.46 271 [5*, 8] Huso dauricus Acipenseridae 8.3 268 [9*, 10] Acipenser schrenckii Acipenseridae 8.2 266 [9*, 10] Carassius auratus langsdorfii Cyprinidae ‐ 204 [11] Carassius auratus auratus Cyprinidae 5.12 150 [12] Corydoras aeneus Callichthyidae 6.6 134 [13] Myxini Eptatretus burgeri Myxinidae 6.0 36 [14*, 15] Paramyxine atami Myxinidae ‐ 34 [14] Petromyzontida Geotria australis Geotriidae 3.08 180 [16*, 17] Lethenteron reissneri Petromyzontidae ‐ 174 [18] Chondrichthyes Notorynchus cepedianus Notorynchidae 8.8 104 [19] Heterodontus francisci Heterodontidae 17.5 102 [19] Sarcopterygii Protopterus dolloi Protopteridae 163.2 68 [20] Latimeria chalumnae Latimeriidae 7.2 48 [21*, 22] Amphibia Xenopus longipes Pipidae ‐ 108 [23] Xenopus ruwenzoriensis Pipidae 7.95 108 [24*, 25] Reptilia Platemys platycephala Chelidae ‐ 96 [26] Carettochelys insculpta Carettochelyidae ‐ 68 [27] Aves Alcedo atthis Alcedinidae 2.8 138 [28, 29*] Upupa epops Upupidae 2.56 126 [28, 30*] Mammalia Tympanoctomys barrerae Octodontidae 16.8 102 [31, 32*] Ichthyomys pittieri Cricetidae ‐ 92 [33] References 1. Yu XY, Yu XJ. A schizothoracin fish species, Diptychus dipogon, with very high number of chromosomes Chrom Inform Serv. 1990;48:17-8. 2. Zhou H, Fujimoto T, Adachi S, Yamaha E, Arai K. Genome size variation estimated by flow cytometry in Acipenser mikadoi, Huso dauricus in relation to other species of Acipenseriformes.
    [Show full text]
  • Distinct Herpesvirus Resistances and Immune Responses of Three
    Gao et al. BMC Genomics (2017) 18:561 DOI 10.1186/s12864-017-3945-6 RESEARCH ARTICLE Open Access Distinct herpesvirus resistances and immune responses of three gynogenetic clones of gibel carp revealed by comprehensive transcriptomes Fan-Xiang Gao1,2, Yang Wang1, Qi-Ya Zhang1, Cheng-Yan Mou1,2, Zhi Li1, Yuan-Sheng Deng1,2, Li Zhou1* and Jian-Fang Gui1* Abstract Background: Gibel carp is an important aquaculture species in China, and a herpesvirus, called as Carassius auratus herpesvirus (CaHV), has hampered the aquaculture development. Diverse gynogenetic clones of gibel carp have been identified or created, and some of them have been used as aquaculture varieties, but their resistances to herpesvirus and the underlying mechanism remain unknown. Results: To reveal their susceptibility differences, we firstly performed herpesvirus challenge experiments in three gynogenetic clones of gibel carp, including the leading variety clone A+, candidate variety clone F and wild clone H. Three clones showed distinct resistances to CaHV. Moreover, 8772, 8679 and 10,982 differentially expressed unigenes (DEUs) were identified from comparative transcriptomes between diseased individuals and control individuals of clone A+, F and H, respectively. Comprehensive analysis of the shared DEUs in all three clones displayed common defense pathways to the herpesvirus infection, activating IFN system and suppressing complements. KEGG pathway analysis of specifically changed DEUs in respective clones revealed distinct immune responses to the herpesvirus infection. The DEU numbers identified from clone H in KEGG immune-related pathways, such as “chemokine signaling pathway”, “Toll-like receptor signaling pathway” and others, were remarkably much more than those from clone A+ and F.
    [Show full text]
  • Chapter 2 Healthy Interaction Between Human and the Earth
    FY2010 Part 1, Chapter 2 -Healthy Interaction between Human and the Earth Chapter 2 Healthy Interaction between Human and the Earth As seen in Chapter 1, we humans depend on under- which remained until today heavily depend on them ground resources such as fossil fuels and minerals, as (Figure 2-1-1). well as renewable resources such as food, forest and In Chapter 2, we will consider about how to achieve water. These natural resources provide energy, food, the wisdom in order to assist local everyday lives timber, medicine and so on, which are vital for human which based on traditional knowledge, to maintain the beings. We also depend on the fundamental roles of relationship in good condition between human beings and ecosystems; healthy forests, for example, regulate the Earth’s environment and to share the benefits of damages from heavy rainfall caused by typhoons. These ecosystem services with the future generation, focusing natural resources and ecosystems support various on status of renewable resources of biodiversity. patterns of human life styles, and indigenous cultures Section 1 Benefits of Ecosystem Services on the Earth for Our Everyday Lives There are 1.75 million identified species. Including Here, we will discuss the relationship between our unknown living organisms, it is said that there are 30 everyday lives and ecosystem services of biodiversity, million species on the Earth. Humans are nothing more mainly from the perspective of how ecosystem services than one of the many species, and it would be impossible provide security in everyday life, timbers for building, for us humans to exist without interrelationship with food, medicine for our health, and traditional cultures in these innumerable living organisms.
    [Show full text]
  • Polyphyletic Origin of Ornamental Goldfish
    Food and Nutrition Sciences, 2015, 6, 1005-1013 Published Online August 2015 in SciRes. http://www.scirp.org/journal/fns http://dx.doi.org/10.4236/fns.2015.611104 Polyphyletic Origin of Ornamental Goldfish Aleksandr V. Podlesnykh1, Vladimir A. Brykov1,2, Lubov A. Skurikhina1 1Far Eastern Branch of the Russian Academy of Sciences, A. V. Zhirmunsky Institute of Marine Biology, Vladivostok, Russia 2School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia Email: [email protected] Received 6 May 2015; accepted 17 August 2015; published 20 August 2015 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Mitochondrial DNA fragment of cytb was compared in all species Carassius auratus complex and three forms of ornamental goldfish. It is shown that the phylogenetic relationships between com- plex species correspond to the existing views, based on mtDNA data and geographical distribution. All forms of ornamental goldfish have a monophyletic origin from Chinese goldfish C. auratus au- ratus. The analysis showed that three nuclear genes (rps7, GH1 and Rh) in the two forms of orna- mental goldfish (Oriental twintail goldfish and Chinese Ranchu) were almost identical C. auratus auratus genes, while all three gene in another more simple form of goldfish (common goldfish) were highly homologous to carp Cyprinus carpio nuclear genes. The obtained data suggested that in the history of aquarium goldfish breeding occurred the stage of distant hybridization between goldfish and common carp. Subsequently, the nuclear genomes of some ornamental forms could be enriched by goldfish genes (a relatively recent form as Oriental twintail goldfish and Chinese Ranchu) or common carp genes (the simplest and most ancient forms like common goldfish) as a result of multidirectional breeding and selection of aquarium goldfish various forms.
    [Show full text]
  • Electrophoretic Studies of Diploid, Triploid, and Tetraploid Forms of the Japanese Silver Crucian Carp, Carassius Auratus Langsdorfii
    Japan.J.Ichthyol. 魚 類 学 雑 誌 40(1):65-75,1993 40(1):65-75,1993 Electrophoretic Studies of Diploid, Triploid, and Tetraploid Forms of the Japanese Silver Crucian Carp, Carassius auratus langsdorfii Yasushi Shimizu,1,2 Takashi Oshiro1 and Mitsuru Sakaizumi2,31 Department of Aquatic Biosciences, Tokyo University of Fisheries, 4-5-7 Konan, Minato-ku, Tokyo 108, Japan 2Department of Experimental Animal Science, The Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113, Japan 3Present address: Department of Biology, College of General Education, Niigata University, 2-8050 Ikarashi, Niigata 950-21, Japan (Received October 29, 1992; in revisedform February 8, 1993; accepted March 22, 1993) Abstract The diploid-polyploid complex in the Japanese silver crucian carp (ginbuna), Carassius auratus langsdorfii, includes a diploid bisexual form, a triploid gynogenetic form and a tetraploid gynogenetic form. However, the origin of the polyploids remains to be clarified. Flow cytometric and electrophoretic analyses of Japanese crucian carp demonstrated that all the individuals with a two-banded pattern for an AMY-2 gene were polyploid, and 90% of the polyploids gave such a two-banded pattern. One of the two bands was not found in diploid subspecies in Japan but was present in both Korean crucian carp and goldfish. The diploid subspecies, kinbuna (C.auratus subsp.), which is distributed along the Pacific coast of eastern Japan, generated a diagnostic band of phosphoglucomutase. This band was also found in the polyploid "ginbuna" from the same region, but was observed in neither triploids nor diploids from other regions.
    [Show full text]
  • Direct Cytotoxic Activity of CD8+ T Cells Against Ichthyophthirius Multifiliis
    426 Abstracts / Fish & Shellfish Immunology 91 (2019) 421e472 importance for stress effects on the immune response in teleosts. Indi- # Corresponding author. vidual aspects of the interference of stress hormones (mainly cortisol) with E-mail address: [email protected] (J. Zou). immune processes have already been reported in some bony fish. Although less studied, the catecholamines adrenaline and noradrenaline have also shown to modulate the immune response of teleost leukocytes via a and b adrenergic receptors. This study aims to expand the actual knowledge on stress-induced immune modulation, in order to evaluate O-014. the effects of stress on the immune system of maraena whitefish (Cor- Direct cytotoxic activity of CD8þ T cells against Ichthyophthirius egonus maraena). This salmonid fish is highly sensitive to stress compared multifiliis in ginbuna crucian carp, Carassius auratus langsdorfii to other salmonid species long adapted to aquaculture. To this end, a large set of specific primers was designed for reverse-transcription quantitative Masaki Sukeda, Koumei Shiota, Takahiro Nagasawa, Miki Nakao, real-time PCR (RT-qPCR) analyses. The primer panel included cell-specific Tomonori Somamoto#. marker genes characterizing the distinct cell populations in the head kidney of C. maraena, which had been sorted using flow cytometry. In Laboratory of Marine Biochemistry, Department of Bioscience and addition, we analysed the expression of catecholamine and cortisol re- Biotechnology, Graduate School of Bioresource and Bioenvironmental ceptors in each population, in order to define the repertoire of stress- Sciences, Kyushu University, Fukuoka, Japan related modulators present in the cells. In the next step, we performed a series of in vitro stimulations of head kidney leukocytes to study the Abstract expression of genes involved in immune activation and acute phase A line of studies has shown that several humoral immune factors including together with catecholamine and cortisol receptors.
    [Show full text]
  • In Vitro Characteristics of Cyprinid Herpesvirus 2: Effect of Kidney Extract Supplementation on Growth
    Vol. 115: 223–232, 2015 DISEASES OF AQUATIC ORGANISMS Published August 20 doi: 10.3354/dao02885 Dis Aquat Org In vitro characteristics of cyprinid herpesvirus 2: effect of kidney extract supplementation on growth Tomoya Shibata1, Azusa Nanjo1, Masato Saito1, Keisuke Yoshii1, Takafumi Ito2, Teruyuki Nakanishi3, Takashi Sakamoto1, Motohiko Sano1,* 1Faculty of Marine Science, Tokyo University of Marine Science and Technology, Minato, Tokyo 108-8477, Japan 2Aquatic Animal Health Division, National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki, Mie 519-0423, Japan 3Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa 252-0880, Japan ABSTRACT: Herpesviral hematopoietic necrosis caused by goldfish hematopoietic necrosis virus (now identified as cyprinid herpesvirus 2, CyHV-2) has contributed to economic losses in goldfish Carassius auratus culture and is becoming a major obstacle in Prussian carp C. gibelio aquacul- ture in China. Several reports have described difficulties in culturing the virus, with the total loss of infectivity within several passages in cell culture. We succeeded in propagating CyHV-2 with a high infectious titer in a RyuF-2 cell line newly derived from the fin of the Ryukin goldfish variety using culture medium supplemented with 0.2% healthy goldfish kidney extract. The addition of kidney extract to the medium enabled rapid virus growth, resulting in the completion of cyto- pathic effect (CPE) within 4 to 6 d at 25°C. The extract also enabled reproducible virus culture 5−6 −1 with a titer of 10 TCID50 ml . The virus cultured using this protocol showed pathogenicity in goldfish after intraperitoneal injection. The virus grew in RyuF-2 cells at 15, 20, 25, 30, and 32°C but not at 34°C or higher.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights Author's personal copy Molecular Immunology 70 (2016) 1–7 Contents lists available at ScienceDirect Molecular Immunology j ournal homepage: www.elsevier.com/locate/molimm Functional analysis of membrane-bound complement regulatory protein on T-cell immune response in ginbuna crucian carp a,b a,c a a Indriyani Nur , Nevien K. Abdelkhalek , Shiori Motobe , Ryota Nakamura , a a,∗ a Masakazu Tsujikura , Tomonori Somamoto , Miki Nakao a Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan b Aquaculture Department, Fisheries and Marine Science Faculty, Halu Oleo University, Kendari 93232, Indonesia c Department of Internal Medicine, Infectious and Fish diseases, Faculty of Veterinary Medicine, El-Mansoura University, Egypt a r t i c l e i n f o a b s t r a c t Article history: Complements have long been considered to be a pivotal component in innate immunity. Recent Received 9 August 2015 researches, however, highlight novel roles of complements in T-cell-mediated adaptive immunity.
    [Show full text]
  • Spontaneous Triploidy in the California Roach Hesperoleucus Symmetricus (Pisces: Cyprinidae)
    Cytogcnet. Cell Genet. 17: 144-149 (1976) Spontaneous triploidy in the California roach Hesperoleucus symmetricus (Pisces: Cyprinidae) J.R.G old 1 and J.C. A vise2 'Genetics Section, Texas A&M University, College Station, Tex., and "Department of Zoology, University of Georgia, Athens, Ga. Abstract A single triploid individual (3n = 75) of the California roach,Hesperoleucus symmetricus, was identified among a sample of nine specimens from the Russian River, California. The diploid number ofH. symmetricus, as revealed by the karyotypes of the remaining eight specimens, is 50. Aside from the all-female triploid unisexual fishes, this is the first report of a triploid fish from the wild, and the second report of a triploid in a bisexual fish species. The most likely origin of the triploid was probably fusion of a haploid sperm with an unreduced ovum. Among the vertebrates, viable triploids are exceedingly infrequent in nature, and, with very few exceptions, they have been found only in certain unisexual forms among the fishes(Schultz, 1971) and salamanders (M aslin , 1971). The exceptions include a few isolated individuals of the bird Gallus domesticus(O hno et al., 1963; Sarvei.la , 1970; A bdel - H ameed and Shoefner , 1971), a few species of salamanders and frogs (references in Cuellar and U yeno , 1972), and the fishSalmo gairdneri (C uellar and U yeno , 1972). Triploidy or diploid/triploid chimerism has been reported in other vertebrates, e.g., man, but is associated with embryonic mortality or early death(C hu et al., 1964; C arr , 1970; Schindler and M ikamo , 1970; Bloom , 1972).
    [Show full text]
  • Morphological Identification of Haematopoietic Cells in Pronephros
    Volume 60(2):113-118, 2016 Acta Biologica Szegediensis http://www2.sci.u-szeged.hu/ABS ARTICLE Morphological identification of haematopoietic cells in pronephros of common carp (Cyprinus carpio Linnaeus, 1758) Damir Suljeviæ, Erna Islamagić, Andi Alijagić*, Muhamed Fočak, Maja Mitrašinović-Brulić Department of Biology (Biochemistry and Physiology), Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina ABSTRACT Haemopoietic tissue of the common carp pronephros (Cyprinus carpio Linnaeus, KEY WORDS 1758) was studied in regard of morphometric analysis of the erythropoietic, leukopoietic and common carp thrombopoietic cell populations. The aim of this study was to perform evaluation of immature haematopoiesis precursor cells in head kidney of common carp (sampled from Bardaca lake) because there is pronephros no well known data regarding this issue. Microscopic identification of haematopoietic cells cell-lineage included measurement of cell and nuclear size, nuclear-cytoplasmic ratio, determination of the cell area cell and nuclear shape, cytosol coloration and presence of specific granules in the cytosol. The frequency of immature cells and their cell area was also analyzed. Erythroblasts were the most abundant among all observed haemopoietic cell lineages and were the most variable in the size. The largest area was characteristic of monocyte precursors and no significant differences were observed regarding the cell area between prothrombocytes and lymphoblasts, which makes difficult in cell characterization. High number of emerged cells in short time also makes difficult to identify particular stages of maturation in some bloodlines. Rapid maturation of granuloid cells observed within the haemopoietic tissue indicates their functional significance in adaptation to the changeable microenvironment. Acta Biol Szeged 60(2):113-118 (2016) Introduction intestine (Stosik and Deptula 1993).
    [Show full text]
  • Hexaploidy in Yellowfish Species (Barbus, Pisces, Cyprinidae) from Southern Africa
    Journal of Fish Biology (1990) 37, 105-1 15 Hexaploidy in yellowfish species (Barbus, Pisces, Cyprinidae) from southern Africa L. K. OELLERMANNAND P. H. SICELTON* J.L.B. Smith Institute of Ichthyology, Private Bag 1015, Grahamstown 6140, Republic of South Africa (Received 18 July 1989, Accepted I February 1990) Five small-scaled yellowfish (large Burbus spp.) from southern Africa are shown to have modal 148 or 150chromosomes. Themajority ofcyprinid species have 2N = 50chromosomes, indicating that the yellowfish karyotype is hexaploid in origin. However, as there is no indication that the species are unisexual or that normal reproduction occurs by any means other than bisexual fertilization, the yellowfish karyotype is considered to have reverted to a diploid condition. Key words: karyology; yellowfish; Burbus; hexaploidy; southern Africa. I. INTRODUCTION The name ' yellowfish ' is given to several large-sized Burbus species in southern Africa (Jubb, 1967). The yellowfish fall into two groups on the basis of scale size. The group with smaller scales consists of five recognized species distributed in the Orange River system and adjacent drainage systems (Skelton, 1986). The second group, with larger scales, consists of two species, Barbus rnarequensis Smith, 1841 and Barbus codringtonii Boulenger, 1908, distributed in east coastal drainages from the Phongola River to the Zambezi River system. This study concerns the five small-scaled yellowfish species, viz. Barbus cupensis Smith, 1841 from the Olifants River system, Burbus aeneus (Burchell, 1822) and Burbus kimberleyensis Gilchrist & Thompson, 1913 from the Orange River system, Barbus polylepis Boulenger, 1907 from the Limpopo, lncomati and Phongola River systems, and Burbus natalensis Castelnau, 1861 from the rivers of Natal.
    [Show full text]