Lake Biwa Experience and Lessons Learned Brief
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 1-1 About Shiga Prefecture
Chapter 1-1 About Shiga Prefecture Abstract Shiga Prefecture is located more or less in the middle of the Japanese Archi- pelago. Surrounded by mountains, Shiga Prefecture forms the Omi Basin with Lake Biwa, the largest lake in Japan, located at the center of its lowland. With a history spanning some 4 million years, Lake Biwa is the oldest lake in Japan and one of the ancient lakes in the world. Keywords: Shiga Prefecture, Lake Biwa, Omi Basin 1. Features of Shiga Prefecture Shiga Prefecture is located more or less in the middle of the Japanese Archipelago. Close to the city of Kyoto to the west, Shiga Prefecture is located 86 minutes by limited express train from Kansai Interna- tional Airport. The land mass of Shiga Prefecture is approximately 1% of the total area of Ja- pan. About 1.4 million people reside in this prefecture. Fig. 1-1-2 Topography of Shiga Prefecture rounding mountains. The Seta River and the artificial Biwako (Lake Biwa) Canal form the lake’s outlets. Calculations have shown that it takes approximately 19 years for all the water in the lake to be completely renewed. Lake Biwa is the oldest lake in Japan. The lake in its present form began to Fig. 1-1-1 Location of Shiga Prefecture form more than 1 million years ago, and (http://en.biwako-visitors.jp/) its total history including its predecessors Shiga Prefecture forms a basin known spans some 4 million years, making Lake as the Omi Basin with mountains over Biwa one of the oldest in the world. -
Distinct Herpesvirus Resistances and Immune Responses of Three
Gao et al. BMC Genomics (2017) 18:561 DOI 10.1186/s12864-017-3945-6 RESEARCH ARTICLE Open Access Distinct herpesvirus resistances and immune responses of three gynogenetic clones of gibel carp revealed by comprehensive transcriptomes Fan-Xiang Gao1,2, Yang Wang1, Qi-Ya Zhang1, Cheng-Yan Mou1,2, Zhi Li1, Yuan-Sheng Deng1,2, Li Zhou1* and Jian-Fang Gui1* Abstract Background: Gibel carp is an important aquaculture species in China, and a herpesvirus, called as Carassius auratus herpesvirus (CaHV), has hampered the aquaculture development. Diverse gynogenetic clones of gibel carp have been identified or created, and some of them have been used as aquaculture varieties, but their resistances to herpesvirus and the underlying mechanism remain unknown. Results: To reveal their susceptibility differences, we firstly performed herpesvirus challenge experiments in three gynogenetic clones of gibel carp, including the leading variety clone A+, candidate variety clone F and wild clone H. Three clones showed distinct resistances to CaHV. Moreover, 8772, 8679 and 10,982 differentially expressed unigenes (DEUs) were identified from comparative transcriptomes between diseased individuals and control individuals of clone A+, F and H, respectively. Comprehensive analysis of the shared DEUs in all three clones displayed common defense pathways to the herpesvirus infection, activating IFN system and suppressing complements. KEGG pathway analysis of specifically changed DEUs in respective clones revealed distinct immune responses to the herpesvirus infection. The DEU numbers identified from clone H in KEGG immune-related pathways, such as “chemokine signaling pathway”, “Toll-like receptor signaling pathway” and others, were remarkably much more than those from clone A+ and F. -
(USA) Tomodachi Inoue Scholars 1. Program Report
KAKEHASHI Project Japan’s Friendship Ties Program (USA) Tomodachi Inoue Scholars 1. Program Report 1.Program Overview Under “Japan’s Friendship Ties Program”, 25 Americans visited Japan. During the 8 days program from March 5th to March 12th, 2016, the participants studied the Japanese government, society, history, foreign policy, culture and much more. The participants aim to promote Japan through mediums such as SNS. 2.Participating Countries and Number of Participants USA (25 Participants) 3.Prefectures Visited Tokyo, Kyoto and Shiga Prefecture 4.Program Schedule March 5th (Sat) Arrival at Narita International Airport March 6th (Sun) 【Orientation】 ,【Observation】Edo Tokyo Museum, Asakusa March 7th (Mon) 【Observation】Tokyo Metropolitan Assembly Move Tokyo to Kyoto March 8th (Tue) 【Observation of Historical Landmark/ Cultural Experience】Fushimi Inari Shrine, Kimono Show at Nishijin textile center, Kiyomizu Temple March 9th (Wed) 【School Exchange】Shiga Prefectural University 【Nature/Cultural Experience/Regional Exchange】Farm stay, Calligraphy Experience March 10th (Thu) 【Nature/Cultural Experience/Regional Exchange】 Making Japanese Chopsticks experience, Forest walking Move from Kyoto to Tokyo March 11th (Fri) 【Workshop】【Reporting Session】 【Lecture】“Japan’s Foreign Policy” North American Affairs Bureau, Ministry of Foreign Affairs 【Cutting-edge Technology】National Museum of Emerging Science and Innovation March 12th (Sat) 【Observation】Meiji Jingu Shrine, Harajuku Departure from Narita International Airport 1 5.Program Photos 3/6 【 Observation 】 Edo Tokyo Museum 3/7 【 Observation 】 Tokyo Metropolitan (Tokyo) Assembly (Tokyo) 3/9 【School Exchange 】 Shiga Prefectural 3/9 【 Nature/Cultural Experience/Regional University (Hikone City) Exchange】Farmstay, Calligraphy Experience (Takashima City) 3/10【Nature/Cultural Experience/Regional 3/11【Reporting Session】 (Tokyo) Exchange】Forest walking (Takashima City) 2 6.Voice from Participants ◆USA, University Student Throughout the week, I was continuously impressed by how friendly and welcoming all the local people were to us. -
Natural History of Japanese Birds
Natural History of Japanese Birds Hiroyoshi Higuchi English text translated by Reiko Kurosawa HEIBONSHA 1 Copyright © 2014 by Hiroyoshi Higuchi, Reiko Kurosawa Typeset and designed by: Washisu Design Office Printed in Japan Heibonsha Limited, Publishers 3-29 Kanda Jimbocho, Chiyoda-ku Tokyo 101-0051 Japan All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without permission in writing from the publisher. The English text can be downloaded from the following website for free. http://www.heibonsha.co.jp/ 2 CONTENTS Chapter 1 The natural environment and birds of Japan 6 Chapter 2 Representative birds of Japan 11 Chapter 3 Abundant varieties of forest birds and water birds 13 Chapter 4 Four seasons of the satoyama 17 Chapter 5 Active life of urban birds 20 Chapter 6 Interesting ecological behavior of birds 24 Chapter 7 Bird migration — from where to where 28 Chapter 8 The present state of Japanese birds and their future 34 3 Natural History of Japanese Birds Preface [BOOK p.3] Japan is a beautiful country. The hills and dales are covered “satoyama”. When horsetail shoots come out and violets and with rich forest green, the river waters run clear and the moun- cherry blossoms bloom in spring, birds begin to sing and get tain ranges in the distance look hazy purple, which perfectly ready for reproduction. Summer visitors also start arriving in fits a Japanese expression of “Sanshi-suimei (purple mountains Japan one after another from the tropical regions to brighten and clear waters)”, describing great natural beauty. -
Hypomesus Nipponensis) Stock Trajectory in Lake Kasumigaura and Kitaura
Open Journal of Marine Science, 2015, 5, 210-225 Published Online April 2015 in SciRes. http://www.scirp.org/journal/ojms http://dx.doi.org/10.4236/ojms.2015.52017 Factors Affecting Japanese Pond Smelt (Hypomesus nipponensis) Stock Trajectory in Lake Kasumigaura and Kitaura Ashneel Ajay Singh1, Noriyuki Sunoh2, Shintaro Niwa2, Fumitaka Tokoro2, Daisuke Sakamoto1, Naoki Suzuki1, Kazumi Sakuramoto1* 1Department of Ocean Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan 2Freshwater Branch Office, Ibaraki Fisheries Research Institute, Ibaraki, Japan Email: *[email protected] Received 5 February 2015; accepted 26 March 2015; published 30 March 2015 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The Japanese pond smelt (Hypomesus nipponensis) stock has been observed to fluctuate quite ri- gorously over the years with sustained periods of low catch in Lake Kasumigaura and Kitaura of the Ibaraki prefecture, Japan which would adversely affect the socioeconomic livelihood of the lo- cal fishermen and fisheries industry. This study was aimed at determining the factors affecting the stock fluctuation of the pond smelt through the different years in the two lakes. Through explora- tory analysis it was found that the pond smelt had significant relationship with total phosphorus (TP) level in both lakes. The global mean land and ocean temperature index (LOTI) was also found to be indirectly related to the pond smelt stock in lake Kasumigaura and Kitaura at the latitude band of 24˚N to 90˚N (l). -
Outline of the Water Circulation Mechanism of the Sakuragawa River Basin Flowing Into the Lake Kasumigaura
生活大学研究Bulletin of Jiyu GakuenVol. 4 College103~104 of Liberal(2019 )Arts Vol. 4 103–104 (2019) Short Note Outline of the Water Circulation Mechanism of the Sakuragawa River Basin Flowing into the Lake Kasumigaura Shinpei YOSHIKAWA Jiyu Gakuen College (Received 31 August 2018; Accepted 3 October 2018) In October 2018, The 17th World Lake Conference was held in Ibaraki prefecture for the first time in 23 years since 1995. In this paper, we will outline the advanced water circulation mechanism surrounding the Sakuragawa river basin and the Sakuragawa river, which is the inflowing river of Lake Kasumigaura, which is the representative lake in this area. Also, it shows an inventory of survey results related to the Sakuragawa river. KeyWords: Lake Kasumigaura, Sakuragawa river, Water circulation mechanism, River environment, River basin management 1. Outline of Lake Kasumigaura area The Lake Kasumigaura area is located in the eastern part of the Kanto region, the southeastern part of Ibaraki prefecture, and the area is 2,157 km2 (Fig. 1). Among them, the area of the lake is 220 km2, the second largest in the Japan after Lake Biwa. Lake Kasumigaura is connected downstream to Tonegawa river, in confluence point is set on Hitachigawa watergate. And in the usual time it is a slightly higher water area. On the other hand, the lake is made desalinated by preventing saltwater run-up by the flood gate, making it possible to develop present water resources. In addition, “Lake Kasumigaura” is a generic term such as Lake Nishiura, Lake Kitaura, Hitachitonegawa river etc. In this paper we mainly deal with Nishiura (lake area 172 km2). -
Holocene Sea-Level Changes and Coastal Evolution in Japan1)
第 四 紀 研 究 (The Quaternary Research) 30 (2) p. 187-196 July 1991 Holocene Sea-Level Changes and Coastal Evolution in Japan1) Masatomo UMITSU2) Recent progress in Holocene sea-level studies and studies on coastal evolution in Japan are reviewed. Several studies recorded either a slight fall or slow rise of sea-level in the early Holocene, and some studies recognized minor regressions after the culmination of rapid postglacial transgression. Coastal landforms have changed remarkably during the Holocene. Many drowned valleys were formed in the middle Holocene, and the coast lines in Japan were very rugged at the time. Various types of coastal evolution have been reported in numerous studies. Some of the studies were carried out as cooperative research using a variety of research techniques. published by OTA et al. (1982, 1990), YONEKURA and I. Introduction OTA (1986), OTA and MACHIDA (1987) and ISEKI The Japanese Islands are located along the (1987). Recent studies on sea-level changes in boundaries of the Eurasian, Pacific Ocean and Japan were compiled in the "Atlas of Holocene Sea Philippine Sea Plates, and the landforms of the Level Records in Japan" (OTAet al., 1981) and the islands have been strongly influenced by the "Atlas of Late Quaternary Sea Level Records in Japan, plates movements. Coastal landforms of Japan vol. I" (OTA et al., 1987a). The coastal during the late Quaternary have also changed environments in the Late Quaternary and the and developed under the influence of both Holocene were illustrated in the "Quaternary tectonic and eustatic movements. Regional Maps of Japan" (JAPAN ASSOCIATION FOR QUATERNARY differences and variations can be found in the RESEARCH ed., 1987) and the "Middle Holocene processes of evolution of the coastal landforms, Shoreline Map of Japan" (OTA et al., 1987b). -
Chapter 2 Healthy Interaction Between Human and the Earth
FY2010 Part 1, Chapter 2 -Healthy Interaction between Human and the Earth Chapter 2 Healthy Interaction between Human and the Earth As seen in Chapter 1, we humans depend on under- which remained until today heavily depend on them ground resources such as fossil fuels and minerals, as (Figure 2-1-1). well as renewable resources such as food, forest and In Chapter 2, we will consider about how to achieve water. These natural resources provide energy, food, the wisdom in order to assist local everyday lives timber, medicine and so on, which are vital for human which based on traditional knowledge, to maintain the beings. We also depend on the fundamental roles of relationship in good condition between human beings and ecosystems; healthy forests, for example, regulate the Earth’s environment and to share the benefits of damages from heavy rainfall caused by typhoons. These ecosystem services with the future generation, focusing natural resources and ecosystems support various on status of renewable resources of biodiversity. patterns of human life styles, and indigenous cultures Section 1 Benefits of Ecosystem Services on the Earth for Our Everyday Lives There are 1.75 million identified species. Including Here, we will discuss the relationship between our unknown living organisms, it is said that there are 30 everyday lives and ecosystem services of biodiversity, million species on the Earth. Humans are nothing more mainly from the perspective of how ecosystem services than one of the many species, and it would be impossible provide security in everyday life, timbers for building, for us humans to exist without interrelationship with food, medicine for our health, and traditional cultures in these innumerable living organisms. -
Reemerging Political Geography in Japan
Japanese Journal of Human Geography 64―6(2012) Reemerging Political Geography in Japan YAMAZAKI Takashi Osaka City University TAKAGI Akihiko Kyushu University KITAGAWA Shinya Mie University KAGAWA Yuichi The University of Shiga Prefecture Abstract The Political Geography Research Group (PGRG) of the Human Geographical Society of Japan was established in 2011 to promote political geographic studies in Japan. The PGRG is the very first research unit on political geography in the Society which was established in 1948. Political geography was once one of the weakest sub―fields in Japanese geography with a very limited number of scholars and published works. This, however, is not at all the case now. Political geography is a reemerging field in Japan. In this review paper, four of the PGRG members contribute chapters on general trends in Japanese political geography, legacies of Japanese wartime geopolitics, the introduction of “new geopolitics” into Japan, and geographical studies on environmental movements. All of them have confirmed with confidence that Japanese political geography has been reemerging and making steady progress in terms of theory, methodology, and case study since the 1980s. Although the current stage of Japanese political geography is still in the regenerative phase, they strongly believe that political geography should be firmly embedded in Japanese geography. Key words : political geography, Japanese geopolitics, new geopolitics, environmental movements, Japan I Introduction The Political Geography Research Group (PGRG) of the Human Geographical Society of Japan was established in 2011 to promote political geographic studies in Japan. The PGRG is the very first research unit on political geography in the Society which was established in 1948. -
Umezakia Natans M.Watan. Does Not Belong to Stigonemataceae but To
Fottea 11(1): 163–169, 2011 163 Umezakia natans M.WATAN . does not belong to Stigonemataceae but to Nostocaceae Yuko NIIYAMA 1, Akihiro TUJI 1 & Shigeo TSUJIMURA 2 1Department of Botany, National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan; e–mail: [email protected] 2Lake Biwa Environmental Research Institute, 5–34 Yanagasaki, Otsu, Shiga 520–0022, Japan Abstract: Umezakia natans M.WA T A N . was described by Dr. M. Watanabe in 1987 as a new species in the family of Stigonemataceae, following the rules of the Botanical Code. According to the original description, this planktonic filamentous species grows well in a growth media with pH being 7 to 9, and with a smaller proportion of sea water. Both heterocytes and akinetes were observed, as well as true branches developing perpendicular to the original trichomes in cultures older than one month. Watanabe concluded that Umezakia was a monotypic and only planktonic genus belonging to the family of Stigonemataceae. Unfortunately, the type culture has been lost. In 2008, we successfully isolated a new strain of Umezakia natans from a sample collected from Lake Suga. This lake is situated very close to the type locality, Lake Mikata in Fukui Prefecture, Japan. We examined the morphology of this U. natans strain, and conducted a DNA analysis using 16S rDNA regions. Morphological characters of the newly isolated strain were in a good agreement with the original description of U. natans. Furthermore, results of the DNA analysis showed that U. natans appeared in a cluster containing Aphanizomenon ovalisporum and Anabaena bergii. -
Flood Loss Model Model
GIROJ FloodGIROJ Loss Flood Loss Model Model General Insurance Rating Organization of Japan 2 Overview of Our Flood Loss Model GIROJ flood loss model includes three sub-models. Floods Modelling Estimate the loss using a flood simulation for calculating Riverine flooding*1 flooded areas and flood levels Less frequent (River Flood Engineering Model) and large- scale disasters Estimate the loss using a storm surge flood simulation for Storm surge*2 calculating flooded areas and flood levels (Storm Surge Flood Engineering Model) Estimate the loss using a statistical method for estimating the Ordinarily Other precipitation probability distribution of the number of affected buildings and occurring disasters related events loss ratio (Statistical Flood Model) *1 Floods that occur when water overflows a river bank or a river bank is breached. *2 Floods that occur when water overflows a bank or a bank is breached due to an approaching typhoon or large low-pressure system and a resulting rise in sea level in coastal region. 3 Overview of River Flood Engineering Model 1. Estimate Flooded Areas and Flood Levels Set rainfall data Flood simulation Calculate flooded areas and flood levels 2. Estimate Losses Calculate the loss ratio for each district per town Estimate losses 4 River Flood Engineering Model: Estimate targets Estimate targets are 109 Class A rivers. 【Hokkaido region】 Teshio River, Shokotsu River, Yubetsu River, Tokoro River, 【Hokuriku region】 Abashiri River, Rumoi River, Arakawa River, Agano River, Ishikari River, Shiribetsu River, Shinano -
Long-Term Light Environment Variability in Lake Biwa and Lake Kasumigaura, Japan: Modeling Approach
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Tsukuba Repository Long-term light environment variability in Lake Biwa and Lake Kasumigaura, Japan: modeling approach 著者 Terrel Meylin Mirtha, Fukushima Takehiko, Matsushita Bunkei, Yoshimura Kazuya, Imai Akio journal or Limnology publication title volume 13 number 2 page range 237-252 year 2012-08 権利 (C) The Japanese Society of Limnology 2012. The original publication is available at www.springerlink.com URL http://hdl.handle.net/2241/117515 doi: 10.1007/s10201-012-0372-x 1 Long-term light environment variability in Lake Biwa and Lake Kasumigaura, 2 Japan: Modeling approach 3 4 5 Meylin M. Terrel1*, Takehiko Fukushima1, Bunkei Matsushita1, Kazuya Yoshimura1, A. 6 Imai2 7 8 9 1Graduate School of Life and Environmental Sciences, University of Tsukuba 10 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan 11 E-mails: 12 [email protected] 13 [email protected] 14 [email protected] 15 [email protected] 16 17 2 National Institute for Environmental Studies 18 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan 19 E-mail: [email protected] 20 21 *Corresponding Author 22 E-mail: [email protected] 23 24 25 26 27 28 29 30 31 32 “SCRIPTREVISION CERTIFICATION: This manuscript has been copyedited by 33 Scriptrevision, LLC and conforms to Standard American English as prescribed by the 34 Chicago Manual of Style. The Scriptrevision manuscript reference number is B428B618, 35 which may be verified upon request by contacting [email protected].” 36 37 1 38 Long-term light environment variability in Lake Biwa and Lake Kasumigaura, 39 Japan: Modeling approach 40 41 Abstract Light environment variability was investigated in the two Japanese Lakes Biwa 42 and Kasumigaura, which offer a broad range of optical conditions in the water bodies due 43 to their diverse morphometries and limnological characteristics.