Holocene Sea-Level Changes and Coastal Evolution in Japan1)

Total Page:16

File Type:pdf, Size:1020Kb

Holocene Sea-Level Changes and Coastal Evolution in Japan1) 第 四 紀 研 究 (The Quaternary Research) 30 (2) p. 187-196 July 1991 Holocene Sea-Level Changes and Coastal Evolution in Japan1) Masatomo UMITSU2) Recent progress in Holocene sea-level studies and studies on coastal evolution in Japan are reviewed. Several studies recorded either a slight fall or slow rise of sea-level in the early Holocene, and some studies recognized minor regressions after the culmination of rapid postglacial transgression. Coastal landforms have changed remarkably during the Holocene. Many drowned valleys were formed in the middle Holocene, and the coast lines in Japan were very rugged at the time. Various types of coastal evolution have been reported in numerous studies. Some of the studies were carried out as cooperative research using a variety of research techniques. published by OTA et al. (1982, 1990), YONEKURA and I. Introduction OTA (1986), OTA and MACHIDA (1987) and ISEKI The Japanese Islands are located along the (1987). Recent studies on sea-level changes in boundaries of the Eurasian, Pacific Ocean and Japan were compiled in the "Atlas of Holocene Sea Philippine Sea Plates, and the landforms of the Level Records in Japan" (OTAet al., 1981) and the islands have been strongly influenced by the "Atlas of Late Quaternary Sea Level Records in Japan, plates movements. Coastal landforms of Japan vol. I" (OTA et al., 1987a). The coastal during the late Quaternary have also changed environments in the Late Quaternary and the and developed under the influence of both Holocene were illustrated in the "Quaternary tectonic and eustatic movements. Regional Maps of Japan" (JAPAN ASSOCIATION FOR QUATERNARY differences and variations can be found in the RESEARCH ed., 1987) and the "Middle Holocene processes of evolution of the coastal landforms, Shoreline Map of Japan" (OTA et al., 1987b). An "Inventory of Quanternary Shorelines" was also and relative sea-level curves have been clarified in various locations of Japan. complied by YOSHIKAWA (1987). Many studies of sea-level changes, coastal In this article, sea-level changes and coastal landform evolution, and coastal environments evolution in Japan during the Holocene are during the Holocene have been made, and reviewed according to the recent studies and various sea-level curves have been produced. publications. Some of these studies were based on strati- II. Holocene sea-level changes graphic and microfossil analyses and 14C dating of the sediments. In some cases, uncontamina- The sea-level has risen rapidly with some ted soil samples collected with peat corers were oscillations, from the lowest sea-stand in the last used for the studies. glacial maximum towards the present level. Symposia were held on the Late Quaternary This postglacial transgression in Japan is called sea-level changes and special issues were the "Jomon transgression", being named after published by the ASSOCIATION OF JAPANESEthe prehistoric Jomon culture of Japan. The GEOGRAPHERS (1975) and the JAPAN ASSOCIATION postglacialFOR transgression is considered to have QUATERNARY RESEARCH (1982). started c. 20,000-18,000BP, and several oscilla- Recently, several review papers on Holocene tions during the transgression have been re- coastal evolution and sea-level changes were ported. One of the major sea-level drops was in 1) Received 19 February 1991. Accepted 24 May 1991. 2) Dept. of Geography, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-01. 188 The Quaternary Research Vol. 30 No. 3 July 1991 the period of 11,000BP to 10,000BP. That sea- in contrast, other stable or subsiding regions had level drops can be seen in a common occurrence, it at or after c.5,000BP. and the coarse sediments of this period called The southern Boso Peninsula in eastern Japan "HBG (Holocene Basal Gravel Bed)" can often be is one of the most notable uplift areas in Japan, seen in the middle horizon of the "Chuseki-so" and the maximum sea-level in the Jomon trans- formation which has been deposited since the gression was 23-26m above sea level (c.6,700- last glacial maximum, in and on the buried 6,200BP) (NAKATA et al., 1979, 1980; FRYDLE, 1982). valleys under the coastal lowlands. This tem- The sea-level at the maximum of the trans- porary sea-level regression is considered to cor- gression, in the coastal areas of Sagami Bay, east respond with the cold climate episode in the of the Izu Peninsula, along the extension of the latest stage of the last glacial epoch. Sagami Trough, was reported as 21-22m The Holocene sea-level rise started after this (6,300-6,200BP) by ENDO et al. (1982) and temporary regression, from a sea-level estimated MATSUSHIMA (1982). The highest shoreline c.-40m. During the early stage of the during the Holocene along Kagoshima Bay in Holocene, between c.10,000 and 8,000BP, the southern Kyushu was reported as 15m sea-level rise seems to have been slow and (6,300-6,000BP) by MORIWAKI et al. (1986), and accompanied by a slight sea-level drop in some that of the Kikai Island was reported as c.10m places. ENDOet al. (1982) recognized a slight sea- (6,500-6,000BP) and 9-13m (6,800- level drop around c.8,300-8,000BP in the 6,000BP) by NAKATAet al. (1978) and OTA Paleo-Oshikiri and Paleo-Isumi Bays in the et al. (1978), respectively. Kanto District, eastern Japan. A slow sea-level Most of the highest sea-levels during the rise during the early Holocene is also reported for Holocene in relatively stable or subsiding regions the Oku-Tokyo Bay and the Tama River delta, were between 0-5m a.s.l. In the Okhotsk around Tokyo Bay (ENDOet al., 1989; MATSUSHIMA coast of Hokkaido, northern Japan, the ed., 1987). MAEDA (1980), UMITSU (1979) and ISEKI maximum sea-level was 3-4m a.s.l. at et al. (1982) also reported temporary regressions 6,000-5,500BP (MAEDA, 1984; SAKAGUCHI et al., or slow sea-level rise in the early stage of the 1985; HIRAI,1987). Similar heights and ages for Holocene in both the Osaka Bay coast area and the maxima of postglacial transgressions were the Nobi Plain, of western and central Japan reported for other regions such as, the Tsugaru respectively. The temporary regressions or Plain in northern Japan (UMITSU, 1976), the Tama slow sea-level rises of the early Holocene, River delta in eastern Japan (MATSUSHIMA, 1987), however, have not been well clarified in other the Toyama Bay region on the Japan Sea coast of areas of Japan, and whether the phenomena took central Japan (FUJI and FUJII, 1982), Osaka Bay place as general or as local occurrences has not (MAEDA,1980), the Harimanada coast of the been proven yet. Inland Sea (NARUSE et al., 1984, 1985) and the From the early to middle Holocene, during San'in coast of western Japan (TOYOSHIMA, 1978). c.8,000-6,500BP, the rate of sea-level rise was There are some places where sea-levels during very rapid, attaining 1.5-2.0cm/yr. The the Holocene did not reach their maxima lower part of coastal lowlands and valley plains between c.6,500-5,500BP. Some of them had in this period were drowned, and many drowned maximum sea-level from the middle to late valleys were formed along the coasts of Japan. Holocene or in the late Holocene, including the Most of the relative sea-level curves in Japan present time. show their maxima during the period of In the southern part of the Izu Peninsula, c.6,500-5,000BP. OTA et al. (1982) pointed out which is situated at the northern tip of the that the age of the maximum level of the Jomon Philippine Sea Plate, the highest sea-level was transgression exhibited regional variations. recorded in the period of 3,000-2,000BP with a Some regions which are characterized by a high height of 2-3m a.s.l (OTAet al., 1986). OTAet al. rate of uplift had a maximum at c.6,500BP, and (1986) mentioned that the study area subsided 1991年7月 第 四 紀 研 究 第30巻 第3号 189 Fig. 1 Various types of relative sea-level curve in Japan from about 6,000BP until uplift began at shown minor oscilations. Minor sea-level drops 3,200-2,000BP, and they suggested that the after that period have been recognized, in emergence of the area may have been due to c.5,000-4,000BP and c.3,000-2,000BP. coseismic uplift. The Holocene sea-level The former is called the "Middle Jomon minor maximum in the Ryukyu Islands, southwestern regression" and the latter is called the "Yayoi Japan, also occurred in the period of regression". The "Middle Jomon minor re- 3,500-1,700BP and was less than 1.0m a.s.l. gression" was discovered in the Boso Peninsula (KOBA et al., 1982). (YOKOTA, 1978), the San'in coast in western Japan Sea-level curves determined for the Shonai (TOYOSHIMA, 1978) and Kikai Island of the Plain by ARIGA (1984), and the Sendai Plain by northern Ryukyus (OTA et al., 1978) and was OMOTO et al. (1978) show maxima in the period of named by OTA et al. (1982). The regression of c.2,000BP to the present. The sea-level curve that period has also been recognized in other for the Sendai Plain presented by OMOTOet al. places such as the Okhotsk coast in northern (1978) had a maximum at c.1,000BP. The Hokkaido (MAEDA, 1984; SAKAGUCHI et al., 1985; curve, however, was based on data from a single HIRAI, 1987), the Chita Peninsula in central Japan out crop in the plain, and MATSUMOTO (1981) has (MAEDA et al., 1983), the Osaka Bay coast (MAEDA, presented a different sea-level curve in the plain.
Recommended publications
  • Hypomesus Nipponensis) Stock Trajectory in Lake Kasumigaura and Kitaura
    Open Journal of Marine Science, 2015, 5, 210-225 Published Online April 2015 in SciRes. http://www.scirp.org/journal/ojms http://dx.doi.org/10.4236/ojms.2015.52017 Factors Affecting Japanese Pond Smelt (Hypomesus nipponensis) Stock Trajectory in Lake Kasumigaura and Kitaura Ashneel Ajay Singh1, Noriyuki Sunoh2, Shintaro Niwa2, Fumitaka Tokoro2, Daisuke Sakamoto1, Naoki Suzuki1, Kazumi Sakuramoto1* 1Department of Ocean Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan 2Freshwater Branch Office, Ibaraki Fisheries Research Institute, Ibaraki, Japan Email: *[email protected] Received 5 February 2015; accepted 26 March 2015; published 30 March 2015 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The Japanese pond smelt (Hypomesus nipponensis) stock has been observed to fluctuate quite ri- gorously over the years with sustained periods of low catch in Lake Kasumigaura and Kitaura of the Ibaraki prefecture, Japan which would adversely affect the socioeconomic livelihood of the lo- cal fishermen and fisheries industry. This study was aimed at determining the factors affecting the stock fluctuation of the pond smelt through the different years in the two lakes. Through explora- tory analysis it was found that the pond smelt had significant relationship with total phosphorus (TP) level in both lakes. The global mean land and ocean temperature index (LOTI) was also found to be indirectly related to the pond smelt stock in lake Kasumigaura and Kitaura at the latitude band of 24˚N to 90˚N (l).
    [Show full text]
  • Outline of the Water Circulation Mechanism of the Sakuragawa River Basin Flowing Into the Lake Kasumigaura
    生活大学研究Bulletin of Jiyu GakuenVol. 4 College103~104 of Liberal(2019 )Arts Vol. 4 103–104 (2019) Short Note Outline of the Water Circulation Mechanism of the Sakuragawa River Basin Flowing into the Lake Kasumigaura Shinpei YOSHIKAWA Jiyu Gakuen College (Received 31 August 2018; Accepted 3 October 2018) In October 2018, The 17th World Lake Conference was held in Ibaraki prefecture for the first time in 23 years since 1995. In this paper, we will outline the advanced water circulation mechanism surrounding the Sakuragawa river basin and the Sakuragawa river, which is the inflowing river of Lake Kasumigaura, which is the representative lake in this area. Also, it shows an inventory of survey results related to the Sakuragawa river. KeyWords: Lake Kasumigaura, Sakuragawa river, Water circulation mechanism, River environment, River basin management 1. Outline of Lake Kasumigaura area The Lake Kasumigaura area is located in the eastern part of the Kanto region, the southeastern part of Ibaraki prefecture, and the area is 2,157 km2 (Fig. 1). Among them, the area of the lake is 220 km2, the second largest in the Japan after Lake Biwa. Lake Kasumigaura is connected downstream to Tonegawa river, in confluence point is set on Hitachigawa watergate. And in the usual time it is a slightly higher water area. On the other hand, the lake is made desalinated by preventing saltwater run-up by the flood gate, making it possible to develop present water resources. In addition, “Lake Kasumigaura” is a generic term such as Lake Nishiura, Lake Kitaura, Hitachitonegawa river etc. In this paper we mainly deal with Nishiura (lake area 172 km2).
    [Show full text]
  • Towada-Hachimantai National Park Guide Book
    Towada-Hachimantai National Park Guide Book 十和田八幡平国立公園 Feel the landscapes of Northern Tohoku that change from season to season in the vast nature 四季それぞれに美しい北東北を自然の中で体感 In Japan, each of the four seasons has its own colour that allows visitors to truly feel its atmosphere. Especially in Tohoku, where winter is crucially rigorous, people wait for the arrival of spring, sing the joys of summer, and appreciate the rich harvests of autumn. There are many things in Tohoku that bring joy to people throughout the year. Towada-Hachimantai National Park is located in the mountainous area of Northern Japan, and lies upon the three prefectures of Northern Tohoku. It is composed of “Towada-Hakkoda Area” , on the northern side that consists of Lake Towada, Oirase Gorge and Hakkoda Mountains and “Hachimantai Area” , on the southern side that consists of Mt. Hachimantai, Mt. Akita-Komagatake and Mt. Iwate. Both areas are very rich in natural resources, such as forests, lakes and marshes, and a wide variety of fauna and flora. There are also many onsen spots where you can immerse your body and soul. 01 Shin-Hakodate-Hokuto Hakodate Airport Oma To Tomakomai Aomori Contents ● Tohoku Shinkansen about 3hr 10 min. Tokyo Station Shin-Aomori Station Towada-Hakkoda Area Shin-Aomori Station Airplane about 1hr 20 min. Haneda Airport Misawa Airport Airplane about 1hr 15 min. Haneda Airport Aomori Airport Tohoku Shinkansen about 1hr 30 min. Sendai Station Shin-Aomori Station Hokkaido / Tohoku Shinkansen about 1hr Shin-Hakodate-Hokuto Station Shin-Aomori Station Highway Bus about 4hr 50 min. Sendai Station Aomori Station Joy of Spring Iwate 04 春の歓喜 Tohoku Shinkansen about 2hr 20 min.
    [Show full text]
  • Reemerging Political Geography in Japan
    Japanese Journal of Human Geography 64―6(2012) Reemerging Political Geography in Japan YAMAZAKI Takashi Osaka City University TAKAGI Akihiko Kyushu University KITAGAWA Shinya Mie University KAGAWA Yuichi The University of Shiga Prefecture Abstract The Political Geography Research Group (PGRG) of the Human Geographical Society of Japan was established in 2011 to promote political geographic studies in Japan. The PGRG is the very first research unit on political geography in the Society which was established in 1948. Political geography was once one of the weakest sub―fields in Japanese geography with a very limited number of scholars and published works. This, however, is not at all the case now. Political geography is a reemerging field in Japan. In this review paper, four of the PGRG members contribute chapters on general trends in Japanese political geography, legacies of Japanese wartime geopolitics, the introduction of “new geopolitics” into Japan, and geographical studies on environmental movements. All of them have confirmed with confidence that Japanese political geography has been reemerging and making steady progress in terms of theory, methodology, and case study since the 1980s. Although the current stage of Japanese political geography is still in the regenerative phase, they strongly believe that political geography should be firmly embedded in Japanese geography. Key words : political geography, Japanese geopolitics, new geopolitics, environmental movements, Japan I Introduction The Political Geography Research Group (PGRG) of the Human Geographical Society of Japan was established in 2011 to promote political geographic studies in Japan. The PGRG is the very first research unit on political geography in the Society which was established in 1948.
    [Show full text]
  • Umezakia Natans M.Watan. Does Not Belong to Stigonemataceae but To
    Fottea 11(1): 163–169, 2011 163 Umezakia natans M.WATAN . does not belong to Stigonemataceae but to Nostocaceae Yuko NIIYAMA 1, Akihiro TUJI 1 & Shigeo TSUJIMURA 2 1Department of Botany, National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan; e–mail: [email protected] 2Lake Biwa Environmental Research Institute, 5–34 Yanagasaki, Otsu, Shiga 520–0022, Japan Abstract: Umezakia natans M.WA T A N . was described by Dr. M. Watanabe in 1987 as a new species in the family of Stigonemataceae, following the rules of the Botanical Code. According to the original description, this planktonic filamentous species grows well in a growth media with pH being 7 to 9, and with a smaller proportion of sea water. Both heterocytes and akinetes were observed, as well as true branches developing perpendicular to the original trichomes in cultures older than one month. Watanabe concluded that Umezakia was a monotypic and only planktonic genus belonging to the family of Stigonemataceae. Unfortunately, the type culture has been lost. In 2008, we successfully isolated a new strain of Umezakia natans from a sample collected from Lake Suga. This lake is situated very close to the type locality, Lake Mikata in Fukui Prefecture, Japan. We examined the morphology of this U. natans strain, and conducted a DNA analysis using 16S rDNA regions. Morphological characters of the newly isolated strain were in a good agreement with the original description of U. natans. Furthermore, results of the DNA analysis showed that U. natans appeared in a cluster containing Aphanizomenon ovalisporum and Anabaena bergii.
    [Show full text]
  • Long-Term Light Environment Variability in Lake Biwa and Lake Kasumigaura, Japan: Modeling Approach
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Tsukuba Repository Long-term light environment variability in Lake Biwa and Lake Kasumigaura, Japan: modeling approach 著者 Terrel Meylin Mirtha, Fukushima Takehiko, Matsushita Bunkei, Yoshimura Kazuya, Imai Akio journal or Limnology publication title volume 13 number 2 page range 237-252 year 2012-08 権利 (C) The Japanese Society of Limnology 2012. The original publication is available at www.springerlink.com URL http://hdl.handle.net/2241/117515 doi: 10.1007/s10201-012-0372-x 1 Long-term light environment variability in Lake Biwa and Lake Kasumigaura, 2 Japan: Modeling approach 3 4 5 Meylin M. Terrel1*, Takehiko Fukushima1, Bunkei Matsushita1, Kazuya Yoshimura1, A. 6 Imai2 7 8 9 1Graduate School of Life and Environmental Sciences, University of Tsukuba 10 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan 11 E-mails: 12 [email protected] 13 [email protected] 14 [email protected] 15 [email protected] 16 17 2 National Institute for Environmental Studies 18 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan 19 E-mail: [email protected] 20 21 *Corresponding Author 22 E-mail: [email protected] 23 24 25 26 27 28 29 30 31 32 “SCRIPTREVISION CERTIFICATION: This manuscript has been copyedited by 33 Scriptrevision, LLC and conforms to Standard American English as prescribed by the 34 Chicago Manual of Style. The Scriptrevision manuscript reference number is B428B618, 35 which may be verified upon request by contacting [email protected].” 36 37 1 38 Long-term light environment variability in Lake Biwa and Lake Kasumigaura, 39 Japan: Modeling approach 40 41 Abstract Light environment variability was investigated in the two Japanese Lakes Biwa 42 and Kasumigaura, which offer a broad range of optical conditions in the water bodies due 43 to their diverse morphometries and limnological characteristics.
    [Show full text]
  • A Checklist of the Parasites of Eels (Anguilla Spp.) (Anguilliformes: Anguillidae) in Japan (1915-2007)
    J. Grad. Sch. Biosp. Sci. Hiroshima Univ. (2007), 46:91~121 REVIEW A Checklist of the Parasites of Eels (Anguilla spp.) (Anguilliformes: Anguillidae) in Japan (1915-2007) 1) 1) 2) Kazuya Nagasawa , Tetsuya Umino and Kouki Mizuno 1)Graduate School of Biosphere Science, Hiroshima University 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan 2)Ehime Prefectural Uwajima Fishery High School 1-2-20 Meirin, Uwajima, Ehime 798-0068, Japan Abstract Information on the protistan and metazoan parasites of three species of eels, the Japanese eel Anguilla japonica, the giant mottled eel A. marmorata and the European eel A. anguilla, in Japan is summarized in the Parasite-Host List and Host-Parasite lists, based on the literature published for 93 years between 1915 and 2007. Both A. japonica and A. marmorata are native to Japan, whereas A. anguilla is an introduced species from Europe. The parasites, including 44 named species and those not identified to species level, are listed by higher taxon as follows: Sarcomastigophora (no named species), Ciliophora (6), Microspora (1), Myxozoa (6), Trematoda (7), Monogenea (7), Cestoda (3), Nematoda (7), Acanthocephala (4), Hirudinida (2), and Copepoda (1). For each taxon of parasite, the following information is given: its currently recognized scientific name, any original combination, synonym(s), or other previous identification used for the parasite occurring in eels; habitat (freshwater, brackish, or marine); site(s) of infection within or on the host; known geographical distribution in Japanese waters; and the published source of each locality record. Of the 44 named species of parasites, 43 are from A.
    [Show full text]
  • Annual Report on the Environment in Japan 2003 Published By: Ministry of the Environment Translated By: Ministry of the Environment Published in January 2004
    � AnnualAnnual ReportReport onon thethe EnvironmentEnvironment inin JapanJapan 20032003 Local Communities Leading the Transition to a Sustainable Society Ministry of the Environment To Our Readers This booklet was compiled based on the Quality of the Environment in Japan 2003 (White Paper), an annual report on the environment by the Government, published in accordance with a Cabinet decision made on May 30, 2003. The content of this booklet was edited to gear to a wider readership. The theme of this year’s White Paper is “Local Communities Leading the Transition to a Sustainable Society.” It introduces that daily voluntary activities carried out in local communities mark the first step in the transition to a sus- tainable society. The White Paper first shows the close interaction of the environment, society and economy, and the seriousness of the deterioration of the global environment. The Paper demonstrates that steady efforts at the individual and community levels will be essential for resolving global environmental problems. Individual actions are explored with an emphasis on the idea that if more individuals pursue environment-conscious activities, their activities will influence other actors, such as the government and businesses, and make it possible to reform the socio-economy as a whole. Initiatives by local communities are also examined. The Paper concludes that transition to a sustainable society is possible by (1) rais- ing the awareness of the whole community and building capacity (local environmental capacity) for the creation of a better environment and a better community, and (2) creating a model for protecting the environment and reinvigorating the community at the same time, and spreading the practice to other communities.
    [Show full text]
  • Aomori Cycling
    AOMORI CYCLING Up close and personal with the incredible nature and culture of Aomori Aomori Cycling Up close and personal with the incredible nature and culture of Aomori Surrounded by ocean on all sides and blessed by incredible nature such as Shirakami-Sanchi and Lake Towada, each region in Aomori Prefecture enjoys its own unique history, culture and delicacies. Cycling Aomori is the perfect way to discover the intricacies of these individual regions. If you are ready, then jump on your bike and let's head off to explore the beauty of Aomori! 9 1 Course 1 NATSUDOMARI 11 2 Course 2 TOWADA・OIRASE 13 3 Course 3 HIROSAKI 15 4 Course 4 NISHIKAIGAN 17 5 Course 5 OKU-TSUGARU AOMORI 19 6 Course 6 SHIMOKITA 21 7 Course 7 LAKE OGAWARA CYCLING 23 Course 8 HACHINOHE Up close and personal with the incredible nature and culture of Aomori 8 25 33 27 35 29 37 31 7 8 03 02 04 05 06 01/The masses of blue net stored at the port are shellfish baskets, used for cultivating scallops. It's like riding through a maze. 02/Old fishing vessels of all shapes and sizes are dotted around the Natsudomari Peninsula. 03/Showing off the size of the scallops at "Hotate Hiroba," which has a giant scallop as its signboard. You can learn about scallop cultivation on the second floor.04 /At Yogoshiyama Forest Park you can see over 3,000 varieties of succulents. 05/Two men and a cat taking a break from cycling beside the tetrapod seawall.
    [Show full text]
  • Modelling Global Fresh Surface Water Temperature
    Modelling global fresh surface water temperature Tessa Eikelboom MSc Thesis Physical Geography May 2010 Supervisors: Dr. L.P.H. van Beek and Prof. Dr. Ir. M.F.P. Bierkens Department of Physical Geography Faculty of Geosciences Utrecht University 1 ABSTRACT A change in fresh surface water temperature influences biological and chemical parameters such as oxygen and nutrient availability, but also has major effects on hydrological and physical processes which include transport, sediment concentration, ice formation and ice melt. The thermal profile of fresh surface waters depends on meteorological and morphological characteristics. Climate change influences the water and energy budget and thereby also the thermal structure of fresh surface waters. The oceans temperature is influenced by the inflow of rivers and streams. The variations in fresh surface water temperatures are only known for a scarce amount of long term temperature records. The understanding of changes in thermal processes by modelling the variations in temperature over time is therefore very useful to simulate the global effect of climate change on water temperatures. A physical based model was validated with regional daily and global monthly water temperature data of fresh surface water which includes both rivers and lakes. The basic assumption for the PCR‐GLOBWB model is the assumption that the fresh surface water temperature is the net result of all incoming en outgoing fluxes. The global hydrological model PCR‐GLOBWB contains a water and heat budget. The heat balance is solved using the following terms: short‐wave insolation, long‐wave atmospheric radiation, water‐surface backscatter, evaporation, air/water conduction and can be simplified into lateral and advective energy.
    [Show full text]
  • Lake Biwa Experience and Lessons Learned Brief
    Lake Biwa Experience and Lessons Learned Brief Tatuo Kira, Retired, Lake Biwa Research Institute, Otsu, Japan Shinji Ide*, University of Shiga Prefecture, Hikone, Japan, [email protected] Fumio Fukada, Retired, Shiga Prefectural Government, Otsu, Japan Masahisa Nakamura, Shiga University, Otsu, Japan * Corresponding author 1. Introduction The history of the lake’s management is also one of confl icts over water utilization and fl ood control between Shiga This brief outlines the major management issues for Lake Biwa, Prefecture and the central government or the downstream the largest freshwater lake in Japan. The lake and its watershed mega-cities, including Kyoto, Osaka and Kobe. The Lake Biwa communities have enjoyed a common history for thousands of Comprehensive Development Project (LBCDP), the largest years, fostering a unique lake culture in the surrounding area. The birth of the lake can 6HDRI-DSDQ 1 be traced back to some four million years ago. As one of few ancient lakes in the world, /<RJR it embraces a rich ecosystem, with fi fty-seven endemic species being recorded. At DNDWRNL5 7 $QH5 the same time, it is a principal /$.(%,:$ ,PD]X <2'25,9(5%$6,1 1DJDKDPD water resource in Japan, $GR5 1RUWK%DVLQ -$3$1 supplying drinking water for 14 'UDLQDJH%DVLQ%RXQGDU\ million people in its watershed 3UHIHFWXUH%RXQGDU\ /DNH 5LYHU %LZD +LNRQH and downstream areas. /DNH Additionally, its catchment 6HOHFWHG&LW\ 6+,*$ area is highly industrialized NP 35() and urbanized, being inhabited .DWDWD 2PL +DFKLPDQ (FKL5 by approximately 1.3 million . .<272 DWVXUD5 +LQR5 people, with the population 35() ,/(& still increasing at one of the .\RWR 6RXWK%DVLQ 2WVX .XVDWVX highest growth rates in Japan.
    [Show full text]
  • A Synopsis of the Parasites from Cyprinid Fishes of the Genus Tribolodon in Japan (1908-2013)
    生物圏科学 Biosphere Sci. 52:87-115 (2013) A synopsis of the parasites from cyprinid fishes of the genus Tribolodon in Japan (1908-2013) Kazuya Nagasawa and Hirotaka Katahira Graduate School of Biosphere Science, Hiroshima University Published by The Graduate School of Biosphere Science Hiroshima University Higashi-Hiroshima 739-8528, Japan December 2013 生物圏科学 Biosphere Sci. 52:87-115 (2013) REVIEW A synopsis of the parasites from cyprinid fishes of the genus Tribolodon in Japan (1908-2013) Kazuya Nagasawa1)* and Hirotaka Katahira1,2) 1) Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan 2) Present address: Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan Abstract Four species of the cyprinid genus Tribolodon occur in Japan: big-scaled redfin T. hakonensis, Sakhalin redfin T. sachalinensis, Pacific redfin T. brandtii, and long-jawed redfin T. nakamuraii. Of these species, T. hakonensis is widely distributed in Japan and is important in commercial and recreational fisheries. Two species, T. hakonensis and T. brandtii, exhibit anadromy. In this paper, information on the protistan and metazoan parasites of the four species of Tribolodon in Japan is compiled based on the literature published for 106 years between 1908 and 2013, and the parasites, including 44 named species and those not identified to species level, are listed by higher taxon as follows: Ciliophora (2 named species), Myxozoa (1), Trematoda (18), Monogenea (0), Cestoda (3), Nematoda (9), Acanthocephala (2), Hirudinida (1), Mollusca (1), Branchiura (0), Copepoda (6 ), and Isopoda (1). For each taxon of parasite, the following information is given: its currently recognized scientific name, previous identification used for the parasite occurring in or on Tribolodon spp.; habitat (freshwater, brackish, or marine); site(s) of infection within or on the host; known geographical distribution in Japan; and the published source of each locality record.
    [Show full text]