Genome Analyses Reveal the Hybrid Origin of the Staple Crop White Guinea Yam (Dioscorea Rotundata)

Total Page:16

File Type:pdf, Size:1020Kb

Genome Analyses Reveal the Hybrid Origin of the Staple Crop White Guinea Yam (Dioscorea Rotundata) Genome analyses reveal the hybrid origin of the staple crop white Guinea yam (Dioscorea rotundata) Yu Sugiharaa, Kwabena Darkwab, Hiroki Yaegashic, Satoshi Natsumec, Motoki Shimizuc, Akira Abec, Akiko Hirabuchic, Kazue Itoc, Kaori Oikawac, Muluneh Tamiru-Olic,d, Atsushi Ohtaa, Ryo Matsumotob, Paterne Agreb, David De Koeyerb,e, Babil Pachakkilf,g, Shinsuke Yamanakaf, Satoru Muranakaf, Hiroko Takagif, Ben Whiteh, Robert Asiedub, Hideki Innani, Asrat Asfawb,1, Patrick Adebolab,1, and Ryohei Terauchia,c,1 aLaboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; bInternational Institute of Tropical Agriculture, Ibadan 200001, Nigeria; cIwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan; dDepartment of Animal, Plant, and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; eFredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB E3B 4Z7, Canada; fJapan International Research Center for Agricultural Sciences, Tsukuba 305-8686, Japan; gDepartment of International Agricultural Development, Tokyo University of Agriculture, Tokyo 183-8538, Japan; hEarlham Institute, Norwich NR4 7UZ, United Kingdom; and iLaboratory of Population Genetics and Genome Evolution, The Graduate University for Advanced Studies, Hayama 240-0193, Japan Edited by Loren H. Rieseberg, University of British Columbia, Vancouver, BC, Canada, and approved November 2, 2020 (received for review July 27, 2020) White Guinea yam (Dioscorea rotundata) is an important staple praehensilis, and 34 D. abyssinica accessions suggested that dip- tuber crop in West Africa. However, its origin remains unclear. In loid D. rotundata was domesticated from D. praehensilis (10). this study, we resequenced 336 accessions of white Guinea yam Here we addressed this hypothesis using an expanded set of and compared them with the sequences of wild Dioscorea species genomes from cultivated and wild Dioscorea species. using an improved reference genome sequence of D. rotundata.In In this study, we generated an improved version of the Guinea contrast to a previous study suggesting that D. rotundata origi- yam reference genome and used it to analyze the genomes of 336 nated from a subgroup of Dioscorea praehensilis, our results sug- accessions of D. rotundata and its wild relatives. Based on these gest a hybrid origin of white Guinea yam from crosses between analyses, we attempted to reveal the history of Guinea yam do- the wild rainforest species D. praehensilis and the savannah- mestication. Our results suggest that diploid D. rotundata was adapted species Dioscorea abyssinica. We identified a greater ge- most likely derived from homoploid hybridization between D. D. abyssinica nomic contribution from in the sex chromosome of abyssinica and D. praehensilis. By evaluating the genomic con- EVOLUTION Guinea yam and extensive introgression around the SWEETIE tributions of each parental species to D. rotundata, we revealed gene. Our findings point to a complex domestication scenario for greater representation of the D. abyssinica genome in the sex Guinea yam and highlight the importance of wild species as gene chromosome of D. rotundata and a signature of extensive in- donors for improving this crop through molecular breeding. trogression in the SWEETIE gene on chromosome 17. domestication | Guinea yam | hybrid | population genomics | wild Genetic Diversity of Guinea Yam progenitors We obtained DNA samples from 336 accessions of D. rotundata maintained at the International Institute of Tropical Agriculture ams (Dioscorea spp.) are major starchy tuber crops that are Ywidely consumed in the tropics. Ten yam species are culti- Significance vated worldwide, including Dioscorea alata in Southeast Asia, Dioscorea trifida in South America, and Dioscorea rotundata in Guinea yam is an important staple tuber crop in West Africa, West and Central Africa (1). D. rotundata, also known as white where it contributes to the sustenance and sociocultural lives Guinea yam, is the most important species in West and Central of millions of people. Understanding the genetic diversity of Africa, an area accounting for 92.5% of global yam production in Guinea yam and its relationships with wild relatives is impor- 2018 (http://www.fao.org/statistics). Beyond its nutritional and tant for improving this important crop using genomic infor- food value, Guinea yam is also important for the culture of West mation. A recent genomics study proposed that Guinea yam African people (2). originated from a wild relative, the rainforest species Dio- Despite the considerable importance of Guinea yam, its origin scorea praehensilis. Our results based on sequencing of 336 has been elusive. There are two types of Guinea yam: white Guinea yam accessions do not support this notion; rather, our Guinea yam (D. rotundata) and yellow Guinea yam (Dioscorea results indicate a hybrid origin of Dioscorea rotundata from cayenensis). D. cayenensis is thought to be a triploid species of crosses between the savannah species Dioscorea abyssinica hybrid origin, with D. rotundata as the maternal parent and and D. praehensilis. Dioscorea burkilliana as the paternal parent (3, 4). In turn, the triploid D. rotundata is thought to be a hybrid between D. rotun- Author contributions: M.T.-O., R.M., D.D.K., H.T., R.A., A. Asfaw, P. Adebola, and R.T. data and Dioscorea togoensis (4). However, the origin of diploid D. designed research; Y.S., K.D., H.Y., S.N., M.S., A. Abe, A.H., K.I., K.O., M.T.-O., R.M., rotundata, which accounts for the majority of Guinea yam pro- P. Agre, D.D.K., B.P., S.Y., S.M., H.T., B.W., R.A., H.I., A. Asfaw, P. Adebola, and R.T. duction (4), has been ambiguous. Two wild species are candidate performed research; Y.S., H.Y., S.N., M.S., A. Abe, A.H., K.I., K.O., A.O., R.M., P. Agre, D.D.K., B.P., S.Y., B.W., and H.I. contributed new reagents/analytic tools; Y.S., H.Y., S.N., progenitors of diploid D. rotundata: the savannah-adapted wild M.S., A. Abe, A.O., R.M., B.P., H.T., B.W., R.A., H.I., A. Asfaw, P. Adebola, and R.T. analyzed species Dioscorea abyssinica and the rainforest-adapted wild spe- data; and Y.S., M.T.-O., R.A., H.I., A. Asfaw, P. Adebola, and R.T. wrote the paper. cies Dioscorea praehensilis (3–10). The geographical distributions The authors declare no competing interest. of D. abyssinica and D. praehensilis overlap slightly (SI Appendix, This article is a PNAS Direct Submission. Fig. S1). Based on morphological evaluation, Coursey proposed This open access article is distributed under Creative Commons Attribution License 4.0 that D. rotundata might be a hybrid between the two species (8). (CC BY). However, other reports have indicated that the origin of Guinea 1To whom correspondence may be addressed. Email: [email protected], P.Adebola@ yam is ambiguous due to the small number of markers (3–7), in- cgiar.org, or [email protected]. trogression (6, 7), or incomplete lineage sorting (7). This article contains supporting information online at https://www.pnas.org/lookup/suppl/ The whole-genome sequence of Guinea yam has been repor- doi:10.1073/pnas.2015830117/-/DCSupplemental. ted (11). A recent genome study involving 86 D. rotundata,47D. www.pnas.org/cgi/doi/10.1073/pnas.2015830117 PNAS Latest Articles | 1of6 Downloaded by guest on September 24, 2021 (IITA) in Nigeria, representing the genetic diversity of Guinea are genetically close to the D. rotundata accessions reported previ- yam landraces and improved lines from West Africa. We sub- ously (10) (Fig. 1C). However, the NJ tree showed that D. rotundata jected these samples to whole-genome resequencing on the is more closely related to D. abyssinica than to Western D. prae- Illumina sequencing platform. We aligned the resulting short hensilis (Fig. 1C), which is inconsistent with a previous finding (10) reads to the newly assembled reference genome (SI Appendix, that D. rotundata is most closely related to Western D. praehensilis. sections S1 and S2) and extracted single nucleotide polymorphism To elucidate the evolutionary relationships of the three wild (SNP) information for use in genetic diversity studies (SI Appen- Dioscorea species that are closely related to D. rotundata—D. dix, Table S1 and section S3). Based on admixture analysis with A abyssinica (designated as A), Western D. praehensilis (P), and the sNMF program (12), we defined five major clusters (Fig. 1 ). — When K = 2, cluster 1 was clearly separated from the other ac- Cameroonian D. praehensilis (C) we performed diffusion ap- ∂ ∂ cessions. Principal component analysis (PCA) also separated proximations for demographic inference ( a i) analysis (15), which cluster 1 from the rest of the clusters (Fig. 1B). Accessions in allows for estimation of demographic parameters based on an un- cluster 1 had significantly higher heterozygosity and ∼10-fold more folded site frequency spectrum. First, we tested three phylogenetic unique alleles than those in the four remaining clusters (SI Ap- models—{{A, P}, C}, {{P, C}, A}, and {{C, A}, P}—using 17,532 pendix, Figs. S2 and S3 and Table S2). Because flow cytometry SNPs that were polarized using D. alata as an outgroup without analysis confirmed that all 10 accessions analyzed in cluster 1 were considering migration among the species. Of the three models, {{A, triploids (Dataset S1), we hypothesized that cluster 1 represents P}, C} had the highest likelihood (SI Appendix,TableS4). triploid D. rotundata, a hybrid of D. rotundata and D. togoensis (4). This result is not consistent with the previous finding that {{P, After removing the cluster 1 accessions, the nucleotide diversity of − C}, A} had the highest likelihood (10), as determined using a D. rotundata was estimated as 14.83 × 10 4 (SI Appendix,Table different method with fastsimcoal2 software (16). To exactly re- S3), which is ∼1.5-fold larger than that reported previously (10), presumably because we used a larger number of samples with peat the previous analysis, we tested these three models with diverse genetic backgrounds in our study.
Recommended publications
  • Behavior of Various Types of Seeds of Two Species of Yams Tuber (Dioscorea Cayenensis Lam
    International Research Journal of Agricultural Science and Soil Science (ISSN: 2251-0044) Vol. 5(2) pp. 58-66, February 2015 DOI: http:/dx.doi.org/10.14303/irjas.2015.025 Available online http://www.interesjournals.org/IRJAS Copyright © 2015 International Research Journals Full Length Research Paper Behavior of various types of seeds of two species of yams tuber (Dioscorea cayenensis Lam. and Dioscorea rotundata Poir.) in Gabon *Ondo Ovono Paul1, Kevers Claire2, Dommes Jacques2 1Unit of Agrobiology Research, Higher National Institute of Agronomy and Biotechnology, Université des Sciences et Techniques de Masuku, B.P. 941, Masuku, Gabon. 2Plant Molecular Biology and Biotechnology Unit, B-22, University of Liège, Sart Tilman B 22, 4000 Liège, Belgium. Corresponding author’s E-mail: [email protected] Abstract Low multiplication ratio of yam and scarcity of planting materials are major constraints militating against sustainable yam production. In order to evaluate the behavior of the four various types of seeds of two species of yams Dioscorea cayenensis and Dioscorea rotundata, cultivated on the experimental ground of the Higher National Institute of Agronomy and Biotechnology (INSAB), a test was realized in a randomized complete block design with six replications. The samples were cut and three levels of each tuber were used: proximal, medial and distal parts of the tuber. The fragments of tuber and the whole tuber represent the various types of seed used in this work. The results showed significant (P<0.05) differences in number of plants emerged and time of emergence in a mixture of 40% soil and 60% sand three months and half after planting.
    [Show full text]
  • Dense Wild Yam Patches Established by Hunter-Gatherer Camps: Beyond the Wild Yam Question, Toward the Historical Ecology of Rainforests
    Hum Ecol DOI 10.1007/s10745-013-9574-z Dense Wild Yam Patches Established by Hunter-Gatherer Camps: Beyond the Wild Yam Question, Toward the Historical Ecology of Rainforests Hirokazu Yasuoka # The Author(s) 2013. This article is published with open access at Springerlink.com Introduction Hladik and Dounias (1993), and Sato (2001, 2006) argued that for the Aka and Baka in the western Congo Basin Prior to the 1980s, most researchers believed that the African enough wild yams existed for their subsistence. These stud- forest hunter-gatherers, or Pygmies, were the original inhabitants ies were principally based on investigations of the density of of the central African rainforests. It was assumed that their close wild yams, and lacked detailed descriptions of the use of social, economic, and ecological relationships with neighboring wild yams. Therefore, the issue of whether exploitation of agricultural societies did not date back long, and that they had wild yams, including searching for them, digging them up, previously lived solely through foraging wild forest products. transporting them to the camp, and cooking and consuming The same is true for forest hunter-gatherers on other continents. them, could have been practiced in everyday life remains However, Headland (1987) and Bailey et al.(1989)noted inconclusive (cf. Bailey and Headland 1991). that no previous studies had produced sound evidence that pure Archaeological studies have provided powerful evidence hunter-gatherer subsistence was possible in any rainforests indicating the existence of humans in the African rainforests worldwide, and they argued that it was not, and had never been, before the beginning of agriculture (Mercader 2003a, b; possible to live in such areas while solely depending on wild Mercader and Martí 2003).
    [Show full text]
  • BID Africa 2017 – Small Grant Template Final Narrative Report
    <BID project id> <Start and end date of the reporting period> BID Africa 2017 – Small Grant Template Final narrative report Instructions Fill the template below with relevant information. please indicate the reason of the delay and expected date of completion. Use the information included in your project Full proposal (reproduced in annex III of your BID contract) as a baseline from which to complete this template The information provided below must correspond to the financial information that appears in the financial report Sources of verification are for example direct links to relevant digital documents, news/newsletters, brochures, copies of agreements with data holding institutions, workshop related documents, pictures, etc. Please provide access to all mentioned sources of verification by either providing direct link or sending a copy of the documents. This report must first be sent as a Word document to [email protected] and be pre-approved by GBIFS Once this report is pre-approved in writing by GBIFS, it must be signed by the BID project coordinator and sent by post to: The Global Biodiversity Information Facility Secretariat (GBIFS) Universitetsparken 15 DK-2100 Copenhagen Ø Denmark Template 1. Table of Contents 1. Table of Contents ...................................................................................................... 1 2. Project Information..................................................................................................... 3 3. Overview of results ...................................................................................................
    [Show full text]
  • Plant Species and Functional Diversity Along Altitudinal Gradients, Southwest Ethiopian Highlands
    Plant Species and Functional Diversity along Altitudinal Gradients, Southwest Ethiopian Highlands Dissertation Zur Erlangung des akademischen Grades Dr. rer. nat. Vorgelegt der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth von Herrn Desalegn Wana Dalacho geb. am 08. 08. 1973, Äthiopien Bayreuth, den 27. October 2009 Die vorliegende Arbeit wurde in dem Zeitraum von April 2006 bis October 2009 an der Universität Bayreuth unter der Leitung von Professor Dr. Carl Beierkuhnlein erstellt. Vollständiger Abdruck der von der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Prüfungsausschuss 1. Prof. Dr. Carl Beierkuhnlein (1. Gutachter) 2. Prof. Dr. Sigrid Liede-Schumann (2. Gutachter) 3. PD. Dr. Gregor Aas (Vorsitz) 4. Prof. Dr. Ludwig Zöller 5. Prof. Dr. Björn Reineking Datum der Einreichung der Dissertation: 27. 10. 2009 Datum des wissenschaftlichen Kolloquiums: 21. 12. 2009 Contents Summary 1 Zusammenfassung 3 Introduction 5 Drivers of Diversity Patterns 5 Deconstruction of Diversity Patterns 9 Threats of Biodiversity Loss in the Ttropics 10 Objectives, Research Questions and Hypotheses 12 Synopsis 15 Thesis Outline 15 Synthesis and Conclusions 17 References 21 Acknowledgments 27 List of Manuscripts and Specification of Own Contribution 30 Manuscript 1 Plant Species and Growth Form Richness along Altitudinal Gradients in the Southwest Ethiopian Highlands 32 Manuscript 2 The Relative Abundance of Plant Functional Types along Environmental Gradients in the Southwest Ethiopian highlands 54 Manuscript 3 Land Use/Land Cover Change in the Southwestern Ethiopian Highlands 84 Manuscript 4 Climate Warming and Tropical Plant Species – Consequences of a Potential Upslope Shift of Isotherms in Southern Ethiopia 102 List of Publications 135 Declaration/Erklärung 136 Summary Summary Understanding how biodiversity is organized across space and time has long been a central focus of ecologists and biogeographers.
    [Show full text]
  • Adaptation of Plants Derived from Cultivated Yam of Dioscorea Cayenensis–D
    Adaptation of plants derived from cultivated yam of Dioscorea cayenensis–D. rotundata complex species seeds germination in two agroecological zones of Benin Assaba Idossou Elie 1, *, Yolou Mounirou 1, Bello Saliou 3, Babalakoun Adonis 1, Tiama Djakaridja 2 and Zoundjihekpon Jeanne 1 1 Laboratory of Ecological Genetics, Department of Genetics and Biotechnologies, Faculty of Science and Technology, University of Abomey–Calavi, (LGE/FAST/UAC), BP 4521 Cotonou, Republic of Benin. 2 Biosciences Laboratory, Genetics and Plant Improvement Team, UFR / SVT, Joseph KI ZERBO University, Ouagadougou, Burkina Faso. 3 Agricultural Research Center of South-Benin, National Agricultural Research Institute of Benin (CRA-Sud/ INRAB). World Journal of Advanced Research and Reviews, 2021, 09(03), 027–041 Publication history: Received on 06 January 2021; revised on 15 February 2021; accepted on 17 February 2021 Article DOI: https://doi.org/10.30574/wjarr.2021.9.3.0019 Abstract Vegetative propagation of plants promotes the accumulation of viruses in plant material; this causes the loss of vigor and consequently the drop of vegetable yield. Keep up productivity level of vegetatively propagated plants; it is therefore important to regenerate genetic material by sexual reproduction to improve the biodiversity. The main objective of this study is to improve yam seeds by sexual way, specifically to assess the response of seedlings from yam seeds in two agroecological areas, area IV (Djougou), in Sudanese climate and area V (Bantè), in transition climate. Seedling were transplanted in this agroecological areas using a completely Randomized design with three replications. Data was analyzed using one way ANOVA at 5% level of significance and a mean comparison test.
    [Show full text]
  • Sotwp 2016.Pdf
    STATE OF THE WORLD’S PLANTS OF THE WORLD’S STATE 2016 The staff and trustees of the Royal Botanic Gardens, Kew and the Kew Foundation would like to thank the Sfumato Foundation for generously funding the State of the World’s Plants project. State of the World’s Plants 2016 Citation This report should be cited as: RBG Kew (2016). The State of the World’s Plants Report – 2016. Royal Botanic Gardens, Kew ISBN: 978-1-84246-628-5 © The Board of Trustees of the Royal Botanic Gardens, Kew (2016) (unless otherwise stated) Printed on 100% recycled paper The State of the World’s Plants 1 Contents Introduction to the State of the World’s Plants Describing the world’s plants 4 Naming and counting the world’s plants 10 New plant species discovered in 2015 14 Plant evolutionary relationships and plant genomes 18 Useful plants 24 Important plant areas 28 Country focus: status of knowledge of Brazilian plants Global threats to plants 34 Climate change 40 Global land-cover change 46 Invasive species 52 Plant diseases – state of research 58 Extinction risk and threats to plants Policies and international trade 64 CITES and the prevention of illegal trade 70 The Nagoya Protocol on Access to Genetic Resources and Benefit Sharing 76 References 80 Contributors and acknowledgments 2 Introduction to the State of the World’s Plants Introduction to the State of the World’s Plants This is the first document to collate current knowledge on as well as policies and international agreements that are the state of the world’s plants.
    [Show full text]
  • Dictionary of Cultivated Plants and Their Regions of Diversity Second Edition Revised Of: A.C
    Dictionary of cultivated plants and their regions of diversity Second edition revised of: A.C. Zeven and P.M. Zhukovsky, 1975, Dictionary of cultivated plants and their centres of diversity 'N -'\:K 1~ Li Dictionary of cultivated plants and their regions of diversity Excluding most ornamentals, forest trees and lower plants A.C. Zeven andJ.M.J, de Wet K pudoc Centre for Agricultural Publishing and Documentation Wageningen - 1982 ~T—^/-/- /+<>?- •/ CIP-GEGEVENS Zeven, A.C. Dictionary ofcultivate d plants andthei rregion so f diversity: excluding mostornamentals ,fores t treesan d lowerplant s/ A.C .Zeve n andJ.M.J ,d eWet .- Wageninge n : Pudoc. -11 1 Herz,uitg . van:Dictionar y of cultivatedplant s andthei r centreso fdiversit y /A.C .Zeve n andP.M . Zhukovsky, 1975.- Me t index,lit .opg . ISBN 90-220-0785-5 SISO63 2UD C63 3 Trefw.:plantenteelt . ISBN 90-220-0785-5 ©Centre forAgricultura l Publishing and Documentation, Wageningen,1982 . Nopar t of thisboo k mayb e reproduced andpublishe d in any form,b y print, photoprint,microfil m or any othermean swithou t written permission from thepublisher . Contents Preface 7 History of thewor k 8 Origins of agriculture anddomesticatio n ofplant s Cradles of agriculture and regions of diversity 21 1 Chinese-Japanese Region 32 2 Indochinese-IndonesianRegio n 48 3 Australian Region 65 4 Hindustani Region 70 5 Central AsianRegio n 81 6 NearEaster n Region 87 7 Mediterranean Region 103 8 African Region 121 9 European-Siberian Region 148 10 South American Region 164 11 CentralAmerica n andMexica n Region 185 12 NorthAmerica n Region 199 Specieswithou t an identified region 207 References 209 Indexo fbotanica l names 228 Preface The aimo f thiswor k ist ogiv e thereade r quick reference toth e regionso f diversity ofcultivate d plants.Fo r important crops,region so fdiversit y of related wild species areals opresented .Wil d species areofte nusefu l sources of genes to improve thevalu eo fcrops .
    [Show full text]
  • 7870 Levels of Major, Minor and Toxic Metals in Tubers
    Volume 13 No. 3 June 2013 LEVELS OF MAJOR, MINOR AND TOXIC METALS IN TUBERS AND FLOUR OF DIOSCOREA ABYSSINICA GROWN IN ETHIOPIA Aregahegn A1, Chandravanshi BS2* and M Atlabachew3 Bhagwan Singh Chandravanshi *Corresponding author email: [email protected] 1Department of Chemistry, School of Physical Sciences, Dilla University, P.O. Box 419, Ethiopia 2Department of Chemistry, Faculty of Science, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia 3Department of Chemistry, Faculty of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia. 7870 Volume 13 No. 3 June 2013 ABSTRACT Dioscorea abyssinica, commonly known as yam, is an indigenous plant in Ethiopia. Its root tuber is used as staple and co-staple food in South Nation Nationality People and Regional State of Ethiopia. This study was carried out to analyze the selected mineral nutrients in the tuber and flour of D. abyssinica grown in different parts of the country for human consumption. Samples collected from five different areas were analyzed for eleven metals (Ca, Mg, Fe, Zn, Cu, Mn, Co, Cr Ni, Cd and Pb) by flame atomic absorption spectrometry and two metals (K and Na) by flame emission spectrometry. Known weight of oven-dried sample was wet-digested using 3 mL of (69–72%) HNO3 and 1 mL of (70%) HClO4, for 2 h at variable temperature (120–270 oC). The validity of the optimized procedure was evaluated by the analysis of spiked samples whose recovery was in the range of 92–105%. The mean concentration range (in μg/g) of each metal in D. abyssinica samples were K (8,469–13,914), Na (133– 405), Ca (172–448), Mg (180–354), Fe (28.3–144.5), Mn (12.0–14.5), Zn (12.3– 44.5), Cu (7.26–17.6), Co (1.91–8.68), Cr (0.86–3.41) and Ni (2.43–5.31).
    [Show full text]
  • Aetiology and Ecology of a Yam Mosaic Disease in Burkina Faso C
    ~ Trop. Sci. 1996,36,34-40 Aetiology and ecology of a yam mosaic disease in Burkina Faso C. J. Goudou-Urbino, G. Konate *, J.B. Quìotf and Dubern# LPRC/CIRAD-ORSTOM, Centre CIRAD, BP 5035,34032 Montpellier Cedex 2, France. *INERA, Station de Kambohse, O1BP 476, Ouagadougou, Burkina Faso. +INRA, Lab. Biologie et Pathologie V&g6tale,Place Viala, 34060 Montpellìer Cedex 1, France. $To whom correspondence should be addressed Abstract Yam virus diseases were surveyed for 3 years in Burkina Faso. Mosaic and green vein banding symptoms were observed on two species (Dioscorea cayenensis rotundata and Dioscorea alata) in the southwest and southem areas, and on the Pilimpikou yam cultivar in the central area. Using electron microscopy, ELISA and host range studies, it was found that plants were infected with a potyvirus similar to yam mosaic virus in host range, mor- phology and serology. This virus was not detected in the southern area but occurred at a low rate (13%)in the south-west and more frequently (71.5%)in the central area. Healthy yam plants were exposed to natural infection for 5 months in these two areas and checked for virus contamination by ELISA. Tubers from markets were also checked. During crop growth, in natural conditions, disease contamination was relatively slight compared with that in tubers from markets. The reliability of virus detection methods is discussed. 1% I P Keywords: yam mosaic virus, yam, Burkina Faso, aetiology, ELISA. Introduction Yams (Dioscorea spp., Dioscoreaceae) are staple food crops widely cultivated in tropical areas. The major virus disease is the yam mosaic virus (YMV) described by Thouvenel and Fauquet (1979).
    [Show full text]
  • Facing Herbivory on the Climb Up: Lost Opportunities As the Main Cost of Herbivory in the Wild Yam Dioscorea Praehensilis
    Received: 5 October 2016 | Revised: 21 April 2017 | Accepted: 26 April 2017 DOI: 10.1002/ece3.3066 ORIGINAL RESEARCH Facing herbivory on the climb up: Lost opportunities as the main cost of herbivory in the wild yam Dioscorea praehensilis Bruno Di Giusto1 | Edmond Dounias2,3 | Doyle B. McKey2,3,4 1International College, Ming Chuan University, Taipei, Taiwan Abstract 2CEFE UMR 5175, CNRS – Université Plants with simple architecture and strong constraints on their growth may offer criti- de Montpellier – Université Paul Valéry cal insights into how growth strategies affect the tolerance of plants to herbivory. Montpellier – EPHE, Montpellier Cedex 5, France Although Dioscorea praehensilis, a wild yam of African forests, is perennial, both aerial 3Institut de Recherche pour le Developpement apparatus and tuber are annually renewed. Each year, the tuber produces a single stem (IRD), Montpellier, France that climbs from the ground to the forest canopy. This stem bears no leaves and no 4Institut Universitaire de France, Paris, France branches until it reaches optimal light conditions. Once in the canopy, the plant’s pro- Correspondence duction fuels the filling of a new tuber before the plant dies back to the ground. We Bruno Di Giusto, International College, Ming Chuan University, Taipei, Taiwan. hypothesized that if deprived of ant defense, the leafless growth phase is a vulnerable Email: [email protected] part of the cycle, during which a small amount of herbivory entails a high cost in terms Funding information of loss of opportunity. We compared the growth of stems bearing ants or not as well Foraging Peoples Fellowship; French National as of intact stems and stems subjected to simulated or natural herbivory.
    [Show full text]
  • Relationship Between Wild and Cultivated Yams: Case Study of Yam Domestication in Benin
    Relationship between wild and cultivated yams: Case study of yam domestication in Benin H. Chair1, G. Djedatin2, X. Perrier1, C. Agbangla2 and J.L. Noyer3 1 UR Multiplication végétative, Montpellier, F-34000 France. [email protected] 2 Laboratoire de Génétique, FAST-Université d’Abomey-Calavi, BP 526, Cotonou, Bénin. 3 UMR PIA, Montpellier, F-34000 France Abstract The Dioscorea cayenensis – Dioscorea rotundata species complex is the most widely cultivated yam in West Africa. It has been described as deriving from wild types belonging to the species Dioscorea abyssinica and D. praehensilis from Enanthiophyllum section, through domestication by African farmers. Wild types were chosen on the basis of morphological criteria. In order to translate farmers’ knowledge into standard descriptors and to assess whether domestication has a genetic base or not, 140 accessions of wild types D. abyssinica and D. praehensilis were collected in Benin. They were studied using IPGRI’s yam descriptors, highlighting a continuum between the two species. A structuration of both species into domesticable and non-domesticable yams was observed. Based on 10 nuclear DNA simple sequence repeats (SSR), the molecular characterization leads to separation of D. abyssinica species into domesticable and non-domesticable groups. To establish phylogenetic relationships existing between wild and cultivated species, we investigated changes in chloroplast DNA simple sequence repeats (cpSSR) in a second collection compiled by 148 accessions selected to cover the genetic diversity existing in Benin. Dioscorea cayenensis and D. rotundata shared the same haplotype. The morphotype abyssinica appeared to be subdivided into 3 haplotypes from which one is shared with the D.
    [Show full text]
  • Assessment of Genetic Diversity of Dioscorea Praehensilis (Berth.) Collected from Central Region, Ghana Using Simple Sequence Repeat (SSR) Markers Adeyinka S
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 March 2020 Assessment of genetic diversity of Dioscorea praehensilis (Berth.) collected from Central Region, Ghana using simple sequence repeat (SSR) markers Adeyinka S. Adewumi1, 2, Kingsley J. Taah1, Paul A. Asare1, Michael O. Adu1 & Paterne A. Agre2* 1 University of Cape Coast, Cape Coast, Ghana 2 International Institute of Tropical Agriculture, Ibadan, Nigeria ⃰ Correspondence: [email protected] Abstract Dioscorea praehensilis Berth is one of the wild yam species resistance to many yam disease (yam anthracnose disease and yam mosaic virus) grow in Ghana especially in the cocoa grown regions of the country. It is a crucial crop that has been known to contribute to poverty reduction and food gap. Genetic diversity in this yam species has been discovered to be eroding and neglected. In this study we evaluated the genetic diversity among 43 D. praehensilis collected from Ghana using simple sequence repeat (SSR). Using 11 SSR marker, a total of 99 number of alleles were generated with an average of 8.48 alleles per locus. The mean gene diversity was 0.81, mean polymorphism information content was 0.82 while mean Shannon information index was 1.94. Principal coordinate analysis (PCoA) revealed a contribution of 40.16% of the first three coordinate axes and grouped the 43 morphotypes into 2 groups while hierarchical cluster through UPGMA revealed the presence of 3 main clusters. Molecular variance (AMOVA) alongside the Fst revealed low genetic diversity and differentiation among accessions and population. Result of this study assess the genetic diversity and will facilitate the use D.
    [Show full text]