Dioscorea Spp.): Implication for Conservation and Agricultural Practices
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dense Wild Yam Patches Established by Hunter-Gatherer Camps: Beyond the Wild Yam Question, Toward the Historical Ecology of Rainforests
Hum Ecol DOI 10.1007/s10745-013-9574-z Dense Wild Yam Patches Established by Hunter-Gatherer Camps: Beyond the Wild Yam Question, Toward the Historical Ecology of Rainforests Hirokazu Yasuoka # The Author(s) 2013. This article is published with open access at Springerlink.com Introduction Hladik and Dounias (1993), and Sato (2001, 2006) argued that for the Aka and Baka in the western Congo Basin Prior to the 1980s, most researchers believed that the African enough wild yams existed for their subsistence. These stud- forest hunter-gatherers, or Pygmies, were the original inhabitants ies were principally based on investigations of the density of of the central African rainforests. It was assumed that their close wild yams, and lacked detailed descriptions of the use of social, economic, and ecological relationships with neighboring wild yams. Therefore, the issue of whether exploitation of agricultural societies did not date back long, and that they had wild yams, including searching for them, digging them up, previously lived solely through foraging wild forest products. transporting them to the camp, and cooking and consuming The same is true for forest hunter-gatherers on other continents. them, could have been practiced in everyday life remains However, Headland (1987) and Bailey et al.(1989)noted inconclusive (cf. Bailey and Headland 1991). that no previous studies had produced sound evidence that pure Archaeological studies have provided powerful evidence hunter-gatherer subsistence was possible in any rainforests indicating the existence of humans in the African rainforests worldwide, and they argued that it was not, and had never been, before the beginning of agriculture (Mercader 2003a, b; possible to live in such areas while solely depending on wild Mercader and Martí 2003). -
BID Africa 2017 – Small Grant Template Final Narrative Report
<BID project id> <Start and end date of the reporting period> BID Africa 2017 – Small Grant Template Final narrative report Instructions Fill the template below with relevant information. please indicate the reason of the delay and expected date of completion. Use the information included in your project Full proposal (reproduced in annex III of your BID contract) as a baseline from which to complete this template The information provided below must correspond to the financial information that appears in the financial report Sources of verification are for example direct links to relevant digital documents, news/newsletters, brochures, copies of agreements with data holding institutions, workshop related documents, pictures, etc. Please provide access to all mentioned sources of verification by either providing direct link or sending a copy of the documents. This report must first be sent as a Word document to [email protected] and be pre-approved by GBIFS Once this report is pre-approved in writing by GBIFS, it must be signed by the BID project coordinator and sent by post to: The Global Biodiversity Information Facility Secretariat (GBIFS) Universitetsparken 15 DK-2100 Copenhagen Ø Denmark Template 1. Table of Contents 1. Table of Contents ...................................................................................................... 1 2. Project Information..................................................................................................... 3 3. Overview of results ................................................................................................... -
Plant Production--Root Vegetables--Yams Yams
AU.ENCI FOR INTERNATIONAL DEVILOPME4T FOR AID USE ONLY WASHINGTON. 0 C 20823 A. PRIMARYBIBLIOGRAPHIC INPUT SHEET I. SUBJECT Bbliography Z-AFOO-1587-0000 CL ASSI- 8 SECONDARY FICATIDN Food production and nutrition--Plant production--Root vegetables--Yams 2. TITLE AND SUBTITLE A bibliography of yams and the genus Dioscorea 3. AUTHOR(S) Lawani,S.M.; 0dubanjo,M.0. 4. DOCUMENT DATE IS. NUMBER OF PAGES 6. ARC NUMBER 1976 J 199p. ARC 7. REFERENCE ORGANIZATION NAME AND ADDRESS IITA 8. SUPPLEMENTARY NOTES (Sponaoring Ordanization, Publlahera, Availability) (No annotations) 9. ABSTRACT This bibliography on yams bring together the scattered literature on the genus Dioscorea from the early nineteenth century through 1975. The 1,562 entries in this bibliography are grouped into 36 subject categories, and arranged within each category alphabetically by author. Some entries, particularly those whose titles are not sufficiently informative, are annotated. The major section titles in the book are as follows: general and reference works; history and eography; social and cultural importance; production and economics; botany including taxonomy, genetics, and breeding); yam growing (including fertilizers and plant nutrition); pests and diseases; storage; processing; chemical composition, nutritive value, and utilization; toxic and pharmacologically active constituents; author index; and subject index. Most entries are in English, with a few in French, Spanish, or German. 10. CONTROL NUMBER I1. PRICE OF DOCUMENT PN-AAC-745 IT. DrSCRIPTORS 13. PROJECT NUMBER Sweet potatoes Yams 14. CONTRACT NUMBER AID/ta-G-1251 GTS 15. TYPE OF DOCUMENT AID 590-1 44-741 A BIBLIOGRAPHY OF YAMS AND THE GENUS DIOSCOREA by S. -
GENOME EVOLUTION in MONOCOTS a Dissertation
GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field. -
Dictionary of Cultivated Plants and Their Regions of Diversity Second Edition Revised Of: A.C
Dictionary of cultivated plants and their regions of diversity Second edition revised of: A.C. Zeven and P.M. Zhukovsky, 1975, Dictionary of cultivated plants and their centres of diversity 'N -'\:K 1~ Li Dictionary of cultivated plants and their regions of diversity Excluding most ornamentals, forest trees and lower plants A.C. Zeven andJ.M.J, de Wet K pudoc Centre for Agricultural Publishing and Documentation Wageningen - 1982 ~T—^/-/- /+<>?- •/ CIP-GEGEVENS Zeven, A.C. Dictionary ofcultivate d plants andthei rregion so f diversity: excluding mostornamentals ,fores t treesan d lowerplant s/ A.C .Zeve n andJ.M.J ,d eWet .- Wageninge n : Pudoc. -11 1 Herz,uitg . van:Dictionar y of cultivatedplant s andthei r centreso fdiversit y /A.C .Zeve n andP.M . Zhukovsky, 1975.- Me t index,lit .opg . ISBN 90-220-0785-5 SISO63 2UD C63 3 Trefw.:plantenteelt . ISBN 90-220-0785-5 ©Centre forAgricultura l Publishing and Documentation, Wageningen,1982 . Nopar t of thisboo k mayb e reproduced andpublishe d in any form,b y print, photoprint,microfil m or any othermean swithou t written permission from thepublisher . Contents Preface 7 History of thewor k 8 Origins of agriculture anddomesticatio n ofplant s Cradles of agriculture and regions of diversity 21 1 Chinese-Japanese Region 32 2 Indochinese-IndonesianRegio n 48 3 Australian Region 65 4 Hindustani Region 70 5 Central AsianRegio n 81 6 NearEaster n Region 87 7 Mediterranean Region 103 8 African Region 121 9 European-Siberian Region 148 10 South American Region 164 11 CentralAmerica n andMexica n Region 185 12 NorthAmerica n Region 199 Specieswithou t an identified region 207 References 209 Indexo fbotanica l names 228 Preface The aimo f thiswor k ist ogiv e thereade r quick reference toth e regionso f diversity ofcultivate d plants.Fo r important crops,region so fdiversit y of related wild species areals opresented .Wil d species areofte nusefu l sources of genes to improve thevalu eo fcrops . -
Diversification Into Novel Habitats in the Africa Clade of Dioscorea (Dioscoreaceae): Erect Habit and Elephant’S Foot Tubers Olivier Maurin1,2, A
Maurin et al. BMC Evolutionary Biology (2016) 16:238 DOI 10.1186/s12862-016-0812-z RESEARCHARTICLE Open Access Diversification into novel habitats in the Africa clade of Dioscorea (Dioscoreaceae): erect habit and elephant’s foot tubers Olivier Maurin1,2, A. Muthama Muasya3*, Pilar Catalan4,5, Eugene Z. Shongwe1, Juan Viruel 6,7, Paul Wilkin 2 and Michelle van der Bank1 Abstract Background: Dioscorea is a widely distributed and highly diversified genus in tropical regions where it is represented by ten main clades, one of which diversified exclusively in Africa. In southern Africa it is characterised by a distinct group of species with a pachycaul or “elephant’sfoot” structure that is partially to fully exposed above the substrate. In contrast to African representatives of the genus from other clades, occurring mainly in forest or woodland, the pachycaul taxa and their southern African relatives occur in diverse habitats ranging from woodland to open vegetation. Here we investigate patterns of diversification in the African clade, time of transition from forest to more open habitat, and morphological traits associated with each habitat and evaluate if such transitions have led to modification of reproductive organs and mode of dispersal. Results: The Africa clade originated in the Oligocene and comprises four subclades. The Dioscorea buchananii subclade (southeastern tropical Africa and South Africa) is sister to the East African subclade, which is respectively sister to the recently evolved sister South African (e. g., Cape and Pachycaul) subclades. The Cape and Pachycaul subclades diversified in the east of the Cape Peninsula in the mid Miocene, in an area with complex geomorphology and climate, where the fynbos, thicket, succulent karoo and forest biomes meet. -
Facing Herbivory on the Climb Up: Lost Opportunities As the Main Cost of Herbivory in the Wild Yam Dioscorea Praehensilis
Received: 5 October 2016 | Revised: 21 April 2017 | Accepted: 26 April 2017 DOI: 10.1002/ece3.3066 ORIGINAL RESEARCH Facing herbivory on the climb up: Lost opportunities as the main cost of herbivory in the wild yam Dioscorea praehensilis Bruno Di Giusto1 | Edmond Dounias2,3 | Doyle B. McKey2,3,4 1International College, Ming Chuan University, Taipei, Taiwan Abstract 2CEFE UMR 5175, CNRS – Université Plants with simple architecture and strong constraints on their growth may offer criti- de Montpellier – Université Paul Valéry cal insights into how growth strategies affect the tolerance of plants to herbivory. Montpellier – EPHE, Montpellier Cedex 5, France Although Dioscorea praehensilis, a wild yam of African forests, is perennial, both aerial 3Institut de Recherche pour le Developpement apparatus and tuber are annually renewed. Each year, the tuber produces a single stem (IRD), Montpellier, France that climbs from the ground to the forest canopy. This stem bears no leaves and no 4Institut Universitaire de France, Paris, France branches until it reaches optimal light conditions. Once in the canopy, the plant’s pro- Correspondence duction fuels the filling of a new tuber before the plant dies back to the ground. We Bruno Di Giusto, International College, Ming Chuan University, Taipei, Taiwan. hypothesized that if deprived of ant defense, the leafless growth phase is a vulnerable Email: [email protected] part of the cycle, during which a small amount of herbivory entails a high cost in terms Funding information of loss of opportunity. We compared the growth of stems bearing ants or not as well Foraging Peoples Fellowship; French National as of intact stems and stems subjected to simulated or natural herbivory. -
Assessment of Genetic Diversity of Dioscorea Praehensilis (Berth.) Collected from Central Region, Ghana Using Simple Sequence Repeat (SSR) Markers Adeyinka S
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 March 2020 Assessment of genetic diversity of Dioscorea praehensilis (Berth.) collected from Central Region, Ghana using simple sequence repeat (SSR) markers Adeyinka S. Adewumi1, 2, Kingsley J. Taah1, Paul A. Asare1, Michael O. Adu1 & Paterne A. Agre2* 1 University of Cape Coast, Cape Coast, Ghana 2 International Institute of Tropical Agriculture, Ibadan, Nigeria ⃰ Correspondence: [email protected] Abstract Dioscorea praehensilis Berth is one of the wild yam species resistance to many yam disease (yam anthracnose disease and yam mosaic virus) grow in Ghana especially in the cocoa grown regions of the country. It is a crucial crop that has been known to contribute to poverty reduction and food gap. Genetic diversity in this yam species has been discovered to be eroding and neglected. In this study we evaluated the genetic diversity among 43 D. praehensilis collected from Ghana using simple sequence repeat (SSR). Using 11 SSR marker, a total of 99 number of alleles were generated with an average of 8.48 alleles per locus. The mean gene diversity was 0.81, mean polymorphism information content was 0.82 while mean Shannon information index was 1.94. Principal coordinate analysis (PCoA) revealed a contribution of 40.16% of the first three coordinate axes and grouped the 43 morphotypes into 2 groups while hierarchical cluster through UPGMA revealed the presence of 3 main clusters. Molecular variance (AMOVA) alongside the Fst revealed low genetic diversity and differentiation among accessions and population. Result of this study assess the genetic diversity and will facilitate the use D. -
Africa Regional Synthesis For
REGIONAL SYNTHESIS REPORTS AFRICA REGIONAL SYNTHESIS FOR THE STATE OF THE WORLD’S BIODIVERSITY FOR FOOD AND AGRICULTURE AFRICA REGIONAL SYNTHESIS FOR THE STATE OF THE WORLD’S BIODIVERSITY FOR FOOD AND AGRICULTURE FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS ROME, 2019 Required citation: FAO. 2019. Africa Regional Synthesis for The State of the World’s Biodiversity for Food and Agriculture. Rome. 68 pp. Licence: CC BY-NC-SA 3.0 IGO. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-131464-7 © FAO, 2019 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial- ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/ legalcode/legalcode). Under the terms of this licence, this work may be copied, redistributed and adapted for non-commercial purposes, provided that the work is appropriately cited. -
The Management of Wild Yam Tubers by the Baka Pygmies in Southern Cameroon
African Study Monographs, Suppl.26: 135-156, March 2001 135 THE MANAGEMENT OF WILD YAM TUBERS BY THE BAKA PYGMIES IN SOUTHERN CAMEROON Edmond DOUNIAS IRD (ex ORSTOM), CEFE - UPR 9056 CNRS ABSTRACT Wild yams (Dioscorea spp.) are primordial sources of carbohydrates for many hunter-gatherers of African forests. Yams play a key role in the symbolic perception of the forest by the Baka Pygmies of Southern Cameroon. The Baka have elaborated an original form of wild yam exploitation that I have termed “paracultivation”. Paraculti- vation defines a set of technical, social and cultural practices aiming at managing wild resources while keeping them in their natural environment. In 1994, I undertook an experimental survey to estimate the effect of paracultivation on survivol and growth of yam plants. Preliminary results presented here demonstrate that paracultivation increases the production of tubers without affecting plant survivorship. Furthermore, it allows a better control of the spatial and temporal availability of yam resources by the Baka. This study has opened up new perspectives on the evolutionary ecology of tuber- producing tropical forest plants. Paracultivation encourages us to reconsider the interac- tive process between forest dwellers and their environment. Key Words: Wild yams; Baka; South Cameroon forest; Paracultivation; Resource man- agement; Ethnoecology INTRODUCTION I. Protocultivation: A Step to Domestication Historical studies of the processes of plant domestication were long dominated by Judeo-Christian bias, persisting in locating the birthplace of the agricultural revolution in the “fertile crescent” of the Near East. The rise of agricultural civil- isations could not be conceived of without seeds. Only in the 1970’s did scientists divorce with classical schemes the emergence of agriculture, by describing the age- old agricultural prehistory which preceded the domestication of barley and wheat by many civilizations in other parts of the world (Harlan et al., 1976; Harris & Hillman, 1989). -
Conservation Status of the Vascular Plants in East African Rain Forests
Conservation status of the vascular plants in East African rain forests Dissertation Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaft des Fachbereich 3: Mathematik/Naturwissenschaften der Universität Koblenz-Landau vorgelegt am 29. April 2011 von Katja Rembold geb. am 07.02.1980 in Neuss Referent: Prof. Dr. Eberhard Fischer Korreferent: Prof. Dr. Wilhelm Barthlott Conservation status of the vascular plants in East African rain forests Dissertation Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaft des Fachbereich 3: Mathematik/Naturwissenschaften der Universität Koblenz-Landau vorgelegt am 29. April 2011 von Katja Rembold geb. am 07.02.1980 in Neuss Referent: Prof. Dr. Eberhard Fischer Korreferent: Prof. Dr. Wilhelm Barthlott Early morning hours in Kakamega Forest, Kenya. TABLE OF CONTENTS Table of contents V 1 General introduction 1 1.1 Biodiversity and human impact on East African rain forests 2 1.2 African epiphytes and disturbance 3 1.3 Plant conservation 4 Ex-situ conservation 5 1.4 Aims of this study 6 2 Study areas 9 2.1 Kakamega Forest, Kenya 10 Location and abiotic components 10 Importance of Kakamega Forest for Kenyan biodiversity 12 History, population pressure, and management 13 Study sites within Kakamega Forest 16 2.2 Budongo Forest, Uganda 18 Location and abiotic components 18 Importance of Budongo Forest for Ugandan biodiversity 19 History, population pressure, and management 20 Study sites within Budongo Forest 21 3 The vegetation of East African rain forests and impact -
The Biodiversity of Atewa Forest
The Biodiversity of Atewa Forest Research Report The Biodiversity of Atewa Forest Research Report January 2019 Authors: Jeremy Lindsell1, Ransford Agyei2, Daryl Bosu2, Jan Decher3, William Hawthorne4, Cicely Marshall5, Caleb Ofori-Boateng6 & Mark-Oliver Rödel7 1 A Rocha International, David Attenborough Building, Pembroke St, Cambridge CB2 3QZ, UK 2 A Rocha Ghana, P.O. Box KN 3480, Kaneshie, Accra, Ghana 3 Zoologisches Forschungsmuseum A. Koenig (ZFMK), Adenauerallee 160, D-53113 Bonn, Germany 4 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK 5 Department ofPlant Sciences, University ofCambridge,Cambridge, CB2 3EA, UK 6 CSIR-Forestry Research Institute of Ghana, Kumasi, Ghana and Herp Conservation Ghana, Ghana 7 Museum für Naturkunde, Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, Germany Cover images: Atewa Forest tree with epiphytes by Jeremy Lindsell and Blue-moustached Bee-eater Merops mentalis by David Monticelli. Contents Summary...................................................................................................................................................................... 3 Introduction.................................................................................................................................................................. 5 Recent history of Atewa Forest................................................................................................................................... 9 Current threats