Full Issue, Vol. 56 No. 3

Total Page:16

File Type:pdf, Size:1020Kb

Full Issue, Vol. 56 No. 3 Great Basin Naturalist Volume 56 Number 3 Article 17 7-26-1996 Full Issue, Vol. 56 No. 3 Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation (1996) "Full Issue, Vol. 56 No. 3," Great Basin Naturalist: Vol. 56 : No. 3 , Article 17. Available at: https://scholarsarchive.byu.edu/gbn/vol56/iss3/17 This Full Issue is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. T H E GREATG EAT baslBASIBASIN naturalistnaturalist VOLUME 56 n2na 3 JULY 1996 BRIGHAM YOUNG university GREAT BASIN naturalist editor assistant editor RICHARD W BAUMANN NATHAN M SMITH 290 MLBM 190 MLBM PO box 20200 PO box 26879 brigham young university brigham young university provo UT 84602020084602 0200 provo UT 84602687984602 6879 8013785053801 378 5053 8013786688801 378 6688 FAX 8013783733801 378 3733 emailE mail nmshbll1byuedu associate editors MICHAEL A BOWERS PAUL C MARSH blandy experimental farm university of center for environmental studies arizona virginia box 175 boyce VA 22620 state university tempe AZ 85287 J R CALLAHAN STANLEY D SMITH museum of southwestern biology university of department of biology new mexico albuquerque NM university of nevada las vegas mailing address box 3140 hemet CA 92546 las vegas NV 89154400489154 4004 JEFFREY J JOHANSEN PAUL T TUELLER department of biology john carroll university department of environmental resource sciences university heights OH 44118 university of nevada reno 1000 valley road reno NV 89512 BORIS C kondratieff department of entomology colorado state ROBERT C WHITMORE university fort collins CO 80523 division of forestry box 6125 west virginia university Morganmorgantowntown WV 26506612526506 6125 editorial board berranjerran T flinders chairman botany and range science duke S rogers zoology wilford M hess botany and range science richard R tolman zoology all are at brigham young university ex officio editorial board members include steven L taylor college of biology and agriculture H duane smith director monte L bean life science museum richard W baumann editor great basin naturalist the great basin naturalist founded in 1939 is published quarterly by brigham young university unpublished manuscripts that further our biological understanding of the great basinundbasin andund surrounding areas in western north america are accepted for publication subscriptions annual subscriptions to the great basin naturalist for 1996 are 25 for individual sub- scriscribersbers 30 outside the united states and 50 for institutions the price of single issues is 12 all back issues are in print and available for sale all matters pertaining to subscriptions back issues or other busi- ness should be directed to the editor great basin naturalist 290 MLBM PO box 20200 brigham young university provo UT 84602020084602 0200 scholarly exchanges libraries or other organizations interested in obtaining the great basin naturalist through a continuing exchange of scholarly publications should contact the exchange librarian 6385 HBLL PO box 26889 brigham young university provo UT 84602688984602 6889 editorial production staff joanne abel technical editor jan spencer assistant to the editor copyright 0 1996 by brigham young university ISSN 001736140017 3614 official publication date 26 july 1996 7967 96 totso750 19016 the great basin naturalist PUBLISHED AT PROVO UTAH BY BRIGHAM YOUNG university ISSN 001736140017 3614 VOLUME 56 31 JULY 1996 no 3 great basin naturalist 563 0 1996 appp 191 196 biogeographic significance OF LOW ELEVATION RECORDS FORporforneotomaNEOTOMA CINEREA FROM THE NORTHERN bonneville BASIN UTAH donald K GraysoGraysongrassonnl1 stephanie D Livingston 2 eric Rickartrickartsrickart33 and monson W shaver 1114 ABSTRACT the existence of low elevation populations of neotoma cinerea in the northern bonneville basin shows either that these mammals can survive many thousands of years in xericxene habitats or that they can move across bencxericxenc low- lands far more readily than has been appreciated or both current models of great basin small mammal biogeography are far too static to encompass properly the interaction of the wide range of geographical and biological variability that has produced the modern distribution of those mammals that have for several decades been treated as montane within the great basin key words great basin biogeography island biogeography neotoma cinerea mammals ever since J H brown s insightful analyses coherence that has been assigned to it here of great basin small mammal biogeography we add to that growing body and call for a brown 1971 1978 see also lomolino et al more dynamic view of great basin small mam- 1989 geographersbiogeographersbio have treated the bushy mal historic biogeography tailed woodratwoodral neotoma cincinereaoincineredmineredered as a member of an assemblage of small mammals that is cur- NEOTOMA CINEREA ON rently isolated on great basin mountains the HOMESTEAD KNOLL UTAH composition of this assemblage is of particular importance because it has been used to gener- located a few km west and south of great ate and test hypotheses about the past and salt lake in north central utah the lakeside future of great basin montane mammals eg mountains are formed from a complex of north grayson 1987 1993 patterson 1990 cutler trending hills ridges knolls and small moun- 1991 mcdonald and brown 1992 murphy and tains fig 1 the northwestern most spur of weiss 1992 grayson and livingston 1993 this complex is homestead knoll a low maxi- however there is a growing body of data that mum elevation 1615 m rocky promontory suggests that this group of mammals lacks the that is devoid of active springs and permanent iburkeaburkeurke memorial museum box 353010 university of washington seattle WA 98195 quaternary sciences center desert research institute box 60220 reno NV 89506 sutah museum of natural history university of utah salt lake city UT 84112 4uauutahh geological survey 2363 south fooothill drive salt lake city UT 84109 191 192 GREAT BASIN naturalist volume 56 M s F t 0 0 0 greatgreot homestead CD cavecove saltsolt lakeloke z 0 N A 35 cl KM IF fig 1 location of homestead cave within the northern bonneville basin streams and that is separated from other parts homestead knoll is dotted by a number of of the lakeside group by valleys whose maxi- caseseavescaves one of which homestead cave sits on mum elevations do not exceed 1465 m the northwestern edge of the knoll at an eleva- the barren playa of pleistocene lake bon- tion of 1406 ra fig 2 approximately 11 m neville is located to the immediate west and wide and 6 m high at its mouth this 25 m northwest of homestead knoll vegetation of deep eavecavepavegave has since 1992 been the focus of the knoll is dominated by shrubs and grasses interdisciplinary paleopaleoecologicalecological work funded although there are a few scattered utah junipersjunijuniperuspers by the department of defense with D B juniperus osteosperma on its highest reaches madsen of the utah geological survey 3 most prominent among the shrubs are authors of this paper DKG SDL and MWS atriplex confertifoliaconfertifolia tetradymia spinosa and have been involved with the excavation and tetradymia glabrataglabrateglabrata artemisia dentatatritridentatatridentate is analysis of a deep sequence of vertebrate present along seasonally moist drainages while remains from this site to provide background artemisia spinescensspinescentspinescens chrysothamnus sp and data for the analysis of the mammalian compo- sarcobatus vermiculatus are present but un- nent of the excavated faunahaunafaunal we conducted a common above the flanks of the knoll artemisia brief 270 trap night small mammal survey in nova occurs on those flanks as does Ceratceratoidesoides the vicinity of homestead cave in june 1995 lanata while S venniculatusvermiculatus becomes increas- with 1 exception the results of this survey ingly abundant as the valley bottoms are were quite predictable trapping success was approached we made no attempt to identify low with 3 species dipodomys ordiiordia 3 indi- the grasses that form the understory beneath vidualsvi peromyscus maniculatus 11 individu- the shrubs but cheatcheatgrassgrass bromus tectoriumtectorumtectorum als and neotoma lepidacepida 6 individuals com- and perhaps B rubens is extremely abundant prising nearly the entire trapped assemblage on the flats beneath the knoll the 1 exception however was remarkable we 19961 low ELEVATION neotoma CINEREA 193 1 1 111n41 22 1 1 14 rl51 1 L 7 C 0 aw7w N 3 v d W 4 17 Q 4 ob fig 2 location of homestead cave white arrow on homestead knoll the prominent terraces represent provo post provo regressive and stansbury beaches left by the waters of pleistocene lake bonneville took a single neotoma cinerea from the back of lection at the utah museum of natural his- homestead cave itself tory university of utah for additional records because this individual was live trapped of this species from other low elevation set- and released we cannot report its age or sex or tings in the northern bonneville basin we provide standard measurements even though were quite successful in this search we do not have a voucher specimen we do a locomotive springs the only previously have an excellent videotape of the animal taken published low elevation record for
Recommended publications
  • Fleas, Hosts and Habitat: What Can We Predict About the Spread of Vector-Borne Zoonotic Diseases?
    2010 Fleas, Hosts and Habitat: What can we predict about the spread of vector-borne zoonotic diseases? Ph.D. Dissertation Megan M. Friggens School of Forestry I I I \, l " FLEAS, HOSTS AND HABITAT: WHAT CAN WE PREDICT ABOUT THE SPREAD OF VECTOR-BORNE ZOONOTIC DISEASES? by Megan M. Friggens A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Forest Science Northern Arizona University May 2010 ?Jii@~-~-u-_- Robert R. Parmenter, Ph. D. ~",l(*~ l.~ Paulette L. Ford, Ph. D. --=z:r-J'l1jU~ David M. Wagner, Ph. D. ABSTRACT FLEAS, HOSTS AND HABITAT: WHAT CAN WE PREDICT ABOUT THE SPREAD OF VECTOR-BORNE ZOONOTIC DISEASES? MEGAN M. FRIGGENS Vector-borne diseases of humans and wildlife are experiencing resurgence across the globe. I examine the dynamics of flea borne diseases through a comparative analysis of flea literature and analyses of field data collected from three sites in New Mexico: The Sevilleta National Wildlife Refuge, the Sandia Mountains and the Valles Caldera National Preserve (VCNP). My objectives were to use these analyses to better predict and manage for the spread of diseases such as plague (Yersinia pestis). To assess the impact of anthropogenic disturbance on flea communities, I compiled and analyzed data from 63 published empirical studies. Anthropogenic disturbance is associated with conditions conducive to increased transmission of flea-borne diseases. Most measures of flea infestation increased with increasing disturbance or peaked at intermediate levels of disturbance. Future trends of habitat and climate change will probably favor the spread of flea-borne disease.
    [Show full text]
  • Comparative Ability of Oropsylla Montana and Xenopsylla Cheopis Fleas to Transmit Yersinia Pestis by Two Different Mechanisms
    RESEARCH ARTICLE Comparative Ability of Oropsylla montana and Xenopsylla cheopis Fleas to Transmit Yersinia pestis by Two Different Mechanisms B. Joseph Hinnebusch*, David M. Bland, Christopher F. Bosio, Clayton O. Jarrett Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Background Transmission of Yersinia pestis by flea bite can occur by two mechanisms. After taking a blood meal from a bacteremic mammal, fleas have the potential to transmit the very next OPEN ACCESS time they feed. This early-phase transmission resembles mechanical transmission in some Citation: Hinnebusch BJ, Bland DM, Bosio CF, respects, but the mechanism is unknown. Thereafter, transmission occurs after Yersinia Jarrett CO (2017) Comparative Ability of Oropsylla pestis forms a biofilm in the proventricular valve in the flea foregut. The biofilm can impede montana and Xenopsylla cheopis Fleas to Transmit and sometimes completely block the ingestion of blood, resulting in regurgitative transmis- Yersinia pestis by Two Different Mechanisms. PLoS Negl Trop Dis 11(1): e0005276. doi:10.1371/ sion of bacteria into the bite site. In this study, we compared the relative efficiency of the two journal.pntd.0005276 modes of transmission for Xenopsylla cheopis, a flea known to become completely blocked Editor: Christian Johnson, Fondation Raoul at a high rate, and Oropsylla montana, a flea that has been considered to rarely develop pro- Follereau, FRANCE ventricular blockage. Received: June 22, 2016 Methodology/Principal findings Accepted: December 21, 2016 Fleas that took an infectious blood meal containing Y.
    [Show full text]
  • Appendix 1 Host and Flea Traits/Properties
    1 Oikos OIK-02178 Krasnov, B. R., Shenbrot, G. I., Khokhlova, I: S. and Degen, A. A. 2015. Trait-based and phylogenetic associations between parasites and their hosts: a case study with small mammals and fleas in the Palearctic. – Oikos doi: 10.1111/oik.02178 Appendix 1 Host and flea traits/properties: explanations and data sources Hosts Body mass Body mass is the central characteristic of a species and is commonly employed in developing hypotheses related to physiological and behavioural responses. For example, Peters (1983) presented a large number of allometric relations between various animal characteristics and body mass. From a parasite perspective, host body mass may influence parasite’s abundance (due to the obvious reasons) and host specificity. For example, a host body mass is associated with persistence of a host individual in time merely because a larger host species lives longer and, thus, represents a more predictable resource for a parasite (Peters 1983). As a result, parasite species with higher host specificity are expected to exploit large hosts, whereas small-bodied hosts are expected to be exploited mainly by generalist parasites. Indeed, our earlier findings indicated that the exploitation of large-bodied, and therefore long-lived, host species has likely promoted specialization in fleas (Krasnov et al. 2006a). Data on mean body mass of a host species were obtained from Silva and Downing (1995), Degen (1977) or PanTHERIA database (Jones et al. 2009). Basal metabolic rate Investment of host in a high basal metabolic rate (BMR) could be associated with parasitism as a compensation for a costly immune response when parasite challenges are either strong (e.g., in case of highly abundant parasite) or diverse (in case of attacks by multiple parasites) (Morand and Harvey 2000).
    [Show full text]
  • Molecular and Genetic Mechanisms That Mediate Transmission of Yersinia Pestis by Fleas
    biomolecules Review Molecular and Genetic Mechanisms That Mediate Transmission of Yersinia pestis by Fleas B. Joseph Hinnebusch *, Clayton O. Jarrett and David M. Bland Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; [email protected] (C.O.J.); [email protected] (D.M.B.) * Correspondence: [email protected] Abstract: The ability to cause plague in mammals represents only half of the life history of Yersinia pestis. It is also able to colonize and produce a transmissible infection in the digestive tract of the flea, its insect host. Parallel to studies of the molecular mechanisms by which Y. pestis is able to overcome the immune response of its mammalian hosts, disseminate, and produce septicemia, studies of Y. pestis–flea interactions have led to the identification and characterization of important factors that lead to transmission by flea bite. Y. pestis adapts to the unique conditions in the flea gut by altering its metabolic physiology in ways that promote biofilm development, a common strategy by which bacteria cope with a nutrient-limited environment. Biofilm localization to the flea foregut disrupts normal fluid dynamics of blood feeding, resulting in regurgitative transmission. Many of the important genes, regulatory pathways, and molecules required for this process have been identified and are reviewed here. Keywords: Yersinia pestis; plague; fleas; arthropod-borne transmission Citation: Hinnebusch, B.J.; Jarrett, C.O.; Bland, D.M. Molecular and Genetic Mechanisms That Mediate Transmission of Yersinia pestis by 1. Introduction Fleas. Biomolecules 2021, 11, 210. Yersinia pestis is a newly minted arthropod-borne pathogen, having adopted this https://doi.org/10.3390/biom lifestyle only within the last 3000 to 6000 years [1–3].
    [Show full text]
  • Effects of Climate Change on Plague Exposure Pathways and Resulting Disease Dynamics
    Effects of Climate Change on Plague Exposure Pathways and Resulting Disease Dynamics Final Report SERDP Number 16 RC01-012 Principal Investigator: Dr. Tonie E. Rocke, U.S. Geological Survey National Wildlife Health Center Co-Investigators: Dr. Robin Russell, U.S. Geological Survey National Wildlife Health Center Dr. Michael Samuel, University of Wisconsin, Madison Co-authors: Rachel Abbott, U.S. Geological Survey National Wildlife Health Center Julia Poje, University of Wisconsin, Madison May 12, 2020 i Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 05/12/2020 SERDP Final Report 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Effects of Climate Change on Plague Exposure Pathways and Resulting Disease Dynamics 5b.
    [Show full text]
  • Flea Abundance, Diversity, and Plague in Gunnison's Prairie Dogs
    Journal of Wildlife Diseases, 46(2), 2010, pp. 356–367 # Wildlife Disease Association 2010 FLEA ABUNDANCE, DIVERSITY, AND PLAGUE IN GUNNISON’S PRAIRIE DOGS (CYNOMYS GUNNISONI) AND THEIR BURROWS IN MONTANE GRASSLANDS IN NORTHERN NEW MEXICO Megan M. Friggens,1,4,7 Robert R. Parmenter,2 Michael Boyden,3 Paulette L. Ford,4 Kenneth Gage,5 and Paul Keim6 1 School of Forestry, 200 Pine Knoll Drive, Northern Arizona University, Flagstaff, Arizona 86011-5018, USA 2 Valles Caldera National Preserve, PO Box 359, 18161 State Highway 4, Jemez Springs, New Mexico 87025, USA 3 Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA 4 USDA Forest Service, Rocky Mountain Research Station, 333 Broadway SE, Suite 115, Albuquerque, New Mexico 87102, USA 5 Bacterial Disease Branch, Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 3150 Rampart Road, Fort Collins, Colorado 80521, USA 6 Department of Biology, PO Box 5640, Northern Arizona University, Flagstaff, Arizona 86011-5640, USA 7 Corresponding author (email: [email protected]) ABSTRACT: Plague, a flea-transmitted infectious disease caused by the bacterium Yersinia pestis, is a primary threat to the persistence of prairie dog populations (Cynomys spp.). We conducted a 3-yr survey (2004–2006) of fleas from Gunnison’s prairie dogs (Cynomys gunnisoni) and their burrows in montane grasslands in Valles Caldera National Preserve in New Mexico. Our objectives were to describe flea communities and identify flea and rodent species important to the maintenance of plague. We live-trapped prairie dogs and conducted burrow sweeps at three colonies in spring and summer of each year.
    [Show full text]
  • Siphonaptera: Ceratophyllidae) One Day After Exposure to Varying Concentrations of Yersinia Pestis in Blood
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author J Med Entomol Manuscript Author . Author Manuscript Author manuscript; available in PMC 2019 June 07. Published in final edited form as: J Med Entomol. 2016 May ; 53(3): 674–680. doi:10.1093/jme/tjw004. Infection Prevalence, Bacterial Loads, and Transmission Efficiency in Oropsylla montana (Siphonaptera: Ceratophyllidae) One Day After Exposure to Varying Concentrations of Yersinia pestis in Blood Karen A. Boegler1, Christine B. Graham, Tammi L. Johnson, John A. Montenieri, and Rebecca J. Eisen Centers for Disease Control and Prevention – Division of Vector-Borne Diseases, 3156 Rampart Rd., Fort Collins, CO 80521 Abstract Unblocked fleas can transmit Yersinia pestis, the bacterium that causes plague, shortly (≤4d) after taking an infectious bloodmeal. Investigators have measured so-called early-phase transmission (EPT) efficiency in various fleas following infection with highly bacteremic blood (≥108cfu/ml). To date, no one has determined the lower limit of bacteremia required for fleas to acquire and transmit infection by EPT, though knowing this threshold is central to determining the length of time a host may be infectious to feeding fleas. Here, we evaluate the ability of Oropsylla montana (Baker) to acquire and transmit Y. pestis after feeding on blood containing 103 to 109cfu/ ml. We evaluated the resulting infection prevalence, bacterial loads, and transmission efficiency within the early-phase time period at 1d postinfection. Fleas acquired infection from bacteremic blood across a wide range of concentrations, but transmission was observed only when fleas ingested highly bacteremic blood. Keywords plague; early-phase transmission; Oropsylla montana; Yersinia pestis; flea Plague, a primarily flea-borne zoonosis, is caused by the gram-negative bacterium, Yersinia pestis, and has been responsible for millions of human deaths throughout history (Gage and Kosoy 2005).
    [Show full text]
  • Efficacy of a Fipronil Bait in Reducing the Number of Fleasoropsylla ( Spp.) Infesting Wild Black-Tailed Prairie Dogs
    Vol. 42, no. 1 Journal of Vector Ecology 171 Efficacy of a fipronil bait in reducing the number of fleas (Oropsylla spp.) infesting wild black-tailed prairie dogs David M. Poché1*, Daniel Hartman2, Larisa Polyakova1, and Richard M. Poché1 1Genesis Laboratories, Inc., Wellington, CO, U.S.A., [email protected] 2Colorado State University, Fort Collins, CO, U.S.A. Received 12 December 2016; Accepted 28 March 2017 ABSTRACT: Bubonic plague (Yersinia pestis) is a deadly zoonosis with black-tailed prairie dogs (Cynomys ludovicianus) as a reservoir host in the United States. Systemic insecticides are a promising means of controlling the vectors, Oropsylla spp. fleas, infesting these prairie dogs, subsequently disrupting the Y. pestis cycle. The objective of this study was to conduct a field trial evaluating the efficacy of a grain rodent bait containing fipronil (0.005%) against fleas infesting prairie dogs. The study was performed in Larimer County, CO, where bait was applied to a treatment area containing a dense prairie dog population, three times over a three-week period. Prairie dogs were captured and combed for fleas during four study periods (pre-, mid-, st1 post-, and 2nd post-treatment). Results indicated the use of bait containing fipronil significantly reduced flea burden. The bait containing fipronil was determined to reduce the mean number of fleas per prairie dog >95% for a minimum of 52 days post-initial treatment application and 31 days post-final treatment application. These results suggest the potential for this form of treatment to reduce flea population density on prairie dogs, and subsequently plague transmission, among mammalian hosts across the United States and beyond.
    [Show full text]
  • Ulaanbaatar 2018 Compilation of the I-Vi International Marmot Conference Proceedings
    Institute of General and Experimental Biology, Mongolian Academy of Sciences; Commission on Marmots Investigation of the Theriological Society at the RAS Mammalian Ecology Society of Mongolia; ULAANBAATAR 2018 COMPILATION OF THE I-VI INTERNATIONAL MARMOT CONFERENCE PROCEEDINGS Compilation of the I-VI International Marmot Conference Proceedings, Ulaanbaatar, Narud Design LLC, 2018, 188 pp. Compilers: Adiya Yansanjav, Undrakhbayar Enkhbat 2 INTERNATIONAL CONFERENCE ON THE GENUS MARMOTA Previous international conferences of marmot researchers A history of international conferences on the Genus Marmota Тарвага судлаачдын олон улсын хурлууд Species of the genus Marmota are distributed across vast territories of Eurasia and North America and have high ecosystem and practical value. They have attracted the in- terest of scientists around the world, resulting in many research projects and a wide variety of publications. Marmots live in burrows; hibernate in winter, and have high reproductive rates. They are highly valued by humans for their meat and oil for food and their fur for garments. At the ecosystem level, their burrows provide unique habitat for plants and other wildlife. Marmots also have negative effects on human populations, as they are well documented as carriers of epidemic diseases, especially in areas around highly populated human settlements in Eurasia. The first international symposium of marmot researchers was held in Italy (Aosta) in 1991. The second international conference was held in France (Aussois) in 1994. In Au- gust of 1997 the next international conference was held in Cheboksar city of Russia. The IV International Marmot Conference was organized in Switzerland (Montreaux) in Sep- tember 2002. The International Bureau of Marmot Researchers initiated the V internation- al conference in Tashkent, the capital city of Uzbekistan, in 2005 and the VI International conference was held again in Italy (Cogne, Valle d’Aosta) in 2008.
    [Show full text]
  • Pandemic Disease in the Medieval World Rethinking the Black Death
    CAROL SYMES CAROL EXECUTIVE EDITOR EXECUTIVE EDITOR THE MEDIEVAL GLOBE THE MEDIEVAL PANDEMIC DISEASE IN THE MEDIEVAL WORLD RETHINKING THE BLACK DEATH Edited by MONICA H. GREEN THE MEDIEVAL GLOBE The Medieval Globe provides an interdisciplinary forum for scholars of all world areas by focusing on convergence, movement, and interdependence. Con­ need not encompass the globe in any territorial sense. Rather, TMG advan ces a newtributions theory to and a global praxis understanding of medieval studies of the medievalby bringing period into (broadlyview phenomena defined) that have been rendered practically or conceptually invisible by anachronistic boundaries, categories, and expectations. TMG also broadens discussion of the ways that medieval processes inform the global present and shape visions of the future. Executive Editor Carol Symes, University of Illinois at Urbana-Champaign Editorial Board James Barrett, University of Cambridge Kathleen Davis, University of Rhode Island Felipe Fernández­Armesto, University of Notre Dame Elizabeth Lambourn, De Montfort University Yuen­Gen Liang, Wheaton College Victor Lieberman, University of Michigan at Ann Arbor Carla Nappi, University of British Columbia Elizabeth Oyler, University of Illinois at Urbana-Champaign Christian Raffensperger, Wittenberg University Rein Raud, University of Helsinki & Tallinn University D. Fairchild Ruggles, University of Illinois at Urbana-Champaign Alicia Walker, Bryn Mawr College Volume 1 PANDEMIC DISEASE IN THE MEDIEVAL WORLD RETHINKING THE BLACK DEATH Edited by MONICA H. GREEN Copyeditor Shannon Cunningham Editorial Assistant Ann Hubert Page design and typesetting Martine Maguire­Weltecke Library of Congress Cataloging in Publication Data A catalog record for this book is available from the Library of Congress © 2015 Arc Medieval Press, Kalamazoo and Bradford ThePermission authors to assert use brief their excerpts moral right from to thisbe identified work in scholarly as the authors and educational of their part works of this is work.
    [Show full text]
  • White-Tailed Prairie Dog (Cynomys Leucurus): a Technical Conservation Assessment
    White-tailed Prairie Dog (Cynomys leucurus): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project November 13, 2006 Jonathan N. Pauli, Robert M. Stephens, and Stanley H. Anderson, Ph.D. Department of Zoology and Physiology University of Wyoming Laramie, Wyoming 82070 Peer Review Administered by Society for Conservation Biology Pauli, J.N., R.M. Stephens, and S.H. Anderson. (2006, November 13). White-tailed Prairie Dog (Cynomys leucurus): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http: //www.fs.fed.us/r2/projects/scp/assessments/whitetailedprairiedog.pdf [date of access]. ACKNOWLEDGMENTS Numerous individuals provided crucial information and advice that enabled this species assessment to be written, including B. Luce, M. Grenier, H. Youman, A. Seglund, D. Biggins, M. Canning, J. Carlson, and A. Ernst. We are particularly grateful to E. Donadio and G. Hayward for reviewing drafts and offering valuable suggestions that improved the overall quality of the assessment. We thank G. Patton for his assistance in acquiring information and critically editing the assessment for content and style. We appreciated the opportunity to collaborate with D. McDonald on matrix analyses for the white-tailed prairie dog. Two reviewers vastly improved this report with their comments, insights, and corrections. AUTHORS’ BIOGRAPHIES Jonathan N. Pauli is a graduate student in the Department of Zoology and Physiology at the University of Wyoming, Laramie, Wyoming. He received his Master of Science degree in Zoology and Physiology from the University of Wyoming, where he studied the effects of plague and recreational shooting on black-tailed prairie dog biology.
    [Show full text]
  • An Annotated Catalog of Primary Types of Siphonaptera in the National Museum of Natural History, Smithsonian Institution
    * An Annotated Catalog of Primary Types of Siphonaptera in the National Museum of Natural History, Smithsonian Institution NANCY E. ADAMS and ROBERT E. LEWIS I SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 560 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Folklife Studies Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]