Distributions and Habitats: Somniosidae

Total Page:16

File Type:pdf, Size:1020Kb

Distributions and Habitats: Somniosidae Distributions and Habitats: Somniosidae FAMILY Somniosidae Jordan, 1888 - sleeper sharks GENUS Centroscymnus Barbosa du Bocage & de Brito Capello, 1864 - velvet dogfishes Species Centroscymnus coelolepis Barbosa du Bocage & de Brito Capello, 1864 - Portuguese dogfish Distribution: Cosmopolitan in tropical and temperate to cold temperate seas, including the Arctic and the western Mediterranean Sea. Habitat: marine. Species Centroscymnus macracanthus Regan, 1906 - largespine velvet dogfish Distribution: Southwestern Atlantic and southwestern Pacific. Habitat: marine. Species Centroscymnus owstonii Garman, 1906 - roughskin dogfish Distribution: Atlantic, Pacific and southeastern Indian Ocean off Australia. Habitat: marine. GENUS Centroselachus Garman, 1913 - velvet dogfishes Species Centroselachus crepidater (Barbosa du Bocage & de Brito Capellos, 1864 - golden dofish Distribution: Cosmopolitan in tropical through warm temperate seas. Habitat: marine. GENUS Scymnodalatias Garrick, 1956 - dogfishes Species Scymnodalatias albicauda Taniuchi & Garrick, 1986 - whitetail dogfish Distribution: Southeastern Indian Ocean and southwestern Pacific. Habitat: marine. Species Scymnodalatias garricki Kukuev & Konovalenko, 1988 - Azores dogfish Distribution: North Atlantic. Habitat: marine. Species Scymnodalatias oligodon Kukuev & Konovalenko, 1988 - sparsetooth dogfish Distribution: Southeastern Pacific. Habitat: marine. Species Scymnodalatias sherwoodi (Archey, 1921) - Sherwood dogfish Distribution: Southwestern Pacific: New Zealand. Habitat: marine. GENUS Scymnodon Barbosa du Bocage & Brito Capello, 1864 - velvet dogfishes Species Scymnodon ichiharai Yano & Tanaka, 1984 - Japanese velvet dogfish Distribution: Western North Pacific. Habitat: marine. Species Scymnodon plunketi (Waite, 1910) - Plunket shark Distribution: Southwestern Pacific. Habitat: marine. Species Scymnodon ringens Barbosa du Bocage & de Brito Capello, 1864 - knifetooth dogfish Distribution: Eastern Atlantic (including North Sea); southwestern Pacific. Habitat: marine. GENUS Zameus Jordan & Fowler, 1903 - velvet dogfishes Species Zameus squamulosus (Günther, 1877) - velvet dogfish Distribution: Cosmopolitan in warm seas (including Red Sea, Hawaiian Islands). Habitat: marine. GENUS Somniosus Lesueur, 1818 - sleeper sharks Species Somniosus antarcticus Whitley, 1939 - Southern sleeper shark Distribution: Circumglobal in Southern Hemisphere. Habitat: marine. Species Somniosus longus (Tanaka, 1912) - frog shark Distribution: Japan and New Zealand. Habitat: marine. Species Somniosus rostratus (Risso, 1827) - little sleeper shark Distribution: Mediterranean Sea, Atlantic. Habitat: marine. Species Somniosus microcephalus (Bloch & Schneider, 1801) - Greenland shark Distribution: Arctic Ocean; both sides of the North Atlantic (including western Baltic Sea, northern North Sea). Habitat: marine. Species Somniosus pacificus Bigelow & Schroeder, 1944 - Pacific sleeper shark Distribution: North Pacific and Arctic Ocean. Habitat: marine.
Recommended publications
  • Centroscymnus Coelolepis)
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2011 Population structure of a deep-water squaloid shark, the Portuguese dogfish (Centroscymnus coelolepis) A Verissimo Virginia Institute of Marine Science Jan McDowell Virginia Institute of Marine Science John Graves Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Verissimo, A; McDowell, Jan; and Graves, John, "Population structure of a deep-water squaloid shark, the Portuguese dogfish (Centroscymnus coelolepis)" (2011). VIMS Articles. 932. https://scholarworks.wm.edu/vimsarticles/932 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. ICES Journal of Marine Science (2011), 68(3), 555–563. doi:10.1093/icesjms/fsr003 Population structure of a deep-water squaloid shark, the Portuguese dogfish (Centroscymnus coelolepis) Downloaded from https://academic.oup.com/icesjms/article-abstract/68/3/555/661444 by Serials Dept -- College of William and Mary user on 02 November 2018 Ana Verı´ssimo*, Jan R. McDowell, and John E. Graves Virginia Institute of Marine Science, College of William & Mary, PO Box 1346, Gloucester Point, VA 23062, USA *Corresponding Author: tel: +1 804 684 7434; fax: +1 804 684 7157; e-mail: [email protected]. Verı´ssimo, A., McDowell, J. R., and Graves, J. E. 2011. Population structure of a deep-water squaloid shark, the Portuguese dogfish (Centroscymnus coelolepis).
    [Show full text]
  • An Introduction to the Classification of Elasmobranchs
    An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved.
    [Show full text]
  • First Record of Swimming Speed of the Pacific Sleeper Shark Somniosus
    Journal of the Marine First record of swimming speed of the Pacific Biological Association of the United Kingdom sleeper shark Somniosus pacificus using a baited camera array cambridge.org/mbi Yoshihiro Fujiwara , Yasuyuki Matsumoto, Takumi Sato, Masaru Kawato and Shinji Tsuchida Original Article Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Yokosuka, Kanagawa 237-0061, Japan Cite this article: Fujiwara Y, Matsumoto Y, Sato T, Kawato M, Tsuchida S (2021). First record of swimming speed of the Pacific Abstract sleeper shark Somniosus pacificus using a baited camera array. Journal of the Marine The Pacific sleeper shark Somniosus pacificus is one of the largest predators in deep Suruga Biological Association of the United Kingdom Bay, Japan. A single individual of the sleeper shark (female, ∼300 cm in total length) was 101, 457–464. https://doi.org/10.1017/ observed with two baited camera systems deployed simultaneously on the deep seafloor in S0025315421000321 the bay. The first arrival was recorded 43 min after the deployment of camera #1 on 21 July 2016 at a depth of 609 m. The shark had several remarkable features, including the Received: 26 July 2020 Revised: 14 April 2021 snout tangled in a broken fishing line, two torn anteriormost left-gill septums, and a parasitic Accepted: 14 April 2021 copepod attached to each eye. The same individual appeared at camera #2, which was First published online: 18 May 2021 deployed at a depth of 603 m, ∼37 min after it disappeared from camera #1 view. Finally, the same shark returned to camera #1 ∼31 min after leaving camera #2.
    [Show full text]
  • Squaliform Shark Teeth of the Genus Centroselachus from the Miocene of Japan
    Jour. Geol. Soc. Japan, Vol. 114, No. 10, p. 536-539, October 2008 Squaliform shark teeth of the genus Centroselachus from the Miocene of Japan Hideshi Suzuki *† Received April 21, 2008. Accepted September 24, 2008. * Graduate school of Natural Science and Technology, Division of Environmental Science and Engineering, Kanazawa Uni- versity, Kakuma, Kanazawa 920-1192, Japan † Tateshina Senior High School, 3652, Ashida, Tateshina Town, Kitasaku Gun, Nagano 384-2305 Japan. Abstract: Newly found fossil shark teeth of a sleeper shark are described. This is probably an undescribed species of the genus Centroselachus belonging to the Family Somniosidae. These fossil teeth were discovered from the Middle Miocene Iseyama Formation(Northern Fossa Magna Region), Ueda City, Nagano Prefecture, central Japan. These teeth indicate the shape of a part of a symphysial tooth row, which belong to a left side of Fig. 1. Map showing the fossil locality of Centroselachus sp. ※: parasymphysial teeth and a left first anterior tooth. 138 °18 ′00.11 ″E, 36 °25 ′12.05 ″N, using the topographical map Judging from the main characters of a parasymphysial of“Sanada”, scale 1: 25,000, published by Geographical Survey tooth, such as distal and mesial blades presented both Institute. joining in a notch, it is considered that the tooth differs from teeth of the genus Centroscymnus. This fossil is identified as the genus Centroselachus sp.. This paper constitutes the first fossil record of the genus Cen- troselachus from the Miocene of Japan. Key words: Centroselachus, Somniosidae, Middle Miocene, Iseyama Formation, Northern Fossa Magna Region, Nagano Prefecture, symphysial tooth row. Introduction The purpose of this study is to report newly found fossil shark teeth of the sleeper shark of the genus Centroselachus from the Miocene of Japan.
    [Show full text]
  • 1 an Annotated Checklist of the Chondrichthyans of South Africa 1 2 3
    1 An annotated checklist of the chondrichthyans of South Africa 2 3 4 DAVID A. EBERT1, 2, 3, 6, SABINE P. WINTNER4 & PETER M. KYNE5 5 6 1 Pacific Shark Research Center, Moss Landing Marine Laboratories, Moss Landing, 7 USA 8 2 South African Institute for Aquatic Biodiversity, Grahamstown, South Africa 9 3 Department of Ichthyology, California Academy of Sciences, San Francisco, USA 10 4 University of KwaZulu-Natal, School of Life Sciences, Durban, South Africa 11 5 Research Institute for the Environment and Livelihoods, Charles Darwin University, 12 Darwin, Australia 13 14 6 Corresponding author: E-mail: [email protected] 15 16 David A. Ebert ORCID ID 0000-0003-4604-8192 17 Sabine P. Wintner ORCID ID 0000-0001-7350-5999 18 Peter M. Kyne ORCID ID 0000-0003-4494-2625 19 20 21 1 1 Abstract 2 3 An annotated checklist of chondrichthyan fishes (sharks, batoids, and chimaeras) 4 occurring in South African waters is presented. The checklist is the result of decades of 5 research and on-going systematic revisions of the regional fauna. The chondrichthyan 6 fauna of South Africa is one of the richest in the world with 191 species, comprising 50 7 families and 103 genera. It consists of 30 families, 64 genera, and 111 species of sharks; 8 17 families, 36 genera, and 72 species of batoids; and, 3 families, 5 genera, and 8 species 9 of chimaeras. The most species-rich shark families are the whaler sharks Carcharhinidae 10 with 20 species followed by the deepwater catsharks Pentanchidae with 13 species.
    [Show full text]
  • APPENDIX M Common and Scientific Species Names
    Bay du Nord Development Project Environmental Impact Statement APPENDIX M Common and Scientific Species Names Bay du Nord Development Project Environmental Impact Statement Common and Species Names Common Name Scientific Name Fish Abyssal Skate Bathyraja abyssicola Acadian Redfish Sebastes fasciatus Albacore Tuna Thunnus alalunga Alewife (or Gaspereau) Alosa pseudoharengus Alfonsino Beryx decadactylus American Eel Anguilla rostrata American Plaice Hippoglossoides platessoides American Shad Alosa sapidissima Anchovy Engraulidae (F) Arctic Char (or Charr) Salvelinus alpinus Arctic Cod Boreogadus saida Atlantic Bluefin Tuna Thunnus thynnus Atlantic Cod Gadus morhua Atlantic Halibut Hippoglossus hippoglossus Atlantic Mackerel Scomber scombrus Atlantic Salmon (landlocked: Ouananiche) Salmo salar Atlantic Saury Scomberesox saurus Atlantic Silverside Menidia menidia Atlantic Sturgeon Acipenser oxyrhynchus oxyrhynchus Atlantic Wreckfish Polyprion americanus Barndoor Skate Dipturus laevis Basking Shark Cetorhinus maximus Bigeye Tuna Thunnus obesus Black Dogfish Centroscyllium fabricii Blue Hake Antimora rostrata Blue Marlin Makaira nigricans Blue Runner Caranx crysos Blue Shark Prionace glauca Blueback Herring Alosa aestivalis Boa Dragonfish Stomias boa ferox Brook Trout Salvelinus fontinalis Brown Bullhead Catfish Ameiurus nebulosus Burbot Lota lota Capelin Mallotus villosus Cardinal Fish Apogonidae (F) Chain Pickerel Esox niger Common Grenadier Nezumia bairdii Common Lumpfish Cyclopterus lumpus Common Thresher Shark Alopias vulpinus Crucian Carp
    [Show full text]
  • Identification Guide to the Deep-Sea Cartilaginous Fishes Of
    Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean FAO. 2015. Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean. FishFinder Programme, by Ebert, D.A. and Mostarda, E., Rome, Italy. Supervision: Merete Tandstad, Jessica Sanders (FAO, Rome) Technical editor: Edoardo Mostarda (FAO, Rome) Colour illustrations, cover and graphic design: Emanuela D’Antoni (FAO, Rome) This guide was prepared under the “FAO Deep–sea Fisheries Programme” thanks to a generous funding from the Government of Norway (Support to the implementation of the International Guidelines on the Management of Deep-Sea Fisheries in the High Seas project) for the purpose of assisting states, institutions, the fishing industry and RFMO/As in the implementation of FAO International Guidelines for the Management of Deep-sea Fisheries in the High Seas. It was developed in close collaboration with the FishFinder Programme of the Marine and Inland Fisheries Branch, Fisheries Department, Food and Agriculture Organization of the United Nations (FAO). The present guide covers the deep–sea Southeastern Atlantic Ocean and that portion of Southwestern Indian Ocean from 18°42’E to 30°00’E (FAO Fishing Area 47). It includes a selection of cartilaginous fish species of major, moderate and minor importance to fisheries as well as those of doubtful or potential use to fisheries. It also covers those little known species that may be of research, educational, and ecological importance. In this region, the deep–sea chondrichthyan fauna is currently represented by 50 shark, 20 batoid and 8 chimaera species. This guide includes full species accounts for 37 shark, 9 batoid and 4 chimaera species selected as being the more difficult to identify and/or commonly caught.
    [Show full text]
  • Wk Shark Advice Adhshark
    ICES Special Request Advice Ecoregions in the Northeast Atlantic and adjacent seas Published 25 September 2020 NEAFC and OSPAR joint request on the status and distribution of deep-water elasmobranchs Advice summary In response to a joint request from NEAFC and OSPAR, ICES reviewed existing information on deep-water sharks, skates and rays from surveys and the literature. Distribution maps were generated for 21 species, showing the location of catches from available survey data on deep-water sharks and elasmobranchs in the NEAFC and OSPAR areas of the Northeast Atlantic. Shapefiles of the species distribution areas are available as supporting documentation to this work. This advice sheet presents a summary of ICES advice on the stock status of species for which an assessment is available, as well as current knowledge on the stock status of species for which ICES does not provide advice. An overview of approaches which may be applied to mitigate bycatch and to improve stock status is also presented. ICES recognizes that, despite their limitations, prohibition, gear and depth limitations, and TAC are mechanisms currently available to managers to regulate outtake; therefore, ICES advises that these mechanisms should be maintained. Furthermore, ICES advises that additional measures, such as electromagnetic exclusion devices, acoustic or light-based deterrents, and spatio-temporal management could be explored. Request NEAFC and OSPAR requested ICES to produce: a. Maps and shapefiles of the distribution of the species, identifying, if possible, key areas used during particular periods/stages of the species’ lifecycle in terms of distribution and relative abundance of the species, and expert interpretation of the data products; b.
    [Show full text]
  • Coelho Phd Lantern S
    UNIVERSIDADEdo ALGARVE FaculdadedeCiênciasdoMaredo Ambiente Biology,populationdynamics,managementandconservation ofdeepwaterlanternsharks,Etmopterusspinax and Etmopteruspusillus (Chondrichthyes:Etmopteridae)insouthernPortugal(northeastAtlantic). (DoutoramentoemCiênciaseTecnologiasdasPescas,especialidadedeBiologiaPesqueira) (ThesisforthedegreeinDoctorofPhilosophyinFisheriesSciencesandTechnologies,specialtyinFisheriesBiology) RUIPEDROANDRADECOELHO Faro (2007) UNIVERSIDADE DO ALGARVE FACULDADE DE CIÊNCIAS DO MAR E DO AMBIENTE Biology, population dynamics, management and conservation of deep water lantern sharks, Etmopterus spinax and Etmopterus pusillus (Chondrichthyes: Etmopteridae) in southern Portugal (northeast Atlantic). (Doutoramento em Ciências e Tecnologias das Pescas, especialidade de Biologia Pesqueira) (Thesis for the degree in Doctor of Philosophy in Fisheries Sciences and Technologies, specialty in Fisheries Biology) RUI PEDRO ANDRADE COELHO Orientador / Supervisor: Prof. Doutor Karim Erzini Júri / Jury: - Prof. Doutor José Pedro Andrade, Professor Catedrático da Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve; - Prof. Doutor Karim Erzini, Professor Associado com Agregação da Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve; - Prof. Doutor Leonel Paulo Sul de Serrano Gordo, Professor Auxiliar com Agregação da Faculdade de Ciências, Universidade de Lisboa; - Prof. Doutor Manuel Seixas Afonso Dias, Professor Auxiliar da Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve;
    [Show full text]
  • Report on the Status of Mediterranean Chondrichthyan Species
    United Nations Environment Programme Mediterranean Action Plan Regional Activity Centre For Specially Protected Areas REPORT ON THE STATUS OF MEDITERRANEAN CHONDRICHTHYAN SPECIES D. CEBRIAN © L. MASTRAGOSTINO © R. DUPUY DE LA GRANDRIVE © Note : The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. © 2007 United Nations Environment Programme Mediterranean Action Plan Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du leader Yasser Arafat B.P.337 –1080 Tunis CEDEX E-mail : [email protected] Citation: UNEP-MAP RAC/SPA, 2007. Report on the status of Mediterranean chondrichthyan species. By Melendez, M.J. & D. Macias, IEO. Ed. RAC/SPA, Tunis. 241pp The original version (English) of this document has been prepared for the Regional Activity Centre for Specially Protected Areas (RAC/SPA) by : Mª José Melendez (Degree in Marine Sciences) & A. David Macías (PhD. in Biological Sciences). IEO. (Instituto Español de Oceanografía). Sede Central Spanish Ministry of Education and Science Avda. de Brasil, 31 Madrid Spain [email protected] 2 INDEX 1. INTRODUCTION 3 2. CONSERVATION AND PROTECTION 3 3. HUMAN IMPACTS ON SHARKS 8 3.1 Over-fishing 8 3.2 Shark Finning 8 3.3 By-catch 8 3.4 Pollution 8 3.5 Habitat Loss and Degradation 9 4. CONSERVATION PRIORITIES FOR MEDITERRANEAN SHARKS 9 REFERENCES 10 ANNEX I. LIST OF CHONDRICHTHYAN OF THE MEDITERRANEAN SEA 11 1 1.
    [Show full text]
  • Integrating Multiple Chemical Tracers to Elucidate the Diet and Habitat of Cookiecutter Sharks Aaron B
    www.nature.com/scientificreports OPEN Integrating multiple chemical tracers to elucidate the diet and habitat of Cookiecutter Sharks Aaron B. Carlisle1*, Elizabeth Andruszkiewicz Allan2,9, Sora L. Kim3, Lauren Meyer4,5, Jesse Port6, Stephen Scherrer7 & John O’Sullivan8 The Cookiecutter shark (Isistius brasiliensis) is an ectoparasitic, mesopelagic shark that is known for removing plugs of tissue from larger prey, including teleosts, chondrichthyans, cephalopods, and marine mammals. Although this species is widely distributed throughout the world’s tropical and subtropical oceanic waters, like many deep-water species, it remains very poorly understood due to its mesopelagic distribution. We used a suite of biochemical tracers, including stable isotope analysis (SIA), fatty acid analysis (FAA), and environmental DNA (eDNA), to investigate the trophic ecology of this species in the Central Pacifc around Hawaii. We found that large epipelagic prey constituted a relatively minor part of the overall diet. Surprisingly, small micronektonic and forage species (meso- and epipelagic) are the most important prey group for Cookiecutter sharks across the studied size range (17–43 cm total length), with larger mesopelagic species or species that exhibit diel vertical migration also being important prey. These results were consistent across all the tracer techniques employed. Our results indicate that Cookiecutter sharks play a unique role in pelagic food webs, feeding on prey ranging from the largest apex predators to small, low trophic level species, in particular those that overlap with the depth distribution of the sharks throughout the diel cycle. We also found evidence of a potential shift in diet and/or habitat with size and season.
    [Show full text]
  • Working Document on Elasmobranch Fishes 2001-2011 Final
    Working Document presented to the Working Group on Elasmobranch Fishes ICES WGEF, - Lisbon 18-26 June 2012 ——————————————————————————————————— Results on main elasmobranch species captured during the 2001-2011 Porcupine Bank (NE Atlantic) bottom trawl surveys S. Ruiz-Pico (1), F. Baldó (2), F. Velasco (1), O. Fernández-Zapico (1), C. Rodríguez-Cabello (1) (1) Instituto Español de Oceanografía, Centro Oceanográfico de Santander P.O. Box 240, 39080 Santander, Spain (2) Instituto Español de Oceanografía, Centro Oceanográfico de Cádiz Puerto pesquero, Muelle de Levante s/n, 11006 Cádiz, Spain Abstract This working document presents the results on nine of the most important elasmobranch species of the Porcupine bank Spanish surveys during the last decade (2001-2011). The shark species more abundant in these surveys in biomass terms were blackmouth catshark (Galeus melastomus), birdbeak dogfish (Deania calcea), Knifetooth dogfish (Scymnodon ringens), velvet belly lantern shark (Etmopterus spinax), lesser spotted dogfish (Scyliorhinus canicula) and bluntnose sixgill shark (Hexanchus griseus); while sandy ray (Leucoraja circularis), cuckoo ray (Leucoraja naevus) and common skate (Dipturus spp. / Dipturus cf. flossada) were the more frequent Rajidae. Biomass, distribution and length ranges were analysed. Many of these species occupy mainly the deep areas covered in the survey, especially D. calcea and S. ringens. Introduction The Porcupine Bank bottom trawl survey has been carried out annually since 2001 to provide data and information for the assessment of the commercial fish species in the area (ICES divisions VIIc and VIIk) (ICES, 2010, 2011a). The aim of this working document is to update the results (abundance indices, length frequency distributions and geographic distributions) on the most common elasmobranch species in Porcupine bottom trawl surveys following the results presented previously (Velasco et al.
    [Show full text]