Revised SEAFO Fisheries Resources Table 1. . FAO 3 Alfa Species Code

Total Page:16

File Type:pdf, Size:1020Kb

Revised SEAFO Fisheries Resources Table 1. . FAO 3 Alfa Species Code Revised SEAFO Fisheries Resources Table 1. Latin Name Transboundary FAO 3 Alfa Species Code TOP* Patagonian toothfish 1.1.1 Dissostichus 1.1.2 Yes eleginoides ORY* Orange Roughy Hoplosthethus spp Unknown ALF* Alfonsino Family Berycidae Unknown CGE* Deep-sea Red Crab Chaceon maritae Unknown MAC* Mackerel Scomber scombrus Unknown EDR* Armourhead Pseudopentaceros spp. Unknown BOC* Boarfish Capros aper Unknown ORD* Oreo dories Family Oreosomatidae Unknown CDL* Cardinal Fish Epigonus spp. Unknown OCZ* Octopus Family Octopodidae Unknown SQC* Squid Family Loliginidae Unknown WRF* Wreckfish 1.1.3 Polyprion 1.1.4 Unknown americanus SKA* Skates Family Rajidae Unknown DGS Spiny Dogfish Squalus acanthias Unknown Unknown ETB Blurred smooth Etmopterus bigelowi lanternshark ETH Shorttail Etmopterus brachyurus Unknown lanternshark ETR Great lanternshark Etmopterus princeps Unknown ETP Smooth lanternshark Etmopterus pusillus Unknown Unknown APA Ghost catshark Apristurus manis SSQ Velvet dogfish Scymnodon squamulosus Unknown CYO Portuguese Dogfish Centroscymnus coelolepis Unknown GUQ Leafscale Gulper Centrophorus squamosus Unknown Shark GUP Gulper Shark Centrophorus granulosus Unknown CFB ǂ Black dogfish Centroscyllium fabricii Unknown CYP ǂ Longnose velvet Centroscymnus crepidater Unknown 30 dogfish CYY Unknown ǂ Shortnose velvet Centroscymnus dogfish cryptacanthus SCK ǂ Kitefin shark Dalatias licha Unknown ETE ǂ Etmopterus compagnoi Unknown ETI ǂ Broadbanded Etmopterus gracilispinis Unknown lanternshark ETM ǂ Unknown Southern Etmopterus granulosus lanternshark ETF ǂ Blackbelly Etmopterus Lucifer Unknown lanternshark ETT ǂ African lanternshark Etmopterus polli Unknown ETX Unknown ǂ Velvet belly lantern Etmopterus spinax shark EUZ ǂ Taillight shark Euprotomicroides Unknown zantedeschia EUP ǂ Pygmy shark Euprotomicrus bispinatus Unknown HYY ǂ Longnose pygmy Heteroscymnoides marleyi Unknown shark ISB ǂ Cookiecutter shark Isistius brasiliensis Unknown Unknown OXY ǂ Angular roughshark Oxynotus centrina SYO ǂ Smallmouth velvet Scymnodon obscurus Unknown dogfish GSK ǂ Greenland shark Somniosus microcephalus Unknown SKH Other sharks (deep- Order Selachomorpha Unknown sea) LBT Rock lobster Jasus tristanti Unknown * Species for which landings data have been recorded. ǂ Source: From FishBase records for the SE Atlantic (Area 47) 31 .
Recommended publications
  • Shark Cartilage, Cancer and the Growing Threat of Pseudoscience
    [CANCER RESEARCH 64, 8485–8491, December 1, 2004] Review Shark Cartilage, Cancer and the Growing Threat of Pseudoscience Gary K. Ostrander,1 Keith C. Cheng,2 Jeffrey C. Wolf,3 and Marilyn J. Wolfe3 1Department of Biology and Department of Comparative Medicine, Johns Hopkins University, Baltimore, Maryland; 2Jake Gittlen Cancer Research Institute, Penn State College of Medicine, Hershey, Pennsylvania; and 3Registry of Tumors in Lower Animals, Experimental Pathology Laboratories, Inc., Sterling, Virginia Abstract primary justification for using crude shark cartilage extracts to treat cancer is based on the misconception that sharks do not, or infre- The promotion of crude shark cartilage extracts as a cure for cancer quently, develop cancer. Other justifications represent overextensions has contributed to at least two significant negative outcomes: a dramatic of experimental observations: concentrated extracts of cartilage can decline in shark populations and a diversion of patients from effective cancer treatments. An alleged lack of cancer in sharks constitutes a key inhibit tumor vessel formation and tumor invasions (e.g., refs. 2–5). justification for its use. Herein, both malignant and benign neoplasms of No available data or arguments support the medicinal use of crude sharks and their relatives are described, including previously unreported shark extracts to treat cancer (6). cases from the Registry of Tumors in Lower Animals, and two sharks with The claims that sharks do not, or rarely, get cancer was originally two cancers each. Additional justifications for using shark cartilage are argued by I. William Lane in a book entitled “Sharks Don’t Get illogical extensions of the finding of antiangiogenic and anti-invasive Cancer” in 1992 (7), publicized in “60 Minutes” television segments substances in cartilage.
    [Show full text]
  • Greenland Shark (Somniosus Microcephalus)
    Greenland shark (Somniosus microcephalus) feeding behavior on static fishing gear, effect of SMART (Selective Magnetic and Repellent-Treated) hook deterrent technology, and factors influencing entanglement in bottom longlines Scott M. Grant1, Rennie Sullivan1 and Kevin J. Hedges2 1 Centre for Sustainable Aquatic Resources, Memorial University of Newfoundland, St. John’s, NL, Canada 2 Central and Arctic Region, Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB, Canada ABSTRACT The Greenland Shark (Somniosus microcephalus) is the most common bycatch in the Greenland halibut (Reinhardtius hippoglossoides) bottom longline fishery in Cumberland Sound, Canada. Historically, this inshore fishery has been prosecuted through the ice during winter but winter storms and unpredictable landfast ice conditions since the mid-1990s have led to interest in developing a summer fishery during the ice-free season. However, bycatch of Greenland shark was found to increase substantially with 570 sharks captured during an experimental Greenland halibut summer fishery (i.e., mean of 6.3 sharks per 1,000 hooks set) and mortality was reported to be about 50% due in part to fishers killing sharks that were severely entangled in longline gear. This study investigated whether the SMART (Selective Magnetic and Repellent-Treated) hook technology is a practical deterrent to Greenland shark predation and subsequent bycatch on bottom longlines. Greenland Submitted 1 December 2017 shark feeding behavior, feeding kinematics, and variables affecting entanglement/ 22 April 2018 Accepted disentanglement and release are also described. The SMART hook failed to deter Published 17 May 2018 Greenland shark predation, i.e., all sharks were captured on SMART hooks, some Corresponding author Scott M.
    [Show full text]
  • Centroscymnus Coelolepis)
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2011 Population structure of a deep-water squaloid shark, the Portuguese dogfish (Centroscymnus coelolepis) A Verissimo Virginia Institute of Marine Science Jan McDowell Virginia Institute of Marine Science John Graves Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Verissimo, A; McDowell, Jan; and Graves, John, "Population structure of a deep-water squaloid shark, the Portuguese dogfish (Centroscymnus coelolepis)" (2011). VIMS Articles. 932. https://scholarworks.wm.edu/vimsarticles/932 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. ICES Journal of Marine Science (2011), 68(3), 555–563. doi:10.1093/icesjms/fsr003 Population structure of a deep-water squaloid shark, the Portuguese dogfish (Centroscymnus coelolepis) Downloaded from https://academic.oup.com/icesjms/article-abstract/68/3/555/661444 by Serials Dept -- College of William and Mary user on 02 November 2018 Ana Verı´ssimo*, Jan R. McDowell, and John E. Graves Virginia Institute of Marine Science, College of William & Mary, PO Box 1346, Gloucester Point, VA 23062, USA *Corresponding Author: tel: +1 804 684 7434; fax: +1 804 684 7157; e-mail: [email protected]. Verı´ssimo, A., McDowell, J. R., and Graves, J. E. 2011. Population structure of a deep-water squaloid shark, the Portuguese dogfish (Centroscymnus coelolepis).
    [Show full text]
  • Extinction Risk and Conservation of the World's Sharks and Rays
    RESEARCH ARTICLE elife.elifesciences.org Extinction risk and conservation of the world’s sharks and rays Nicholas K Dulvy1,2*, Sarah L Fowler3, John A Musick4, Rachel D Cavanagh5, Peter M Kyne6, Lucy R Harrison1,2, John K Carlson7, Lindsay NK Davidson1,2, Sonja V Fordham8, Malcolm P Francis9, Caroline M Pollock10, Colin A Simpfendorfer11,12, George H Burgess13, Kent E Carpenter14,15, Leonard JV Compagno16, David A Ebert17, Claudine Gibson3, Michelle R Heupel18, Suzanne R Livingstone19, Jonnell C Sanciangco14,15, John D Stevens20, Sarah Valenti3, William T White20 1IUCN Species Survival Commission Shark Specialist Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 2Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 3IUCN Species Survival Commission Shark Specialist Group, NatureBureau International, Newbury, United Kingdom; 4Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, United States; 5British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom; 6Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Australia; 7Southeast Fisheries Science Center, NOAA/National Marine Fisheries Service, Panama City, United States; 8Shark Advocates International, The Ocean Foundation, Washington, DC, United States; 9National Institute of Water and Atmospheric Research, Wellington, New Zealand; 10Global Species Programme, International Union for the Conservation
    [Show full text]
  • Mark Report Satellite Tags (Mrpats) to Detail Large-Scale Horizontal Movements of Deep Water Species: First Results for the Greenland Shark (Somniosus Microcephalus)
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Scholarship at UWindsor University of Windsor Scholarship at UWindsor Biological Sciences Publications Department of Biological Sciences 2018 Mark report satellite tags (mrPATs) to detail large-scale horizontal movements of deep water species: First results for the Greenland shark (Somniosus microcephalus) Nigel E. Hussey Biological Sciences, University of Windsor Jack Orr Aaron T. Fisk University of Windsor Kevin J. Hedges Steven H. Ferguson See next page for additional authors Follow this and additional works at: https://scholar.uwindsor.ca/biologypub Part of the Biology Commons Recommended Citation Hussey, Nigel E.; Orr, Jack; Fisk, Aaron T.; Hedges, Kevin J.; Ferguson, Steven H.; and Barkley, Amanda N., "Mark report satellite tags (mrPATs) to detail large-scale horizontal movements of deep water species: First results for the Greenland shark (Somniosus microcephalus)" (2018). Deep Sea Research Part I: Oceanographic Research Papers. https://scholar.uwindsor.ca/biologypub/1193 This Article is brought to you for free and open access by the Department of Biological Sciences at Scholarship at UWindsor. It has been accepted for inclusion in Biological Sciences Publications by an authorized administrator of Scholarship at UWindsor. For more information, please contact [email protected]. Authors Nigel E. Hussey, Jack Orr, Aaron T. Fisk, Kevin J. Hedges, Steven H. Ferguson, and Amanda N. Barkley This article is available at Scholarship at UWindsor: https://scholar.uwindsor.ca/biologypub/1193 Author’s Accepted Manuscript Mark report satellite tags (mrPATs) to detail large- scale horizontal movements of deep water species: First results for the Greenland shark (Somniosus microcephalus) Nigel E.
    [Show full text]
  • Ontogeny of Photophore Pattern in the Velvet Belly Lantern Shark, Etmopterus Spinax Julien M
    ARTICLE IN PRESS ZOOLOGY Zoology 112 (2009) 433–441 www.elsevier.de/zool Ontogeny of photophore pattern in the velvet belly lantern shark, Etmopterus spinax Julien M. ClaesÃ,Je´roˆme Mallefet Catholic University of Louvain, Laboratory of Marine Biology, Place Croix du Sud, Kellner Building, B-1348, Louvain-la-Neuve, Belgium Received 8 October 2008; received in revised form 23 January 2009; accepted 23 February 2009 Abstract Bioluminescence is known to be of great ecological importance to a luminous organism but extremely few studies investigate the ontogeny of luminous capabilities. The photogenic pattern of the velvet belly lantern shark Etmopterus spinax was investigated over ontogeny (14.0–52.5 cm total length) to determine the scaling of the surface area and the photophore density of different luminous zones as well as the ecological consequences of ontogenetic variations in bioluminescence efficiency. According to the luminous zone considered, different scaling patterns were found for the surface areas while the photophore densities of all zones scale with negative allometry, even though photophore insertion occurs. No sexual differences in these relationships were found. Luminous zones can be placed in two morphologically different groups: the ‘‘coverage’’ and the ‘‘isolated’’ zones. While counter-illumination is certainly the function of the former, the latter are probably involved in intraspecific behaviours. Due to the discrepancy between luminous capabilities of these two luminous zone categories, there is an ontogenetic increase in the luminescence heterogeneity of the luminous pattern as it was shown by luminescence modelling and confirmed by direct observations of spontaneous luminescence in living sharks. This heterogeneity certainly represents a trade-off between an efficient ventral camouflage and a strong identification tool for intraspecific behaviours such as coordinate hunting, which would be particularly useful when E.
    [Show full text]
  • First Record of Swimming Speed of the Pacific Sleeper Shark Somniosus
    Journal of the Marine First record of swimming speed of the Pacific Biological Association of the United Kingdom sleeper shark Somniosus pacificus using a baited camera array cambridge.org/mbi Yoshihiro Fujiwara , Yasuyuki Matsumoto, Takumi Sato, Masaru Kawato and Shinji Tsuchida Original Article Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Yokosuka, Kanagawa 237-0061, Japan Cite this article: Fujiwara Y, Matsumoto Y, Sato T, Kawato M, Tsuchida S (2021). First record of swimming speed of the Pacific Abstract sleeper shark Somniosus pacificus using a baited camera array. Journal of the Marine The Pacific sleeper shark Somniosus pacificus is one of the largest predators in deep Suruga Biological Association of the United Kingdom Bay, Japan. A single individual of the sleeper shark (female, ∼300 cm in total length) was 101, 457–464. https://doi.org/10.1017/ observed with two baited camera systems deployed simultaneously on the deep seafloor in S0025315421000321 the bay. The first arrival was recorded 43 min after the deployment of camera #1 on 21 July 2016 at a depth of 609 m. The shark had several remarkable features, including the Received: 26 July 2020 Revised: 14 April 2021 snout tangled in a broken fishing line, two torn anteriormost left-gill septums, and a parasitic Accepted: 14 April 2021 copepod attached to each eye. The same individual appeared at camera #2, which was First published online: 18 May 2021 deployed at a depth of 603 m, ∼37 min after it disappeared from camera #1 view. Finally, the same shark returned to camera #1 ∼31 min after leaving camera #2.
    [Show full text]
  • Squaliform Shark Teeth of the Genus Centroselachus from the Miocene of Japan
    Jour. Geol. Soc. Japan, Vol. 114, No. 10, p. 536-539, October 2008 Squaliform shark teeth of the genus Centroselachus from the Miocene of Japan Hideshi Suzuki *† Received April 21, 2008. Accepted September 24, 2008. * Graduate school of Natural Science and Technology, Division of Environmental Science and Engineering, Kanazawa Uni- versity, Kakuma, Kanazawa 920-1192, Japan † Tateshina Senior High School, 3652, Ashida, Tateshina Town, Kitasaku Gun, Nagano 384-2305 Japan. Abstract: Newly found fossil shark teeth of a sleeper shark are described. This is probably an undescribed species of the genus Centroselachus belonging to the Family Somniosidae. These fossil teeth were discovered from the Middle Miocene Iseyama Formation(Northern Fossa Magna Region), Ueda City, Nagano Prefecture, central Japan. These teeth indicate the shape of a part of a symphysial tooth row, which belong to a left side of Fig. 1. Map showing the fossil locality of Centroselachus sp. ※: parasymphysial teeth and a left first anterior tooth. 138 °18 ′00.11 ″E, 36 °25 ′12.05 ″N, using the topographical map Judging from the main characters of a parasymphysial of“Sanada”, scale 1: 25,000, published by Geographical Survey tooth, such as distal and mesial blades presented both Institute. joining in a notch, it is considered that the tooth differs from teeth of the genus Centroscymnus. This fossil is identified as the genus Centroselachus sp.. This paper constitutes the first fossil record of the genus Cen- troselachus from the Miocene of Japan. Key words: Centroselachus, Somniosidae, Middle Miocene, Iseyama Formation, Northern Fossa Magna Region, Nagano Prefecture, symphysial tooth row. Introduction The purpose of this study is to report newly found fossil shark teeth of the sleeper shark of the genus Centroselachus from the Miocene of Japan.
    [Show full text]
  • Spiny Dogfish.Pdf
    Memorandum of Understanding on the Conservation of Migratory Sharks SPINYSILKY DOGFISH SHARK AIGUILLATREQUIN COMMUNSOYEUX TIBURONMIELGA/GALLUDO SEDOSO Fact Sheet TiburonesTiburones martillomartillo Spiny Dogfish Squalus acanthias SPINY DOGFISH Class: Chondrichthyes Order: Squaliformes Family: Squalidae Species: Squalus acanthias Illustration: © Marc Dando Sharks MOU Species Fact Sheet Sharks MOU Species Fact Sheet SPINY DOGFISH SPINY DOGFISH © Shark MOU Advisory Committee This fact sheet was produced by the Advisory Committee of the Memorandum of Understanding on the Conservation of Migratory Sharks (Sharks MOU). For further information contact: John Carlson, Ph.D. Research Fish Biologist, NOAA Fisheries Service-Southeast Fisheries Science Center Panama City, [email protected] 1 Sharks MOU Species Fact Sheet SPINY DOGFISH 1. Biology Spiny Dogfish (Squalus acanthias), also known as Picked Dogfish or Spurdog, is a demersal shark that has a maximum length of 125 cm in the North Atlantic. It occurs mostly in shelf seas, from coastal habitats to the shelf edge, but can occur to depths of 900 m. They aggregate by size and sex, and are migratory in regional seas, although very occasional transatlantic movements have been reported. Spiny Dogfish are long lived (ca. 50–60 years) and have slow growth rates. Females mature at a length of 75-85 cm, produce up to 21 pups and gestation lasts two years (ICES 2017). Published studies on S. acanthias from the North Pacific relate to Squalus suckleyi (see Ebert et al. 2010). 2. Distribution Spiny Dogfish is distributed in both northern and southern temperate and boreal waters, but the species is listed on the MOU for the northern hemisphere populations only.
    [Show full text]
  • (Squalus Acanthias) and Black Dogfish (Centroscyllium Fabricii) Spanish Data (Surveys and Fishery) in NAFO Divisions 3LMNO
    NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE SECRETARIAT Northwest Atlantic Fisheries Organization Serial No. N5250 NAFO SCR Doc. 06/30 SCIENTIFIC COUNCIL MEETING – JUNE 2006 Spiny Dogfish (Squalus acanthias) and Black Dogfish (Centroscyllium fabricii) Spanish Data (Surveys and Fishery) in NAFO Divisions 3LMNO. by F. González-Costas1, D. González-Troncoso1, M. Casas1 and G. Ramilo1 1 Instituto Español de Oceanografía, Vigo, Spain ABSTRACT The analysis of Spanish survey and fishery data from Divisions 3LMNO show that Spiny dogfish (Squalus acanthias) is not abundant and that this species appears in these Divisions sporadically and in depths of less than 500 meters. Black dogfish (Centroscyllium fabricii) data show that this species is present in all Divisions, but is more abundant in Div. 3NO and in depths of more than 900 m. Biomass estimated from the 3NO survey displays an increasing trend over the last three years. Commercial catches of this species are mainly a by-catch of the Greenland halibut fishery in Div. 3LMNO. Size compositions are mainly in between 50 and 70 cm of length, both for commercial and survey catch es. INTRODUCTION The aim of this paper is to review and present the Spanish information from surveys and commercial data for Spiny dogfish (Squalus acanthias) and Black dogfish (Centroscyllium fabricii) that were requested to the NAFO Scientific Council, in accord with the recommendation from the 2002 NAFO Symposium on Elasmobranches Fisheries. Part of this information had been presented by P. Duran et al. in 1999 for the period 1999-1998. MATERIAL AND METHODS Two sources of information have been used in this paper, data recorded by the National Scientific Observers and research survey dat a.
    [Show full text]
  • APPENDIX M Common and Scientific Species Names
    Bay du Nord Development Project Environmental Impact Statement APPENDIX M Common and Scientific Species Names Bay du Nord Development Project Environmental Impact Statement Common and Species Names Common Name Scientific Name Fish Abyssal Skate Bathyraja abyssicola Acadian Redfish Sebastes fasciatus Albacore Tuna Thunnus alalunga Alewife (or Gaspereau) Alosa pseudoharengus Alfonsino Beryx decadactylus American Eel Anguilla rostrata American Plaice Hippoglossoides platessoides American Shad Alosa sapidissima Anchovy Engraulidae (F) Arctic Char (or Charr) Salvelinus alpinus Arctic Cod Boreogadus saida Atlantic Bluefin Tuna Thunnus thynnus Atlantic Cod Gadus morhua Atlantic Halibut Hippoglossus hippoglossus Atlantic Mackerel Scomber scombrus Atlantic Salmon (landlocked: Ouananiche) Salmo salar Atlantic Saury Scomberesox saurus Atlantic Silverside Menidia menidia Atlantic Sturgeon Acipenser oxyrhynchus oxyrhynchus Atlantic Wreckfish Polyprion americanus Barndoor Skate Dipturus laevis Basking Shark Cetorhinus maximus Bigeye Tuna Thunnus obesus Black Dogfish Centroscyllium fabricii Blue Hake Antimora rostrata Blue Marlin Makaira nigricans Blue Runner Caranx crysos Blue Shark Prionace glauca Blueback Herring Alosa aestivalis Boa Dragonfish Stomias boa ferox Brook Trout Salvelinus fontinalis Brown Bullhead Catfish Ameiurus nebulosus Burbot Lota lota Capelin Mallotus villosus Cardinal Fish Apogonidae (F) Chain Pickerel Esox niger Common Grenadier Nezumia bairdii Common Lumpfish Cyclopterus lumpus Common Thresher Shark Alopias vulpinus Crucian Carp
    [Show full text]
  • Table Tableau Tabla 2
    Table Tableau Tabla 2 Species codes of tunas, Codes des espèces de Códigos de especies de túnidos, tuna‐like species and thonidés, d’espèces de especies afines a los túnidos sharks apparentées et des requins y de tiburones Code / Scientific names / Common names Noms communs Nombres comunes Code / Noms sientifiques / (English) (Français) (Español) Código Nombres científicos Tunas ALB Thunnus alalunga Albacore Germon Atún blanco Thonidés BET Thunnus obesus Bigeye tuna Thon obèse(=Patudo) Patudo Túnidos BFT Thunnus thynnus Atlantic bluefin tuna Thon rouge de l’atlantique Atún rojo BUM Makaira nigricans Atlantic blue marlin Makaire bleu de l'Atlantique Aguja azul del Atlántico SAI Istiophorus albicans Atlantic sailfish Voilier de l'Atlantique Pez vela del Atlántico SKJ Katsuwonus pelamis Skipjack tuna Listao Listado SWO Xiphias gladius Swordfish Espadon Pez espada WHM Tetrapturus albidus Atlantic white marlin Makaire blanc de l'Atlantique Aguja blanca del Atlántico YFT Thunnus albacares Yellowfin tuna Albacore Rabil BLF Thunnus atlanticus Blackfin tuna Thon à nageoires noires Atún des aletas negras BLT Auxis rochei Bullet tuna Bonitou Melva(=Melvera) BON Sarda sarda Atlantic bonito Bonite à dos rayé Bonito del Atlántico BOP Orcynopsis unicolor Plain bonito Palomette Tasarte BRS Scomberomorus brasiliensis Serra Spanish mackerel Thazard serra Serra CER Scomberomorus regalis Cero Thazard franc Carite chinigua FRI Auxis thazard Frigate tuna Auxide Melva KGM Scomberomorus cavalla King mackerel Thazard barré Carite lucio KGX Scomberomorus spp
    [Show full text]