APPENDIX M Common and Scientific Species Names
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FISH LIST WISH LIST: a Case for Updating the Canadian Government’S Guidance for Common Names on Seafood
FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood Authors: Christina Callegari, Scott Wallace, Sarah Foster and Liane Arness ISBN: 978-1-988424-60-6 © SeaChoice November 2020 TABLE OF CONTENTS GLOSSARY . 3 EXECUTIVE SUMMARY . 4 Findings . 5 Recommendations . 6 INTRODUCTION . 7 APPROACH . 8 Identification of Canadian-caught species . 9 Data processing . 9 REPORT STRUCTURE . 10 SECTION A: COMMON AND OVERLAPPING NAMES . 10 Introduction . 10 Methodology . 10 Results . 11 Snapper/rockfish/Pacific snapper/rosefish/redfish . 12 Sole/flounder . 14 Shrimp/prawn . 15 Shark/dogfish . 15 Why it matters . 15 Recommendations . 16 SECTION B: CANADIAN-CAUGHT SPECIES OF HIGHEST CONCERN . 17 Introduction . 17 Methodology . 18 Results . 20 Commonly mislabelled species . 20 Species with sustainability concerns . 21 Species linked to human health concerns . 23 Species listed under the U .S . Seafood Import Monitoring Program . 25 Combined impact assessment . 26 Why it matters . 28 Recommendations . 28 SECTION C: MISSING SPECIES, MISSING ENGLISH AND FRENCH COMMON NAMES AND GENUS-LEVEL ENTRIES . 31 Introduction . 31 Missing species and outdated scientific names . 31 Scientific names without English or French CFIA common names . 32 Genus-level entries . 33 Why it matters . 34 Recommendations . 34 CONCLUSION . 35 REFERENCES . 36 APPENDIX . 39 Appendix A . 39 Appendix B . 39 FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood 2 GLOSSARY The terms below are defined to aid in comprehension of this report. Common name — Although species are given a standard Scientific name — The taxonomic (Latin) name for a species. common name that is readily used by the scientific In nomenclature, every scientific name consists of two parts, community, industry has adopted other widely used names the genus and the specific epithet, which is used to identify for species sold in the marketplace. -
Undesirable Substances in Seafood Products – Results from Monitoring Activities in 2006
Undesirable substances in seafood products – Results from monitoring activities in 2006 Ásta Margrét Ásmundsdóttir Vordís Baldursdóttir Sasan Rabieh Helga Gunnlaugsdóttir Matvælaöryggi Skýrsla Matís 17-08 Júlí 2008 ISSN 1670-7192 Titill / Title Undesirable substances in seafood products– results from the monitoring activities in 2006 Höfundar / Authors Ásta Margrét Ásmundsdóttir, Vordís Baldursdóttir, Sasan Rabieh, Helga Gunnlaugsdóttir Skýrsla / Report no. 17 - 08 Útgáfudagur / Date: Júlí 2008 Verknr. / project no. 1687 Styrktaraðilar / funding: Ministry of fisheries Ágrip á íslensku: Árið 2003 hófst, að frumkvæði Sjávarútvegsráðuneytisins, vöktun á óæskilegum efnum í sjávarafurðum, bæði afurðum sem ætlaðar eru til manneldis sem og afurðum lýsis- og mjöliðnaðar. Tilgangurinn með vöktuninni er að meta ástand íslenskra sjávarafurða með tilliti til magns aðskotaefna. Gögnin sem safnað er í vöktunarverkefninu verða einnig notuð í áhættumati og til að hafa áhrif á setningu hámarksgilda óæskilegra efna t.d í Evrópu. Umfjöllun um aðskotaefni í sjávarafurðum, bæði í almennum fjölmiðlum og í vísindaritum, hefur margoft krafist viðbragða íslenskra stjórnvalda. Nauðsynlegt er að hafa til taks vísindaniðurstöður sem sýna fram á raunverulegt ástand íslenskra sjávarafurða til þess að koma í veg fyrir tjón sem af slíkri umfjöllun getur hlotist. Ennfremur eru mörk aðskotaefna í sífelldri endurskoðun og er mikilvægt fyrir Íslendinga að taka þátt í slíkri endurskoðun og styðja mál sitt með vísindagögnum. Þetta sýnir mikilvægi þess að regluleg vöktun fari fram og að á Íslandi séu stundaðar sjálfstæðar rannsóknir á eins mikilvægum málaflokki og mengun sjávarafurða er. Þessi skýrsla er samantekt niðurstaðna vöktunarinnar árið 2006. Það er langtímamarkmið að meta ástand íslenskra sjávarafurða m.t.t. magns óæskilegra efna. Þessu markmiði verður einungis náð með sívirkri vöktun í langan tíma. -
Centroscymnus Coelolepis)
W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2011 Population structure of a deep-water squaloid shark, the Portuguese dogfish (Centroscymnus coelolepis) A Verissimo Virginia Institute of Marine Science Jan McDowell Virginia Institute of Marine Science John Graves Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Verissimo, A; McDowell, Jan; and Graves, John, "Population structure of a deep-water squaloid shark, the Portuguese dogfish (Centroscymnus coelolepis)" (2011). VIMS Articles. 932. https://scholarworks.wm.edu/vimsarticles/932 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. ICES Journal of Marine Science (2011), 68(3), 555–563. doi:10.1093/icesjms/fsr003 Population structure of a deep-water squaloid shark, the Portuguese dogfish (Centroscymnus coelolepis) Downloaded from https://academic.oup.com/icesjms/article-abstract/68/3/555/661444 by Serials Dept -- College of William and Mary user on 02 November 2018 Ana Verı´ssimo*, Jan R. McDowell, and John E. Graves Virginia Institute of Marine Science, College of William & Mary, PO Box 1346, Gloucester Point, VA 23062, USA *Corresponding Author: tel: +1 804 684 7434; fax: +1 804 684 7157; e-mail: [email protected]. Verı´ssimo, A., McDowell, J. R., and Graves, J. E. 2011. Population structure of a deep-water squaloid shark, the Portuguese dogfish (Centroscymnus coelolepis). -
Pest Risk Assessment for Asian Carps in Oregon
Pest Risk Assessment for Asian Carps in Oregon IDENTITY Name: Asian Carps The common usage of the term “Asian Carps” encompasses the following four species of introduced carp (there are additional species of carp native to Asia that have been introduced into the U.S. but are not commonly included under term “Asian Carps” – see text). • bighead carp (Hypophthalmichthys nobilis) • silver carp (Hypophthalmichthys molitrix) • black carp (Mylopharyngodon piceus) • grass carp (Ctenopharyngodon idella) Taxonomic Position: order Cypriniformes, family Cyprinidae [carps and minnows] The family Cyprinidae is very diverse – it includes species that feed on plankton, herbivores, omnivores, piscivores (fish eaters such as our native pike minnow) and species like the black carp whose teeth are specially modified to crush the shells of mussels and snails - and as such it can be difficult to distinguish native versus nonnative species based on a few simple characteristics. Nevertheless, the collection of nonnative species such as Asian carps should be reported to the Oregon Department of Fish and Wildlife. Positive identification is crucial and for this reason we recommend retaining the specimen if possible or documenting the catch with photographs. Well-focused images that show the whole fish from various angles as well as close-ups of the head and fins are ideal. Additional information on identification of Asian and other nonnative carps has been compiled by the US Geological Survey and can be accessed online <http://fisc.er.usgs.gov/Carp_ID/index.html>. RISK RATING SUMMARY Relative Risk Rating: HIGH Numerical Score: 6 (on a 1-9 scale) Uncertainty: Moderate This Risk Evaluation summarizes much of the information previously compiled by the USFWS in 2008. -
Fish Species of Saskatchewan
Introduction From the shallow, nutrient -rich potholes of the prairies to the clear, cool rock -lined waters of our province’s north, Saskatchewan can boast over 50,000 fish-bearing bodies of water. Indeed, water accounts for about one-eighth, or 80,000 square kilometers, of this province’s total surface area. As numerous and varied as these waterbodies are, so too are the types of fish that inhabit them. In total, Saskatchewan is home to 67 different fish species from 16 separate taxonomic families. Of these 67, 58 are native to Saskatchewan while the remaining nine represent species that have either been introduced to our waters or have naturally extended their range into the province. Approximately one-third of the fish species found within Saskatchewan can be classed as sportfish. These are the fish commonly sought out by anglers and are the best known. The remaining two-thirds can be grouped as minnow or rough-fish species. The focus of this booklet is primarily on the sportfish of Saskatchewan, but it also includes information about several rough-fish species as well. Descriptions provide information regarding the appearance of particular fish as well as habitat preferences and spawning and feeding behaviours. The individual species range maps are subject to change due to natural range extensions and recessions or because of changes in fisheries management. "...I shall stay him no longer than to wish him a rainy evening to read this following Discourse; and that, if he be an honest Angler, the east wind may never blow when he goes a -fishing." The Compleat Angler Izaak Walton, 1593-1683 This booklet was originally published by the Saskatchewan Watershed Authority with funds generated from the sale of angling licences and made available through the FISH AND WILDLIFE DEVELOPMENT FUND. -
Northern Pike Esox Lucius ILLINOIS RANGE
northern pike Esox lucius Kingdom: Animalia FEATURES Phylum: Chordata The northern pike's average life span is eight to 10 Class: Osteichthyes years. The average weight is two pounds. It may Order: Esociformes attain a maximum length of 53 inches. The fins are rounded, and all except the pectoral fins have dark Family: Esocidae spots. Scales are present on the cheek and half of ILLINOIS STATUS the gill cover. The eyes are yellow. The long, green body has yellow spots on the sides. The belly is common, native white to dark yellow. The duckbill-shaped snout is easily seen. BEHAVIORS The northern pike lives in lakes, rivers and marshes. It prefers water without strong currents and with many plants. This fish reaches maturity at age two to three years. Spawning occurs in March. The female deposits up to 150,000 eggs that are scattered in marshy areas or other shallow water areas. Eggs hatch in 12-14 days. This fish eats fishes, insects, crayfish, frogs and reptiles. ILLINOIS RANGE © Illinois Department of Natural Resources. 2020. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources. close up of head close up of side © Illinois Department of Natural Resources. 2020. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources. © Engbretson Underwater Photography adult Aquatic Habitats lakes, ponds and reservoirs; rivers and streams; marshes Woodland Habitats none Prairie and Edge Habitats none © Illinois Department of Natural Resources. 2020. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources.. -
Fisheries Full Issue PDF Volume 39, Issue 3
This article was downloaded by: [American Fisheries Society] On: 24 March 2014, At: 13:30 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Fisheries Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ufsh20 Full Issue PDF Volume 39, Issue 3 Published online: 21 Mar 2014. To cite this article: (2014) Full Issue PDF Volume 39, Issue 3, Fisheries, 39:3, 97-144, DOI: 10.1080/03632415.2014.902705 To link to this article: http://dx.doi.org/10.1080/03632415.2014.902705 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. -
Esox Lucius) Ecological Risk Screening Summary
Northern Pike (Esox lucius) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2019 Web Version, 8/26/2019 Photo: Ryan Hagerty/USFWS. Public Domain – Government Work. Available: https://digitalmedia.fws.gov/digital/collection/natdiglib/id/26990/rec/22. (February 1, 2019). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019a): “Circumpolar in fresh water. North America: Atlantic, Arctic, Pacific, Great Lakes, and Mississippi River basins from Labrador to Alaska and south to Pennsylvania and Nebraska, USA [Page and Burr 2011]. Eurasia: Caspian, Black, Baltic, White, Barents, Arctic, North and Aral Seas and Atlantic basins, southwest to Adour drainage; Mediterranean basin in Rhône drainage and northern Italy. Widely distributed in central Asia and Siberia easward [sic] to Anadyr drainage (Bering Sea basin). Historically absent from Iberian Peninsula, Mediterranean France, central Italy, southern and western Greece, eastern Adriatic basin, Iceland, western Norway and northern Scotland.” Froese and Pauly (2019a) list Esox lucius as native in Armenia, Azerbaijan, China, Georgia, Iran, Kazakhstan, Mongolia, Turkey, Turkmenistan, Uzbekistan, Albania, Austria, Belgium, Bosnia Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Macedonia, Moldova, Monaco, 1 Netherlands, Norway, Poland, Romania, Russia, Serbia, Slovakia, Slovenia, Sweden, Switzerland, United Kingdom, Ukraine, Canada, and the United States (including Alaska). From Froese and Pauly (2019a): “Occurs in Erqishi river and Ulungur lake [in China].” “Known from the Selenge drainage [in Mongolia] [Kottelat 2006].” “[In Turkey:] Known from the European Black Sea watersheds, Anatolian Black Sea watersheds, Central and Western Anatolian lake watersheds, and Gulf watersheds (Firat Nehri, Dicle Nehri). -
Identification Guide to the Deep-Sea Cartilaginous Fishes Of
Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean FAO. 2015. Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean. FishFinder Programme, by Ebert, D.A. and Mostarda, E., Rome, Italy. Supervision: Merete Tandstad, Jessica Sanders (FAO, Rome) Technical editor: Edoardo Mostarda (FAO, Rome) Colour illustrations, cover and graphic design: Emanuela D’Antoni (FAO, Rome) This guide was prepared under the “FAO Deep–sea Fisheries Programme” thanks to a generous funding from the Government of Norway (Support to the implementation of the International Guidelines on the Management of Deep-Sea Fisheries in the High Seas project) for the purpose of assisting states, institutions, the fishing industry and RFMO/As in the implementation of FAO International Guidelines for the Management of Deep-sea Fisheries in the High Seas. It was developed in close collaboration with the FishFinder Programme of the Marine and Inland Fisheries Branch, Fisheries Department, Food and Agriculture Organization of the United Nations (FAO). The present guide covers the deep–sea Southeastern Atlantic Ocean and that portion of Southwestern Indian Ocean from 18°42’E to 30°00’E (FAO Fishing Area 47). It includes a selection of cartilaginous fish species of major, moderate and minor importance to fisheries as well as those of doubtful or potential use to fisheries. It also covers those little known species that may be of research, educational, and ecological importance. In this region, the deep–sea chondrichthyan fauna is currently represented by 50 shark, 20 batoid and 8 chimaera species. This guide includes full species accounts for 37 shark, 9 batoid and 4 chimaera species selected as being the more difficult to identify and/or commonly caught. -
Invertebrate Predators and Grazers
9 Invertebrate Predators and Grazers ROBERT C. CARPENTER Department of Biology California State University Northridge, California 91330 Coral reefs are among the most productive and diverse biological communities on earth. Some of the diversity of coral reefs is associated with the invertebrate organisms that are the primary builders of reefs, the scleractinian corals. While sessile invertebrates, such as stony corals, soft corals, gorgonians, anemones, and sponges, and algae are the dominant occupiers of primary space in coral reef communities, their relative abundances are often determined by the activities of mobile, invertebrate and vertebrate predators and grazers. Hixon (Chapter X) has reviewed the direct effects of fishes on coral reef community structure and function and Glynn (1990) has provided an excellent review of the feeding ecology of many coral reef consumers. My intent here is to review the different types of mobile invertebrate predators and grazers on coral reefs, concentrating on those that have disproportionate effects on coral reef communities and are intimately involved with the life and death of coral reefs. The sheer number and diversity of mobile invertebrates associated with coral reefs is daunting with species from several major phyla including the Annelida, Arthropoda, Mollusca, and Echinodermata. Numerous species of minor phyla are also represented in reef communities, but their abundance and importance have not been well-studied. As a result, our understanding of the effects of predation and grazing by invertebrates in coral reef environments is based on studies of a few representatives from the major groups of mobile invertebrates. Predators may be generalists or specialists in choosing their prey and this may determine the effects of their feeding on community-level patterns of prey abundance (Paine, 1966). -
Press Release
Institute of Statistics [email protected] Rr. Vllazën Huta, www.instat.gov.al Ndërtesa 35, Hyrja 1 Tel: +355 4 2222 411 Tiranë, Kodi Postar 1017 Fax: +355 4 2222 411 Fishery Statistics 2019 Tirana, 26 June 2020: In 2019, catches in all fish categories was 15,011 tonnes from 14,875 tonnes in 2018, increasing by 0.91 %. Fig. 1 Fish catches in total 2014 – 2019 (tonnes) 16000 14,875 15,011 15000 14000 13000 12,534 12,719 12000 11,022 11,170 11000 10000 2014 2015 2016 2017 2018 2019 Catches structure by water categories Fishing water categories are: marine, brackish waters, lagoons, inland waters, aquaculture and mollusks. Two are the main categories which represent the biggest percentage of fish catches, respectively “Marine” fishing with 36.64 % and "Aquaculture" with 34.83 % followed by Inland waters with 18.46 % of the total catches. Fig. 2 Catches structure by water categories, 2019 (in percentage) 7.16 Marine Costal line 36.64 Costal lagoons 34.83 Inland waters Aquaculture Mitylus galloprovicialis 18.46 2.28 0.62 For release 26/06/2020 Continues Page 2 Fishery Statistics 2019 Annual catch changes by water category In 2019, the category “Inland waters” faced the largest increase, by 14.20 % compared to the previous year, followed by the catches of the category of “Coastal line” by 8.56 % and “Aquaculture” by 1.77 %. The aquatic category "Coastal lagoons", marked a decrease compared to a year ago, about 73.25 %, followed by the category "Mollusk" with 2.98 %. Tab.1 Catches by water category Description 2015 2016 2017 2018 2019 Fishing -
Coelho Phd Lantern S
UNIVERSIDADEdo ALGARVE FaculdadedeCiênciasdoMaredo Ambiente Biology,populationdynamics,managementandconservation ofdeepwaterlanternsharks,Etmopterusspinax and Etmopteruspusillus (Chondrichthyes:Etmopteridae)insouthernPortugal(northeastAtlantic). (DoutoramentoemCiênciaseTecnologiasdasPescas,especialidadedeBiologiaPesqueira) (ThesisforthedegreeinDoctorofPhilosophyinFisheriesSciencesandTechnologies,specialtyinFisheriesBiology) RUIPEDROANDRADECOELHO Faro (2007) UNIVERSIDADE DO ALGARVE FACULDADE DE CIÊNCIAS DO MAR E DO AMBIENTE Biology, population dynamics, management and conservation of deep water lantern sharks, Etmopterus spinax and Etmopterus pusillus (Chondrichthyes: Etmopteridae) in southern Portugal (northeast Atlantic). (Doutoramento em Ciências e Tecnologias das Pescas, especialidade de Biologia Pesqueira) (Thesis for the degree in Doctor of Philosophy in Fisheries Sciences and Technologies, specialty in Fisheries Biology) RUI PEDRO ANDRADE COELHO Orientador / Supervisor: Prof. Doutor Karim Erzini Júri / Jury: - Prof. Doutor José Pedro Andrade, Professor Catedrático da Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve; - Prof. Doutor Karim Erzini, Professor Associado com Agregação da Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve; - Prof. Doutor Leonel Paulo Sul de Serrano Gordo, Professor Auxiliar com Agregação da Faculdade de Ciências, Universidade de Lisboa; - Prof. Doutor Manuel Seixas Afonso Dias, Professor Auxiliar da Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve;