Fisheries Full Issue PDF Volume 39, Issue 3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gas Bubble Disease
CONF-741033 Gas Bubble Disease Proceedings of a Workshop held at Richland, Washington, October 8-9, 1974 Cosponsored by Battelle, Pacific Northwest Laboratories, and U.S. Atomic Energy Commission Editors D. H. Fickeisen and M. J. Schneider 1976 Published by Technical Information Center, Office of Public Affairs Energy Research and Development Administration E. M. Dawley Effec s of ong M. Schiewe Term Exposure to B. Monk Supersaturation of Dissolved Atmospheric Gases on Juvenile Chinook Salmon and Steelhead Trout in Deep and Shallow Test Tanks ABSTRACT Dawley and Ebel, 1974) but there are still many un Bioassays in shallow (0.25 m) and deep (2.5 m) tanks with dis Jnswered questions regarding the effects of chronic solved atmospheric gas concentrations ranging from 100 to low-level exposure on survival. Fish may be subjected ° 127% of saturation in water at 10 C were conducted to deter to low levels of supersaturation in two ways. They mine the lethal and sublethal effects on juvenile fall chinook Oncorhynchus tschawytscha and steelhead trout Sa/mo gairdneri. may inhabit water areas where they cannot com Juvenile fall chinook (38.7 to 41.3 mm) were much more pensate for gas saturation by sounding, or they resistant to supersaturation than juvenile steelhead (164 to may inhabit deep water areas where hydrostatic 196 mm). Chinook tested in the shallow tanks at 120% of super pressure offsets the effects of high gas levels. saturation incurred 50% mortality after 22 days, whereas steel head tested at the same level incurred 50% mortality in 30 hr. The National Marine Fisheries Service, funded Gas bubble disease signs were noted on mortalities and on live in part by the Environmental Protection Agency subsamples taken every 28 days. -
Fish Species of Saskatchewan
Introduction From the shallow, nutrient -rich potholes of the prairies to the clear, cool rock -lined waters of our province’s north, Saskatchewan can boast over 50,000 fish-bearing bodies of water. Indeed, water accounts for about one-eighth, or 80,000 square kilometers, of this province’s total surface area. As numerous and varied as these waterbodies are, so too are the types of fish that inhabit them. In total, Saskatchewan is home to 67 different fish species from 16 separate taxonomic families. Of these 67, 58 are native to Saskatchewan while the remaining nine represent species that have either been introduced to our waters or have naturally extended their range into the province. Approximately one-third of the fish species found within Saskatchewan can be classed as sportfish. These are the fish commonly sought out by anglers and are the best known. The remaining two-thirds can be grouped as minnow or rough-fish species. The focus of this booklet is primarily on the sportfish of Saskatchewan, but it also includes information about several rough-fish species as well. Descriptions provide information regarding the appearance of particular fish as well as habitat preferences and spawning and feeding behaviours. The individual species range maps are subject to change due to natural range extensions and recessions or because of changes in fisheries management. "...I shall stay him no longer than to wish him a rainy evening to read this following Discourse; and that, if he be an honest Angler, the east wind may never blow when he goes a -fishing." The Compleat Angler Izaak Walton, 1593-1683 This booklet was originally published by the Saskatchewan Watershed Authority with funds generated from the sale of angling licences and made available through the FISH AND WILDLIFE DEVELOPMENT FUND. -
Northern Pike Esox Lucius ILLINOIS RANGE
northern pike Esox lucius Kingdom: Animalia FEATURES Phylum: Chordata The northern pike's average life span is eight to 10 Class: Osteichthyes years. The average weight is two pounds. It may Order: Esociformes attain a maximum length of 53 inches. The fins are rounded, and all except the pectoral fins have dark Family: Esocidae spots. Scales are present on the cheek and half of ILLINOIS STATUS the gill cover. The eyes are yellow. The long, green body has yellow spots on the sides. The belly is common, native white to dark yellow. The duckbill-shaped snout is easily seen. BEHAVIORS The northern pike lives in lakes, rivers and marshes. It prefers water without strong currents and with many plants. This fish reaches maturity at age two to three years. Spawning occurs in March. The female deposits up to 150,000 eggs that are scattered in marshy areas or other shallow water areas. Eggs hatch in 12-14 days. This fish eats fishes, insects, crayfish, frogs and reptiles. ILLINOIS RANGE © Illinois Department of Natural Resources. 2020. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources. close up of head close up of side © Illinois Department of Natural Resources. 2020. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources. © Engbretson Underwater Photography adult Aquatic Habitats lakes, ponds and reservoirs; rivers and streams; marshes Woodland Habitats none Prairie and Edge Habitats none © Illinois Department of Natural Resources. 2020. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources.. -
Use of Oxygen Readings to Avoid Gas Bubble Disease in Clam Hatcheries
I.OAtlCOPY ONg NJNSC-G-98-001 C3 g k ~ February 1998 FS906 Use of Oxygen Readings to Avoid Gas Bubble Disease in Clam Hatcheries By Dr. John N. Kraeuter, Haskin Shellfish ResearchLab Rutgers Uni versity and Gef Flimlin New Jersey Sea Grant Marine Advisory Service The major gases in air and water are nitrogen because nitrogen is the dominant gas in air and 8%! and oxygen 1%!. It is obvious that bay water water, and it is not metabolized by the shellfish, contains oxygen, because if it didn't phytoplankton, Nitrogen, like oxygen, enters the organism through shellfish and fish couldn't live there. Everyone has the gills, and then is carried to the tissue by the seen summer fish kills from insufficient oxygen, or blood. Once distributed, nitrogen remains in the suffocated clams under dense piles of seaweed. These tissue while oxygen is used iip. If nitrogen enters the organisms, like humans, need oxygen to carry on the tissue in a supersaturated condition and accumulates, normal functions; however, water of different it will respond by coming out of solution into the temperature, salinity and pressure holds differing organism in the form of bubbles. Divers call these ainounts of oxygen and other gases called air. Too bubbles the bends, in shellfish it is called gas bubble high a concentration of gas or too low a concentration disease. can cause an organism to die. When the concentration of a gas, like oxygen, is the exact amount the water can hold for the pressure, temperature, and salinity; the water is considered "saturated". -
And Crassostrea Virginica (Gmelin)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by College of William & Mary: W&M Publish W&M ScholarWorks VIMS Articles 1987 Effect Of Air-Supersaturated Sea Water On Argopecten irradians concentricus (Say) And Crassostrea virginica (Gmelin) Robert Bisker Virginia Institute of Marine Science Michael Castagna Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Bisker, Robert and Castagna, Michael, "Effect Of Air-Supersaturated Sea Water On Argopecten irradians concentricus (Say) And Crassostrea virginica (Gmelin)" (1987). VIMS Articles. 1289. https://scholarworks.wm.edu/vimsarticles/1289 This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Journal of Shellfish Research, Vol. 6, No. 2, 79-83, 1987. EFFECT OF AIR-SUPERSATURATED SEAWATER ON ARGOPECTEN IRRADIANS CONCENTRICUS (SAY) AND CRASSOSTREA VIRGIN/CA (GMELIN) ROBERT BISKER & MICHAEL CASTAGNA Virginia Institute of Marine Science School of Marine Science College of William and Mary Wachapreague, Virginia 23480 ABSTRACT Argopecten irradians concentricus and Crassostrea virginica were exposed to several different levels of supersaturated seawater at temperatures ranging from 10 to 2!°C. Gas bubble trauma occurred at a total gas saturation level of 116%, causing mortality in juvenile A. i. concentricus and reduced growth in juvenile C. virginica. KEY WORDS: Gas bubble trauma, air-supersaturated seawater, Argopecten, Crassostrea, cultured bivalves. INTRODUCTION bubble formation (Colt 1983). -
APPENDIX M Common and Scientific Species Names
Bay du Nord Development Project Environmental Impact Statement APPENDIX M Common and Scientific Species Names Bay du Nord Development Project Environmental Impact Statement Common and Species Names Common Name Scientific Name Fish Abyssal Skate Bathyraja abyssicola Acadian Redfish Sebastes fasciatus Albacore Tuna Thunnus alalunga Alewife (or Gaspereau) Alosa pseudoharengus Alfonsino Beryx decadactylus American Eel Anguilla rostrata American Plaice Hippoglossoides platessoides American Shad Alosa sapidissima Anchovy Engraulidae (F) Arctic Char (or Charr) Salvelinus alpinus Arctic Cod Boreogadus saida Atlantic Bluefin Tuna Thunnus thynnus Atlantic Cod Gadus morhua Atlantic Halibut Hippoglossus hippoglossus Atlantic Mackerel Scomber scombrus Atlantic Salmon (landlocked: Ouananiche) Salmo salar Atlantic Saury Scomberesox saurus Atlantic Silverside Menidia menidia Atlantic Sturgeon Acipenser oxyrhynchus oxyrhynchus Atlantic Wreckfish Polyprion americanus Barndoor Skate Dipturus laevis Basking Shark Cetorhinus maximus Bigeye Tuna Thunnus obesus Black Dogfish Centroscyllium fabricii Blue Hake Antimora rostrata Blue Marlin Makaira nigricans Blue Runner Caranx crysos Blue Shark Prionace glauca Blueback Herring Alosa aestivalis Boa Dragonfish Stomias boa ferox Brook Trout Salvelinus fontinalis Brown Bullhead Catfish Ameiurus nebulosus Burbot Lota lota Capelin Mallotus villosus Cardinal Fish Apogonidae (F) Chain Pickerel Esox niger Common Grenadier Nezumia bairdii Common Lumpfish Cyclopterus lumpus Common Thresher Shark Alopias vulpinus Crucian Carp -
Esox Lucius) Ecological Risk Screening Summary
Northern Pike (Esox lucius) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2019 Web Version, 8/26/2019 Photo: Ryan Hagerty/USFWS. Public Domain – Government Work. Available: https://digitalmedia.fws.gov/digital/collection/natdiglib/id/26990/rec/22. (February 1, 2019). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019a): “Circumpolar in fresh water. North America: Atlantic, Arctic, Pacific, Great Lakes, and Mississippi River basins from Labrador to Alaska and south to Pennsylvania and Nebraska, USA [Page and Burr 2011]. Eurasia: Caspian, Black, Baltic, White, Barents, Arctic, North and Aral Seas and Atlantic basins, southwest to Adour drainage; Mediterranean basin in Rhône drainage and northern Italy. Widely distributed in central Asia and Siberia easward [sic] to Anadyr drainage (Bering Sea basin). Historically absent from Iberian Peninsula, Mediterranean France, central Italy, southern and western Greece, eastern Adriatic basin, Iceland, western Norway and northern Scotland.” Froese and Pauly (2019a) list Esox lucius as native in Armenia, Azerbaijan, China, Georgia, Iran, Kazakhstan, Mongolia, Turkey, Turkmenistan, Uzbekistan, Albania, Austria, Belgium, Bosnia Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Macedonia, Moldova, Monaco, 1 Netherlands, Norway, Poland, Romania, Russia, Serbia, Slovakia, Slovenia, Sweden, Switzerland, United Kingdom, Ukraine, Canada, and the United States (including Alaska). From Froese and Pauly (2019a): “Occurs in Erqishi river and Ulungur lake [in China].” “Known from the Selenge drainage [in Mongolia] [Kottelat 2006].” “[In Turkey:] Known from the European Black Sea watersheds, Anatolian Black Sea watersheds, Central and Western Anatolian lake watersheds, and Gulf watersheds (Firat Nehri, Dicle Nehri). -
Lake St. Clair Food Web MENT of C
ATMOSPH ND ER A I C C I A N D A M E I C N O I S L T A R N A T O I I O T N A N U E .S C .D R E E PA M RT OM Lake St. Clair Food Web MENT OF C Sea Lamprey White Bass Walleye Rock Bass Muskellunge Smallmouth Bass Northern Pike Pumpkinseed Yellow Perch Rainbow Common Carp Smelt Channel Catfish Freshwater Drum Spottail Shiner Round Goby Lake Sturgeon Mayfly nymphs Gammarus Raptorial waterflea Zebra/Quagga mussels Invasive waterflea Chironomids Mollusks Calanoids Native waterflea Cyclopoids Diatoms Green algae Blue-green algae Flagellates Rotifers Foodweb based on “Impact of exotic invertebrate invaders on food web structure and function in the Great Lakes: NOAA, Great Lakes Environmental Research Laboratory, 4840 S. State Road, Ann Arbor, MI A network analysis approach” by Mason, Krause, and Ulanowicz, 2002 - Modifications for Lake St. Clair, 2009. 734-741-2235 - www.glerl.noaa.gov Lake St. Clair Food Web Sea Lamprey Planktivores/Benthivores Sea lamprey (Petromyzon marinus). An aggressive, non-native parasite that Lake Sturgeon (Acipenser fulvscens). Endangered over most of its historic fastens onto its prey and rasps out a hole with its rough tongue. range. Its diet commonly includes small clams, snails, crayfish, sideswimmers, aquatic insect larvae, algae, and other plant matter. Piscivores (Fish Eaters) Macroinvertebrates White bass (Morone Chrysops). Prefers clear open water in lakes and large rivers. Chironomids/Oligochaetes. Larval insects and worms that live on the lake Visual feeders, uses sight instead of smell to find prey. -
Current Ocean Wise Approved Canadian MSC Fisheries
Current Ocean Wise approved Canadian MSC Fisheries Updated: November 14, 2017 Legend: Blue - Ocean Wise Red - Not Ocean Wise White - Only specific areas or gear types are Ocean Wise Species Common Name Latin Name MSC Fishery Name Gear Location Reason for Exception Clam Clearwater Seafoods Banquereau and Banquereau Bank Artic surf clam Mactromeris polynyma Grand Banks Arctic surf clam Hydraulic dredges Grand Banks Crab Snow Crab Chionoecetes opilio Gulf of St Lawrence snow crab trap Conical or rectangular crab pots (traps) North West Atlantic - Nova Scotia Snow Crab Chionoecetes opilio Scotian shelf snow crab trap Conical or rectangular crab pots (traps) North West Atlantic - Nova Scotia Snow Crab Chionoecetes opilio Newfoundland & Labrador snow crab Pots Newfoundland & Labrador Flounder/Sole Yellowtail flounder Limanda ferruginea OCI Grand Bank yellowtail flounder trawl Demersal trawl Grand Banks Haddock Trawl Bottom longline Gillnet Hook and Line CAN - Scotian shelf 4X5Y Trawl Bottom longline Gillnet Atlantic haddock Melangrammus aeglefinus Canada Scotia-Fundy haddock Hook and Line CAN - Scotian shelf 5Zjm Hake Washington, Oregon and California North Pacific hake Merluccius productus Pacific hake mid-water trawl Mid-water Trawl British Columbia Halibut Pacific Halibut Hippoglossus stenolepis Canada Pacific halibut (British Columbia) Bottom longline British Columbia Longline Nova Scotia and Newfoundland Gillnet including part of the Grand banks and Trawl Georges bank, NAFO areas 3NOPS, Atlantic Halibut Hippoglossus hippoglossus Canada -
Atlantic Goliath Grouper of Florida
AtlAntic GoliAth Grouper of floridA: to fish or not to fish Christopher C. Koenig1, Felicia C. Coleman and Christopher R. Malinowski— Florida State University Coastal and Marine Laboratory, 3618 Coastal Highway 98, St. Teresa, FL 32358 FISHERIES | VOL. 45 * NO. 1 |JANUARY 2020 1 Corresponding author ([email protected]) 1 ABSTRACT The Atlantic Goliath Grouper Epinephelus itajara, a large indigenous tropical reef fish, approached local extinction in U. S. waters by the 1980s as a result of intense fishing pressure. In 1990, federal and state laws intervened to protect this species. The resulting fishery closure, over the intervening years, allowed limited, slow population recovery in Florida waters while populations outside of the U. S. remained vulnerable (IUCN: Bertoncini et al. 2018). The closure led to the blossoming of a dive ecotourism industry catering to local and international divers seeking opportunities to see and photograph these enormous fish. This fundamentally changes the paradigm for Goliath Grouper from a fishery resource to a non-extractive resource with a commercial value vastly greater than that gained through fishing. While federal and state agencies attempted to re-establish the fishery, all three stock assessments were rejected after peer review. Here, we discuss Goliath Grouper’s biology, the controversy surrounding its protection, and the drawbacks of re-establishing a fishery, including: the loss of nursery habitat, increasingly destructive episodic events like red tide and cold snaps, and the effects of mercury contamination on survival. Add to this the human health risk of consuming mercury-contaminated fishes, and the argument supporting re-opening the fishery evaporates. -
Issue 4: July 2018
Fish Health News You Can Use Brought to you by the Pacific Region Fish Health Program July 2018, edition Salt Use, Parasites, Stress, and This Issue Page 1 - Salt use, parasites, stress, and Osmoregulation osmoregulation Maintaining adequate amounts of salt in their Page 4 - Fungi blood is a critical, difficult, and energy intensive Page 6 - Fun fungi factoids task for all fish. Like us, fish have almost 9 Page 7 - PRFHP updates grams per liter (9 parts per thousand or 9 ppt) Page 9 - Another long (but understandable and of salt in their blood. However, the freshwater important) gas bubble disease essay environment (especially here in the Pacific Page 16 - Mystery parasite of the day Northwest) has almost no salt. This means that fish are constantly loosing salt as it leaks from Contact Us their skin and gills into the water. The only way Pacific Region Fish Health Program Manager to keep up with that salt loss is to either 1) take Andrew Goodwin in new salt in food, or 2) to use energy to pump US Fish and Wildlife Service, Pacific Region salts from the environment in through the gills 911 N.E. 11th Avenue and back into the blood. Portland, OR 97232 Phone: (503) 231-6784 Fish gills are an especially critical area for salt management. In the gills of the fish, the only Email: [email protected] Website barrier between the blood and the environment www.fws.gov/pacific/Fisheries/fishhealth/ is the gill membrane. That membrane is super thin (a few thousandths of a millimeter thick) to efficiently allow oxygen in and carbon dioxide out. -
A Meta‐Analysis of Gas Bubble Trauma in Fish
Received: 24 April 2020 | Revised: 23 June 2020 | Accepted: 23 July 2020 DOI: 10.1111/faf.12496 ORIGINAL ARTICLE A meta-analysis of gas bubble trauma in fish Naomi K. Pleizier1 | Dirk Algera2 | Steven J. Cooke2 | Colin J. Brauner1 1Department of Zoology, University of British Columbia, Vancouver, BC, Canada Abstract 2Fish Ecology and Conservation Physiology Total dissolved gas (TDG) supersaturation generated by dams is known to cause gas Laboratory, Department of Biology, Carleton bubble trauma (GBT) and mortality in fish, but despite many studies on the topic, University, Ottawa, ON, Canada there have been no recent attempts to systematically review the data. We con- Correspondence ducted a systematic review and meta-analysis to determine how different levels of Naomi K. Pleizier, Department of Zoology, University of British Columbia, #4200 - TDG supersaturation in laboratory experiments impact mortality and GBT outcomes 6270, University Blvd., Vancouver, British of freshwater fishes. We also examined all TDG laboratory studies on freshwater Columbia, Canada. Email: [email protected] fish to identify research gaps in the GBT literature. Factors that improved the linear mixed-effects models and Cox proportional hazards models of the relationship be- Funding information Natural Sciences and Engineering Research tween TDG supersaturation and time to 50% mortality, time to 10% mortality, time Council of Canada to the appearance of bubbles in the gills and time to external GBT symptoms include depth, temperature, oxygen-to-nitrogen ratios, species, body mass, the interaction between TDG and depth and author group for one or more of the models of the relationship between TDG and GBT outcomes.