Microbubble Treatment of Gas Supersaturated Water

Total Page:16

File Type:pdf, Size:1020Kb

Microbubble Treatment of Gas Supersaturated Water MICROBUBBLE TREATMENT OF GAS SUPERSATURATED WATER Contract No. GS-23F-0339K/01PE810319 Desalination and Water Purification R&D Program Report No. 70 December 2001 U.S. Department of Interior Bureau of Reclamation Denver Office Technical Service Center Environmental Resources Team Water Treatment Engineering and Research Group MICROBUBBLE TREATMENT OF GAS SUPERSATURATED WATER Mark A. Lichtwardt ARCADIS G&M, Inc. Highlands Ranch, Colorado Co-Author Andrew Murphy Bureau of Reclamation Denver, Colorado Contract No. GS-23F-0339K/01PE810319 Desalination and Water Purification R&D Program Report No. 70 December 2001 U.S. Department of Interior Bureau of Reclamation Denver Office Technical Service Center Environmental Resources Team Water Treatment Engineering and Research Group Mission Statements U.S. Department of the Interior The mission of the Department of the Interior is to protect and provide access to our Nation’s natural and cultural heritage and honor our trust responsibilities to tribes. Bureau of Reclamation The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Disclaimer The information contained in this report regarding commercial products or firms may not be used for advertising or promotional purposes and is not to be construed as an endorsement of any product or firm by the Bureau of Reclamation. The information contained in this report was developed for the Bureau of Reclamation; no warranty as to the accuracy, usefulness, or completeness is expressed or implied. Acknowledgements This work was financially supported by the U.S. Department of Interior, Bureau of Reclamation under Contract No. GS-23F-0339K/01PE810319. The project team acknowledges the Bureau of Reclamations’ Desalination and Water Purification R&D Program, the Water Treatment Engineering and Research Group, the Denver Research Office, and the PN Region for their support of the project, and would like to especially thank Dan Gonzales, the staff at Grand Coulee Dam, and the Alamosa Field Office for their assistance with data collection and field-testing. Table of Contents List of Tables.....................................................................................................................iii List of Figures...................................................................................................................iv Glossary.............................................................................................................................. v EXECUTIVE SUMMARY............................................................................................... 1 1. INTRODUCTION..................................................................................................... 5 1.1. Gas Bubble Disease............................................................................................. 5 1.2. Regulatory Considerations .................................................................................. 6 1.3. Description of Proposed Treatment Method ....................................................... 6 1.4. Scope of Work..................................................................................................... 7 1.5. Report Organization ............................................................................................ 8 2. CONCLUSIONS AND RECOMMENDATIONS.................................................. 9 2.1 Treatment Process Development Phase .............................................................. 9 2.2 Test and Evaluation Phase................................................................................. 10 3. TREATMENT PROCESS DEVELOPMENT .....................................................12 3.1 Automated Generation of Gas-Supersaturated Water....................................... 12 3.2 Generation of Microbubbles.............................................................................. 13 3.2.1 Hollow-Fiber Membranes ......................................................................... 13 3.2.2 Cylindrical Diffusers................................................................................. 13 3.2.3 Flat-Plate Diffusers ................................................................................... 13 3.3 Optimum Microbubble Size..............................................................................14 3.4 Preliminary Laboratory Testing ........................................................................ 15 3.4.1 Diffuser Pore Size ..................................................................................... 15 3.4.2 Surface Tension......................................................................................... 15 3.4.3 Density of Gas........................................................................................... 16 3.5 Preliminary Field Testing.................................................................................. 16 3.5.1 Site Selection & Test Preparation ............................................................. 16 3.5.2 Testing Procedures .................................................................................... 17 3.5.3 Preliminary Demonstration ....................................................................... 17 3.5.4 Naturally Occurring Gases........................................................................ 18 3.5.5 Comparison of Diffusers ........................................................................... 18 3.5.6 Comparison of Treatment Gases............................................................... 18 3.6 Summary of Results ..........................................................................................19 4. TEST AND EVALUATION................................................................................... 20 4.1 Correlation Between Dissolved Gases .............................................................. 20 4.2 Investigation of GBD ........................................................................................ 20 4.3 Thermodynamic Analysis of the Treatment Process......................................... 23 4.4 Columbia River Data......................................................................................... 23 4.4.1 Historical and Real-Time TDG Measurements......................................... 23 4.4.2 DO Data..................................................................................................... 24 4.5 Variables of Interest .......................................................................................... 24 4.5.1 Dissolved Gas Concentrations .................................................................. 24 4.5.2 Ambient Conditions/Properties................................................................. 24 4.5.3 River Conditions....................................................................................... 26 i 4.5.4 Treatment Variables .................................................................................. 26 4.6 Laboratory Testing ............................................................................................ 27 4.6.1 Diffuser Modification................................................................................ 27 4.6.2 Additional Diffuser Testing ...................................................................... 27 4.7 Field Testing...................................................................................................... 27 4.7.1 Site Selection............................................................................................. 27 4.7.2 Environmental Documents/Job Hazard Analysis...................................... 28 4.7.3 Tests .......................................................................................................... 28 4.8 Oxygen Enriching Techniques.......................................................................... 29 4.8.1 Pressure Swing Adsorption ....................................................................... 30 4.8.2 Vacuum Swing Adsorption....................................................................... 30 4.8.3 Cryogenics................................................................................................. 31 4.8.4 Membrane Separation ............................................................................... 31 4.9 Columbia River Design Criteria........................................................................ 32 4.10 Computer Modeling.......................................................................................... 32 4.10.1 Performance Model................................................................................... 32 4.10.2 Cost Model................................................................................................ 33 5. REFERENCES........................................................................................................ 34 Appendices Appendix A: Dissolved Gas Equations Appendix B: Air Sample Record – Analysis of Gas Sample Collected Under Water at the Franklin Eddy Canal, Alamosa, Colorado Appendix C: Preliminary Laboratory and Field Test Data/Plots Appendix D: Test and Evaluation Data/Plots Appendix E: Preliminary Performance/Cost Models Appendix F: Unit Conversions ii List of Tables Table 1: Field-Testing Equipment and Measured Parameters . 18 Table 2: Relationship Between Variables of Interest . 25 Table C-1: Laboratory Comparison of Air and Oxygen as a Treatment Gas . App. C
Recommended publications
  • Gas Bubble Disease
    CONF-741033 Gas Bubble Disease Proceedings of a Workshop held at Richland, Washington, October 8-9, 1974 Cosponsored by Battelle, Pacific Northwest Laboratories, and U.S. Atomic Energy Commission Editors D. H. Fickeisen and M. J. Schneider 1976 Published by Technical Information Center, Office of Public Affairs Energy Research and Development Administration E. M. Dawley Effec s of ong­ M. Schiewe Term Exposure to B. Monk Supersaturation of Dissolved Atmospheric Gases on Juvenile Chinook Salmon and Steelhead Trout in Deep and Shallow Test Tanks ABSTRACT Dawley and Ebel, 1974) but there are still many un­ Bioassays in shallow (0.25 m) and deep (2.5 m) tanks with dis­ Jnswered questions regarding the effects of chronic solved atmospheric gas concentrations ranging from 100 to low-level exposure on survival. Fish may be subjected ° 127% of saturation in water at 10 C were conducted to deter­ to low levels of supersaturation in two ways. They mine the lethal and sublethal effects on juvenile fall chinook Oncorhynchus tschawytscha and steelhead trout Sa/mo gairdneri. may inhabit water areas where they cannot com­ Juvenile fall chinook (38.7 to 41.3 mm) were much more pensate for gas saturation by sounding, or they resistant to supersaturation than juvenile steelhead (164 to may inhabit deep water areas where hydrostatic 196 mm). Chinook tested in the shallow tanks at 120% of super­ pressure offsets the effects of high gas levels. saturation incurred 50% mortality after 22 days, whereas steel­ head tested at the same level incurred 50% mortality in 30 hr. The National Marine Fisheries Service, funded Gas bubble disease signs were noted on mortalities and on live in part by the Environmental Protection Agency subsamples taken every 28 days.
    [Show full text]
  • Use of Oxygen Readings to Avoid Gas Bubble Disease in Clam Hatcheries
    I.OAtlCOPY ONg NJNSC-G-98-001 C3 g k ~ February 1998 FS906 Use of Oxygen Readings to Avoid Gas Bubble Disease in Clam Hatcheries By Dr. John N. Kraeuter, Haskin Shellfish ResearchLab Rutgers Uni versity and Gef Flimlin New Jersey Sea Grant Marine Advisory Service The major gases in air and water are nitrogen because nitrogen is the dominant gas in air and 8%! and oxygen 1%!. It is obvious that bay water water, and it is not metabolized by the shellfish, contains oxygen, because if it didn't phytoplankton, Nitrogen, like oxygen, enters the organism through shellfish and fish couldn't live there. Everyone has the gills, and then is carried to the tissue by the seen summer fish kills from insufficient oxygen, or blood. Once distributed, nitrogen remains in the suffocated clams under dense piles of seaweed. These tissue while oxygen is used iip. If nitrogen enters the organisms, like humans, need oxygen to carry on the tissue in a supersaturated condition and accumulates, normal functions; however, water of different it will respond by coming out of solution into the temperature, salinity and pressure holds differing organism in the form of bubbles. Divers call these ainounts of oxygen and other gases called air. Too bubbles the bends, in shellfish it is called gas bubble high a concentration of gas or too low a concentration disease. can cause an organism to die. When the concentration of a gas, like oxygen, is the exact amount the water can hold for the pressure, temperature, and salinity; the water is considered "saturated".
    [Show full text]
  • And Crassostrea Virginica (Gmelin)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by College of William & Mary: W&M Publish W&M ScholarWorks VIMS Articles 1987 Effect Of Air-Supersaturated Sea Water On Argopecten irradians concentricus (Say) And Crassostrea virginica (Gmelin) Robert Bisker Virginia Institute of Marine Science Michael Castagna Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Bisker, Robert and Castagna, Michael, "Effect Of Air-Supersaturated Sea Water On Argopecten irradians concentricus (Say) And Crassostrea virginica (Gmelin)" (1987). VIMS Articles. 1289. https://scholarworks.wm.edu/vimsarticles/1289 This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Journal of Shellfish Research, Vol. 6, No. 2, 79-83, 1987. EFFECT OF AIR-SUPERSATURATED SEAWATER ON ARGOPECTEN IRRADIANS CONCENTRICUS (SAY) AND CRASSOSTREA VIRGIN/CA (GMELIN) ROBERT BISKER & MICHAEL CASTAGNA Virginia Institute of Marine Science School of Marine Science College of William and Mary Wachapreague, Virginia 23480 ABSTRACT Argopecten irradians concentricus and Crassostrea virginica were exposed to several different levels of supersaturated seawater at temperatures ranging from 10 to 2!°C. Gas bubble trauma occurred at a total gas saturation level of 116%, causing mortality in juvenile A. i. concentricus and reduced growth in juvenile C. virginica. KEY WORDS: Gas bubble trauma, air-supersaturated seawater, Argopecten, Crassostrea, cultured bivalves. INTRODUCTION bubble formation (Colt 1983).
    [Show full text]
  • Fisheries Full Issue PDF Volume 39, Issue 3
    This article was downloaded by: [American Fisheries Society] On: 24 March 2014, At: 13:30 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Fisheries Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ufsh20 Full Issue PDF Volume 39, Issue 3 Published online: 21 Mar 2014. To cite this article: (2014) Full Issue PDF Volume 39, Issue 3, Fisheries, 39:3, 97-144, DOI: 10.1080/03632415.2014.902705 To link to this article: http://dx.doi.org/10.1080/03632415.2014.902705 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes.
    [Show full text]
  • Issue 4: July 2018
    Fish Health News You Can Use Brought to you by the Pacific Region Fish Health Program July 2018, edition Salt Use, Parasites, Stress, and This Issue Page 1 - Salt use, parasites, stress, and Osmoregulation osmoregulation Maintaining adequate amounts of salt in their Page 4 - Fungi blood is a critical, difficult, and energy intensive Page 6 - Fun fungi factoids task for all fish. Like us, fish have almost 9 Page 7 - PRFHP updates grams per liter (9 parts per thousand or 9 ppt) Page 9 - Another long (but understandable and of salt in their blood. However, the freshwater important) gas bubble disease essay environment (especially here in the Pacific Page 16 - Mystery parasite of the day Northwest) has almost no salt. This means that fish are constantly loosing salt as it leaks from Contact Us their skin and gills into the water. The only way Pacific Region Fish Health Program Manager to keep up with that salt loss is to either 1) take Andrew Goodwin in new salt in food, or 2) to use energy to pump US Fish and Wildlife Service, Pacific Region salts from the environment in through the gills 911 N.E. 11th Avenue and back into the blood. Portland, OR 97232 Phone: (503) 231-6784 Fish gills are an especially critical area for salt management. In the gills of the fish, the only Email: [email protected] Website barrier between the blood and the environment www.fws.gov/pacific/Fisheries/fishhealth/ is the gill membrane. That membrane is super thin (a few thousandths of a millimeter thick) to efficiently allow oxygen in and carbon dioxide out.
    [Show full text]
  • A Meta‐Analysis of Gas Bubble Trauma in Fish
    Received: 24 April 2020 | Revised: 23 June 2020 | Accepted: 23 July 2020 DOI: 10.1111/faf.12496 ORIGINAL ARTICLE A meta-analysis of gas bubble trauma in fish Naomi K. Pleizier1 | Dirk Algera2 | Steven J. Cooke2 | Colin J. Brauner1 1Department of Zoology, University of British Columbia, Vancouver, BC, Canada Abstract 2Fish Ecology and Conservation Physiology Total dissolved gas (TDG) supersaturation generated by dams is known to cause gas Laboratory, Department of Biology, Carleton bubble trauma (GBT) and mortality in fish, but despite many studies on the topic, University, Ottawa, ON, Canada there have been no recent attempts to systematically review the data. We con- Correspondence ducted a systematic review and meta-analysis to determine how different levels of Naomi K. Pleizier, Department of Zoology, University of British Columbia, #4200 - TDG supersaturation in laboratory experiments impact mortality and GBT outcomes 6270, University Blvd., Vancouver, British of freshwater fishes. We also examined all TDG laboratory studies on freshwater Columbia, Canada. Email: [email protected] fish to identify research gaps in the GBT literature. Factors that improved the linear mixed-effects models and Cox proportional hazards models of the relationship be- Funding information Natural Sciences and Engineering Research tween TDG supersaturation and time to 50% mortality, time to 10% mortality, time Council of Canada to the appearance of bubbles in the gills and time to external GBT symptoms include depth, temperature, oxygen-to-nitrogen ratios, species, body mass, the interaction between TDG and depth and author group for one or more of the models of the relationship between TDG and GBT outcomes.
    [Show full text]
  • Is Your Fish “Bent” and Will It Survive? Jill St John1
    SPC Live Reef Fish Information Bulletin #11 – April 2003 31 Is your fish “bent” and will it survive? Jill St John1 Fish, like humans, can get “bent” when exposed to at 10 m, reduce it to one-third its volume at 20 m, rapid changes in pressure during capture. The and so on (Fig. 1). The balloon represents the swim bends, or decompression sickness, is a syndrome bladder in a fish, which must be kept at a constant associated with a rapid and extensive reduction in volume to maintain neutral buoyancy (Pelster environmental barometric pressure (Philp 1974). 1997). As the ambient pressure changes, gas is Because the bends is caused by the application of moved in or out of the swim bladder, so when the basic physics to living organisms, it is reasonable to fish swims deeper, gas is taken into the swim blad- expect that fish suffer bends in a manner similar to der from the bloodstream. The reverse occurs humans. Bends has been studied in humans when the fish swims upwards in the water column. involved in deep-sea diving, high altitude aviation, As the greatest change of pressure occurs in the top and underground engineering projects since the 10 m, most of the damage to captured fish occurs beginning of last century. Indeed, the early theories during the last part of their ascent. of Haldane and associates (Boycott et al. 1908) are still used today for modelling decompression schedules. Most of our limited understanding of the effects of the bends in fish is based on our knowledge of the bends in humans.
    [Show full text]
  • Gas Supersaturation Thresholds for Spontaneous Cavitation in Water with Gas Equilibration Pressures up to 570 Atm1 Wayne A
    Gas Supersaturation Thresholds for Spontaneous Cavitation in Water with Gas Equilibration Pressures up to 570 atm1 Wayne A. Gerth and Edvard A. Hemmingsen * Physiological Research Laboratory Scripps Institution of Oceanography University of California, San Diego La Jolla, California 92093 (Z. Naturforsch. 31a, 1711-1716 [1976] ; received October 5, 1976) Supersaturations for the onset of cavitation in water were determined for various gases. At am- bient pressure, the threshold supersaturations (in atm) required for profuse cavitation to initiate both in bulk water and at the glass-water interface were CH4, 120; Ar, 160; N2, 190; He, 360. Exposure of the water and its containing surfaces to hydrostatic pressures up to 1100 atm prior to equilibration with gas had no detectable effect on these threshold values. This indicates that pre- formed gas nuclei are not significantly involved. Cavitation at the glass-water interface was investi- gated for CH4, Ar and N, saturations up to 570 atm. For 320 atm saturations, the threshold super- saturation was about one-half that for decompression directly to ambient pressure, and for 550 atm it was about one-third. These results indicate that the dissolved gas concentration is a critical factor limiting the spontaneous nucleation of bubbles in gas supersaturated liquids. Introduction thereby forcing the resolution of such dissolvable nuclei 4. Water that contains large gas supersaturations The results reported here bear directly upon the can remain stable with the absence of cavitation 2' 3. understanding of the gas supersaturated metastable However, as the gas supersaturation in the water is condition in pure liquids, the factors which limit it, increased, the system eventually fails to tolerate the and the characteristics of its degeneration via the supersaturation and bursts profusely with the for- nucleation and growth of bubbles.
    [Show full text]
  • Chapter 1 the Fundamentals of Bubble Formation in Water Treatment
    Chapter 1 The Fundamentals of Bubble Formation in Water Treatment Paolo Scardina and Marc Edwards1 Keywords: bubble, air binding, filters, nucleation, equilibrium, water treatment, headloss, filtration, gas transfer Abstract: Water utilities can experience problems from bubble formation during conventional treatment, including impaired particle settling, filter air binding, and measurement as false turbidity in filter effluent. Coagulation processes can cause supersaturation and bubble formation by converting bicarbonate alkalinity to carbon dioxide by acidification. A model was developed to predict the extent of bubble formation during coagulation which proved accurate, using an apparatus designed to physically measure the actual volume of bubble formation. Alum acted similar to hydrochloric acid for initializing bubble formation, and higher initial alkalinity, lower final solution pH, and increased mixing rate tended to increase bubble formation. Lastly, the protocol outlined in Standard Methods for predicting the degree of supersaturation was examined, and when compared to this work, the Standard Methods approach produces an error up to 16% for conditions found in water treatment. Introduction: Gas bubble formation is of established importance to divers and fish (i.e., the bends), carbonated beverages, solid liquid separation in mining, cavitation in pumps, gas transfer, stripping, and dissolved air flotation processes. Moreover, it is common knowledge that formation of gas bubbles in conventional sedimentation and filtration facilities is a significant nuisance at many utilities, because bubbles are believed to hinder sedimentation, cause headloss in filters through a phenomenon referred to as “air binding,” and measure as turbidity in effluents without posing a microbial hazard. Utilities have come to accept these problems, and to the knowledge of these authors there is currently no rigorous basis for predicting when such problems will occur or correcting them when they do.
    [Show full text]
  • Cloud Microphysics
    1. Microphysics of Clouds Changes in phase are basic to cloud microphysics. The possible changes are: vapor-liquid evaporation, condensation liquid-solid freezing, melting vapor-solid deposition, sublimation The changes from left to right correspond to increasing molecular order. These transitions don’t occur at thermodynamic equilibrium. There is a strong free en- ergy barrier that must be overcome for droplets to form. To form a droplet by condensation of vapor, surface tension must be overcome by a strong gradient of vapor pressure. This means that phase transitions don’t occur at es(1), or sat- uration over a plane surface of water. Even if a sample of moist air is cooled adiabatically to the equilibrium saturation point for bulk water, droplets should not be expected to form. In fact, water droplets do begin to condense in pure wa- ter vapor only when the relative humidity reaches several hundred percent! This is called Homogeneous Nucleation. The reason why cloud droplets are observed to form in the atmosphere when ascending air just reaches equilibrium saturation is because the atmosphere con- tains significant concentrations of particles of micron and sub-micron size which have an affinity for water. This is called Heterogeneous Nucleation. There are many types of condensation nuclei in the atmosphere. Some become wetted at RH less than 100% and account for haze. Larger condensation nuclei may grow to cloud droplet size. As moist air is cooled adiabatically and RH is close to 100 the hygroscopic CCN begin to serve as centers of condensation. If ascent con- tinues, there is supersaturation by cooling which is depleted by condensation on the nuclei.
    [Show full text]
  • Carbonate Chemistry
    CHAPTER 3 SOLUTION-MINERAL EQUILIBRIA PART 1: CARBONATES Carbonic acid and the carbonate minerals provide another good illustration of the use of equilibrium reasoning in geochemistry. Interactions among these compounds determine the conditions under which limestones and dolomites are fomied or dissolved, and likewise the conditions of formation of carbonate minerals as cements in soils and sandstones and as vein fillings. We start with some qualitative remarks about the most common of these substances, the carbonate of calcium, then go on to a more quantitative treatment and to the reactions of other common carbonate minerals. • 3-1 SOLUBILITY OF CALCITE Calcium carbonate occurs in nature as the two common minerals calcite and aragonite (Sec. 3-3). A third crystal form (vaterite) can be prepared artificially, and is known as a very rare mineral in nature. Under usual conditions near the Earth's surface calcite is the most stable and most abundant of the three forms, and for the discussion in this section and the next it will be the center of attention. Aragonite and vaterite may be assumed to show similar chemical behavior, but in general to react more rapidly and to have greater solubility. 61 62 INTRODUCTION TO GEOCHEMISTRY A strong acid dissolves calcite by the familiar reaction CaC03 + 2H+ ---+ Ca2+ + H20 + C02. (3-1 ) calcite At low acid concentrations a more accurate equation would be CaC03 + H+ - • Ca2+ + HCO) (3-2) calcite showing that W takes co~ - away from Ca2+ to form the very weak (little dissociated) acid HCO:J. (Still greater accuracy would require consideration of the complex ion CaHCOj , but under usual conditions its concentration is small and for the present can be neglected.) These reactions would take place in nature, for example, where acid solutions from the weathering of pyrite encounter limestone.
    [Show full text]
  • The Role of Evolving Surface Tension in the Formation of Cloud Droplets James F
    Technical Note: The Role of Evolving Surface Tension in the Formation of Cloud Droplets James F. Davies1, Andreas Zuend2, Kevin R. Wilson3 1Department of Chemistry, University of California Riverside, CA USA 5 2Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada 3Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA Correspondence to: James F. Davies ([email protected]) Abstract. The role of surface tension (σ) in cloud droplet activation has long been ambiguous. Recent studies have reported observations attributed to the effects of an evolving surface tension in the activation 10 process. However, adoption of a surface-mediated activation mechanism has been slow and many studies continue to neglect the composition-dependence of aerosol/droplet surface tension, using instead a value equal to the surface tension of pure water (σw). In this technical note, we clearly describe the fundamental role of surface tension in the activation of multicomponent aerosol particles into cloud droplets. It is demonstrated that the effects of surface tension in the activation process depend primarily on the evolution 15 of surface tension with droplet size, typically varying in the range 0.5σw ≲ σ ≤ σw due to the partitioning of organic species with a high surface affinity. We go on to report some recent laboratory observations that exhibit behavior that may be associated with surface tension effects, and propose a measurement coordinate that will allow surface tension effects to be better identified using standard atmospheric measurement techniques. Unfortunately, interpreting observations using theory based on surface film and liquid-liquid 20 phase separation models remains a challenge.
    [Show full text]