5 November 1997

Total Page:16

File Type:pdf, Size:1020Kb

5 November 1997 An identification guide for deepwater shark species Di Tracey and Peter Shearer National Institute of Water and Atmospheric Research August 2002 Contents Page Baxter’s dogfish (Etmopterus baxteri) 2 Catsharks (Apristurus spp.) 3 Leafscale gulper shark (Centrophorus squamosus) 4 Longnose velvet dogfish (Centroscymnus crepidater) 5 Lucifer dogfish (Etmopterus lucifer) 6 Northern spiny dogfish (Squalus mitsukurii) 7 Owston’s dogfish (Centroscymnus owstoni) 8 Plunket’s shark (Centroscymnus plunketi) 9 Portuguese dogfish (Centroscymnus coelolepis) 10 Prickly dogfish (Oxynotus bruniensis) 11 Seal shark (Dalatias licha) 12 Shovelnose dogfish (Deania calcea) 13 Spiny dogfish (Squalus acanthias) 14 NIWA Guide to Some Common New Zealand Deepwater Sharks – August 2002 Introduction The aim of this guide is to provide clear and concise identification sheets for deepwater shark species for future use by scientific observers and the fishing industry. This guide is an updated version of the Deepwater Shark Reference Guide sheets already prepared by NIWA. The shark species are presented alphabetically by common name. Layout for each species is consistent throughout the document and includes the following: • common name, scientific name, and species code • colour photograph and line drawing for each species • information on the depth distribution of the species • diagnostic features – outlines the key characteristics used to identify the species • maximum lengths that are attained • colour photograph and line drawing of the underside of head for some species These sheets can be substituted for the sheets already included in the revised Observer Manual. Enclosed is a CD ROM containing the shark guide as an interactive PDF document, an Acrobat Reader installer, and a word document. The guide can be read with Acrobat Reader ver. 3 and up. Any updates to the identification sheets can be made easily at a later date. Acknowledgments Thanks go to the following National Institute of Water and Atmospheric Research Limited (NIWA) staff for contributing useful comments on earlier versions of this document: Malcolm Clark, Peter McMillan, and Larry Paul. Photographs were provided by Neil Bagley, Malcolm Francis, Peter Marriott, Peter McMillan and Peter Shearer (NIWA). The line diagrams were sourced from the Food and Agriculture Organisation of the United Nations (Compagno 1984). Ahakoa, he iti pioke, e tere ana i te moana whanui he au tona Even a small shark can make a significant ripple in the vast ocean. Ngai Takoto pepeha (proverb) NIWA Guide to Some Common New Zealand Deepwater Sharks – August 2002 1 BAXTER’S DOGFISH (ETB) Baxter’s dogfish, Etmopterus baxteri (ETB) is the largest of the lantern sharks. Depth range 500 – 1500 m. Found in large numbers over seamount features. DIAGNOSTIC FEATURES • First dorsal fin spine is short and strong (1) • Second dorsal fin spine much larger than first, is long, curved and strong (2) • Naked skin patches at the base of each dorsal fin (3) • Uniform brownish black to black; pale where denticles and skin removed • Attains maximum length of about 85 cm Underside of head NIWA Guide to Some Common New Zealand Deepwater Sharks – August 2002 2 CATSHARKS (APR) Catsharks, Apristurus spp. (APR). This group is widely distributed and comprises several species. Usually occur deeper than 700 m. DIAGNOSTIC FEATURES • No spines in the dorsal fins (1) • Moderately elongate with a flattened snout (2) • Teeth very small, bristle-like • Anal fin very long (3). Dorsal fins are well back on body (4) • Colour uniform medium greyish to dark brownish, teeth greyish; gill flaps and naked areas on fins black or brown • Attains maximum length of about 90 cm Underside of head NIWA Guide to Some Common New Zealand Deepwater Sharks – August 2002 3 LEAFSCALE GULPER SHARK (CSQ) Leafscale gulper shark, Centrophorus squamosus (CSQ) is a large shark and is most abundant in depths of 600 – 1000 m. DIAGNOSTIC FEATURES • Large strong dorsal fin spines (1) • Inside rear edge of pectoral fin pointed, sometimes slightly elongate (2) • Second dorsal fin shorter and more triangular than the first dorsal fin (3) • Caudal fin has a very deep ventral lobe (4) • Uniformly light greyish brown to dark grey, eyes relatively large • Attains maximum length of about 140 cm Underside of head NIWA Guide to Some Common New Zealand Deepwater Sharks – August 2002 4 LONGNOSE VELVET DOGFISH (CYP) Longnose velvet dogfish, Centroscymnus crepidater (CYP) is the smallest of the Centroscymnus deepwater shark species. It is abundant in New Zealand waters and found most commonly between 600 and 1300 m. DIAGNOSTIC FEATURES • Small, partly buried dorsal fin spines (1) • Snout long, flattened (2). Very long labial furrows in upper jaw (3), separated in front by a narrow band of flesh (4) • Uniformly dark brown to black • Attains maximum length of about 110 cm. Underside of head NIWA Guide to Some Common New Zealand Deepwater Sharks – August 2002 5 LUCIFER DOGFISH (ETL) Lucifer dogfish, Etmopterus lucifer (ETL) is a small lantern shark found in moderate numbers in the New Zealand region. This species is most abundant between 400 and 800 m. DIAGNOSTIC FEATURES • Small slender shark • Small first dorsal spine (1), second dorsal spine longer and slightly curved (2) • Light brown or grey dorsally, dark brown on the flanks, with a violet sheen, and blackish ventrally • Denticles arranged in longitudinal rows • Attains maximum length of about 55 cm Underside of head NIWA Guide to Some Common New Zealand Deepwater Sharks – August 2002 6 NORTHERN SPINY DOGFISH (NSD) Northern spiny dogfish, Squalus mitsukurii (NSD) is primarily caught around the North Island, in Cook Strait, and around the Chatham Islands ranging from the shallows to 500 m. DIAGNOSTIC FEATURES • Prominent dorsal-fin spines (1), a broadly pointed snout • Tail base with a prominent lateral keel (2) • Similar blade-like teeth in both jaws. • Dorsal surfaces and flanks greyish, paler ventrally. No white spots • Eye relatively large, green • Attains maximum length of about 115 cm Underside of head NIWA Guide to Some Common New Zealand Deepwater Sharks – August 2002 7 OWSTON’S DOGFISH (CYO) Owston’s dogfish, Centroscymnus owstoni (CYO) is a large deepwater shark fairly commonly found in New Zealand waters with a depth distribution of 600 – 1500 m. DIAGNOSTIC FEATURES • Short, partially exposed dorsal spines (1) • Body with smooth-skinned appearance, caused by small flat denticles (2) • Low, lobe-like first dorsal fin (3). Second dorsal fin taller and more triangular than first dorsal fin (4) • Very distinctive belly ridge on each side (5) • Uniformly dark brown to black (sometimes light greyish brown) • Attains maximum length of about 115 cm Underside of head NIWA Guide to Some Common New Zealand Deepwater Sharks – August 2002 8 PLUNKET’S SHARK (PLS) Plunket’s shark, Centroscymnus plunketi (PLS) is a large deepwater shark fairly common in New Zealand waters between 500 and 1000 m. This species was once placed in the genus Scymnodon. DIAGNOSTIC FEATURES • Short snout • Short thick dorsal fin spines (1). First dorsal fin slightly smaller than the second dorsal fin (2). Fin spines small but with tips protruding from fins • Pectoral fins broad (almost round) (3) • Teeth in middle of upper jaw much smaller than those on the sides of the upper jaw (4) • Uniformly grey brown, sometimes dark, juveniles more greyish • Attains maximum length of about 150 cm Underside of head NIWA Guide to Some Common New Zealand Deepwater Sharks – August 2002 9 PORTUGUESE DOGFISH (CYL) Portuguese dogfish, Centroscymnus coelolepis (CYL) is the least common of the Centroscymnus deepwater shark species and has a depth distribution of 500−1500 m. DIAGNOSTIC FEATURES • Small dorsal fin spines (1) • Dorsal fins of a similar size and shape (2) • Body with snake-skin appearance caused by large flat denticles (3) • No belly ridge (4) • Uniformly golden brown to dark brown • Attains maximum length of about 120 cm Underside of head NIWA Guide to Some Common New Zealand Deepwater Sharks – August 2002 10 PRICKLY DOGFISH (PDG) Prickly dogfish, Oxynotus bruniensis (PDG) is a fairly rare species. It has a wide depth distribution ranging from around 200 to 1100 m. DIAGNOSTIC FEATURES • Distinctive, triangular shaped, hump-backed dogfish with rough skin, prominent belly ridges (1) • Short blunt snout, and high sail-like dorsal fins with embedded spines (2) • Uniformly brownish or greyish, tips of dorsal fins and posterior margins of pectoral and pelvic fins (3) white or transluscent • Attains maximum length of about 70 cm NIWA Guide to Some Common New Zealand Deepwater Sharks – August 2002 11 SEAL SHARK (BSH) Seal shark, Dalatias licha (BSH) is a large species also known as black shark and is most commonly found within 300–1000 m. DIAGNOSTIC FEATURES • No dorsal fin spines (1) • Snout short, “seal-like” (2), lips thick, fleshy • Teeth in lower jaw large, triangular and serrated. Teeth in upper jaw smaller, slender and not serrated • Mostly uniformly black, sometimes light grey or brown; lips pale; rear margins of most fins translucent • Attains maximum length of about 150 cm Underside of head NIWA Guide to Some Common New Zealand Deepwater Sharks – August 2002 12 SHOVELNOSE DOGFISH (SND) Shovelnose dogfish, Deania calcea (SND) is a deepwater shark species most abundant in 400 − 1400 m. DIAGNOSTIC FEATURES • Very long flat, shovel-like snout (1) • First dorsal fin spine strong but short (2), second dorsal spine larger (3) • Extremely long, low first dorsal fin (4), second
Recommended publications
  • Shark Cartilage, Cancer and the Growing Threat of Pseudoscience
    [CANCER RESEARCH 64, 8485–8491, December 1, 2004] Review Shark Cartilage, Cancer and the Growing Threat of Pseudoscience Gary K. Ostrander,1 Keith C. Cheng,2 Jeffrey C. Wolf,3 and Marilyn J. Wolfe3 1Department of Biology and Department of Comparative Medicine, Johns Hopkins University, Baltimore, Maryland; 2Jake Gittlen Cancer Research Institute, Penn State College of Medicine, Hershey, Pennsylvania; and 3Registry of Tumors in Lower Animals, Experimental Pathology Laboratories, Inc., Sterling, Virginia Abstract primary justification for using crude shark cartilage extracts to treat cancer is based on the misconception that sharks do not, or infre- The promotion of crude shark cartilage extracts as a cure for cancer quently, develop cancer. Other justifications represent overextensions has contributed to at least two significant negative outcomes: a dramatic of experimental observations: concentrated extracts of cartilage can decline in shark populations and a diversion of patients from effective cancer treatments. An alleged lack of cancer in sharks constitutes a key inhibit tumor vessel formation and tumor invasions (e.g., refs. 2–5). justification for its use. Herein, both malignant and benign neoplasms of No available data or arguments support the medicinal use of crude sharks and their relatives are described, including previously unreported shark extracts to treat cancer (6). cases from the Registry of Tumors in Lower Animals, and two sharks with The claims that sharks do not, or rarely, get cancer was originally two cancers each. Additional justifications for using shark cartilage are argued by I. William Lane in a book entitled “Sharks Don’t Get illogical extensions of the finding of antiangiogenic and anti-invasive Cancer” in 1992 (7), publicized in “60 Minutes” television segments substances in cartilage.
    [Show full text]
  • Sharks in Crisis: a Call to Action for the Mediterranean
    REPORT 2019 SHARKS IN CRISIS: A CALL TO ACTION FOR THE MEDITERRANEAN WWF Sharks in the Mediterranean 2019 | 1 fp SECTION 1 ACKNOWLEDGEMENTS Written and edited by WWF Mediterranean Marine Initiative / Evan Jeffries (www.swim2birds.co.uk), based on data contained in: Bartolí, A., Polti, S., Niedermüller, S.K. & García, R. 2018. Sharks in the Mediterranean: A review of the literature on the current state of scientific knowledge, conservation measures and management policies and instruments. Design by Catherine Perry (www.swim2birds.co.uk) Front cover photo: Blue shark (Prionace glauca) © Joost van Uffelen / WWF References and sources are available online at www.wwfmmi.org Published in July 2019 by WWF – World Wide Fund For Nature Any reproduction in full or in part must mention the title and credit the WWF Mediterranean Marine Initiative as the copyright owner. © Text 2019 WWF. All rights reserved. Our thanks go to the following people for their invaluable comments and contributions to this report: Fabrizio Serena, Monica Barone, Adi Barash (M.E.C.O.), Ioannis Giovos (iSea), Pamela Mason (SharkLab Malta), Ali Hood (Sharktrust), Matthieu Lapinksi (AILERONS association), Sandrine Polti, Alex Bartoli, Raul Garcia, Alessandro Buzzi, Giulia Prato, Jose Luis Garcia Varas, Ayse Oruc, Danijel Kanski, Antigoni Foutsi, Théa Jacob, Sofiane Mahjoub, Sarah Fagnani, Heike Zidowitz, Philipp Kanstinger, Andy Cornish and Marco Costantini. Special acknowledgements go to WWF-Spain for funding this report. KEY CONTACTS Giuseppe Di Carlo Director WWF Mediterranean Marine Initiative Email: [email protected] Simone Niedermueller Mediterranean Shark expert Email: [email protected] Stefania Campogianni Communications manager WWF Mediterranean Marine Initiative Email: [email protected] WWF is one of the world’s largest and most respected independent conservation organizations, with more than 5 million supporters and a global network active in over 100 countries.
    [Show full text]
  • 1 REPORT of the 2018 ICCAT INTERESSIONAL MEETING of the SHARKS SPECIES GROUP (Madrid, Spain, 2-6 July 2018) 1. Opening, Adoptio
    INTERESSIONAL MEETING OF THE SHARKS SPECIES GROUP – MADRID 2018 REPORT OF THE 2018 ICCAT INTERESSIONAL MEETING OF THE SHARKS SPECIES GROUP (Madrid, Spain, 2-6 July 2018) 1. Opening, adoption of agenda and meeting arrangements The meeting was held at the ICCAT Secretariat in Madrid, 2-6 July 2018. Dr Enric Cortés (USA), the Species Group (“the Group”) rapporteur and meeting Chairman, opened the meeting and welcomed participants. Mr. Camille Jean Pierre Manel (ICCAT Executive Secretary) welcomed the participants and highlighted the importance of the issues to be discussed by the Group aimed at the requests made by the Commission regarding sharks species for the current and upcoming years. The Chair proceeded to review the Agenda, which was adopted with some changes (Appendix 1). The List of Participants is included in Appendix 2. The List of Documents presented at the meeting is attached as Appendix 3. The abstracts of all SCRS documents presented at the meeting are included in Appendix 4. The following served as rapporteurs: Sections Rapporteur Items 1, 11 M. Neves dos Santos Item 2 E. Cortés, Y. Semba, R. Coelho Item 3 C. Palma, M. Ortiz Item 4 N. Abbid, F. Hazin Item 5 Y. Semba, E. Cortés Item 6 R. Coelho, D. Rosa, C. Santos Item 7 D. Courtney Item 8 H. Bowlby, Y. Swimmer, F. Hazin Item 9.1 D. Die Item 9.2 - 9.5 E. Cortés Item 10 E. Cortés, D. Die 2. Review of the activities and progress of the SRDCP 2.1 Habitat use Document SCRS/2018/094 provided an update of the study on habitat use for shortfin mako (SMA), developed within the ICCAT Shark Research and Data Collection Program (SRDCP).
    [Show full text]
  • Centroscymnus Coelolepis)
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2011 Population structure of a deep-water squaloid shark, the Portuguese dogfish (Centroscymnus coelolepis) A Verissimo Virginia Institute of Marine Science Jan McDowell Virginia Institute of Marine Science John Graves Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Verissimo, A; McDowell, Jan; and Graves, John, "Population structure of a deep-water squaloid shark, the Portuguese dogfish (Centroscymnus coelolepis)" (2011). VIMS Articles. 932. https://scholarworks.wm.edu/vimsarticles/932 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. ICES Journal of Marine Science (2011), 68(3), 555–563. doi:10.1093/icesjms/fsr003 Population structure of a deep-water squaloid shark, the Portuguese dogfish (Centroscymnus coelolepis) Downloaded from https://academic.oup.com/icesjms/article-abstract/68/3/555/661444 by Serials Dept -- College of William and Mary user on 02 November 2018 Ana Verı´ssimo*, Jan R. McDowell, and John E. Graves Virginia Institute of Marine Science, College of William & Mary, PO Box 1346, Gloucester Point, VA 23062, USA *Corresponding Author: tel: +1 804 684 7434; fax: +1 804 684 7157; e-mail: [email protected]. Verı´ssimo, A., McDowell, J. R., and Graves, J. E. 2011. Population structure of a deep-water squaloid shark, the Portuguese dogfish (Centroscymnus coelolepis).
    [Show full text]
  • First Record of Swimming Speed of the Pacific Sleeper Shark Somniosus
    Journal of the Marine First record of swimming speed of the Pacific Biological Association of the United Kingdom sleeper shark Somniosus pacificus using a baited camera array cambridge.org/mbi Yoshihiro Fujiwara , Yasuyuki Matsumoto, Takumi Sato, Masaru Kawato and Shinji Tsuchida Original Article Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Yokosuka, Kanagawa 237-0061, Japan Cite this article: Fujiwara Y, Matsumoto Y, Sato T, Kawato M, Tsuchida S (2021). First record of swimming speed of the Pacific Abstract sleeper shark Somniosus pacificus using a baited camera array. Journal of the Marine The Pacific sleeper shark Somniosus pacificus is one of the largest predators in deep Suruga Biological Association of the United Kingdom Bay, Japan. A single individual of the sleeper shark (female, ∼300 cm in total length) was 101, 457–464. https://doi.org/10.1017/ observed with two baited camera systems deployed simultaneously on the deep seafloor in S0025315421000321 the bay. The first arrival was recorded 43 min after the deployment of camera #1 on 21 July 2016 at a depth of 609 m. The shark had several remarkable features, including the Received: 26 July 2020 Revised: 14 April 2021 snout tangled in a broken fishing line, two torn anteriormost left-gill septums, and a parasitic Accepted: 14 April 2021 copepod attached to each eye. The same individual appeared at camera #2, which was First published online: 18 May 2021 deployed at a depth of 603 m, ∼37 min after it disappeared from camera #1 view. Finally, the same shark returned to camera #1 ∼31 min after leaving camera #2.
    [Show full text]
  • AC26 Inf. 1 (English Only / Únicamente En Inglés / Seulement En Anglais)
    AC26 Inf. 1 (English only / únicamente en inglés / seulement en anglais) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________ Twenty-sixth meeting of the Animals Committee Geneva (Switzerland), 15-20 March 2012 and Dublin (Ireland), 22-24 March 2012 RESPONSE TO NOTIFICATION TO THE PARTIES NO. 2011/049, CONCERNING SHARKS The attached information document has been submitted by the Secretariat at the request of PEW, in relation to agenda item 16*. * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat or the United Nations Environment Programme concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. AC26 Inf. 1 – p. 1 January 5, 2012 Pew Environment Group Response to CITES Notification 2011/049 To Whom it May Concern, As an active international observer to CITES, a member of the Animals Committee Shark Working Group, as well as other working groups of the Animals and Standing Committees, and an organization that is very active in global shark conservation, the Pew Environment Group submits the following information in response to CITES Notification 2011/049. We submit this information in an effort to ensure a more complete response to the request for information, especially considering that some countries that have adopted proactive new shark conservation policies are not Parties to CITES. 1. Shark species which require additional action In response to Section a) ii) of the Notification, the Pew Environment Group submits the following list of shark species requiring additional action to enhance their conservation and management.
    [Show full text]
  • © Iccat, 2007
    A5 By-catch Species APPENDIX 5: BY-CATCH SPECIES A.5 By-catch species By-catch is the unintentional/incidental capture of non-target species during fishing operations. Different types of fisheries have different types and levels of by-catch, depending on the gear used, the time, area and depth fished, etc. Article IV of the Convention states: "the Commission shall be responsible for the study of the population of tuna and tuna-like fishes (the Scombriformes with the exception of Trichiuridae and Gempylidae and the genus Scomber) and such other species of fishes exploited in tuna fishing in the Convention area as are not under investigation by another international fishery organization". The following is a list of by-catch species recorded as being ever caught by any major tuna fishery in the Atlantic/Mediterranean. Note that the lists are qualitative and are not indicative of quantity or mortality. Thus, the presence of a species in the lists does not imply that it is caught in significant quantities, or that individuals that are caught necessarily die. Skates and rays Scientific names Common name Code LL GILL PS BB HARP TRAP OTHER Dasyatis centroura Roughtail stingray RDC X Dasyatis violacea Pelagic stingray PLS X X X X Manta birostris Manta ray RMB X X X Mobula hypostoma RMH X Mobula lucasana X Mobula mobular Devil ray RMM X X X X X Myliobatis aquila Common eagle ray MYL X X Pteuromylaeus bovinus Bull ray MPO X X Raja fullonica Shagreen ray RJF X Raja straeleni Spotted skate RFL X Rhinoptera spp Cownose ray X Torpedo nobiliana Torpedo
    [Show full text]
  • Spiny Dogfish.Pdf
    Memorandum of Understanding on the Conservation of Migratory Sharks SPINYSILKY DOGFISH SHARK AIGUILLATREQUIN COMMUNSOYEUX TIBURONMIELGA/GALLUDO SEDOSO Fact Sheet TiburonesTiburones martillomartillo Spiny Dogfish Squalus acanthias SPINY DOGFISH Class: Chondrichthyes Order: Squaliformes Family: Squalidae Species: Squalus acanthias Illustration: © Marc Dando Sharks MOU Species Fact Sheet Sharks MOU Species Fact Sheet SPINY DOGFISH SPINY DOGFISH © Shark MOU Advisory Committee This fact sheet was produced by the Advisory Committee of the Memorandum of Understanding on the Conservation of Migratory Sharks (Sharks MOU). For further information contact: John Carlson, Ph.D. Research Fish Biologist, NOAA Fisheries Service-Southeast Fisheries Science Center Panama City, [email protected] 1 Sharks MOU Species Fact Sheet SPINY DOGFISH 1. Biology Spiny Dogfish (Squalus acanthias), also known as Picked Dogfish or Spurdog, is a demersal shark that has a maximum length of 125 cm in the North Atlantic. It occurs mostly in shelf seas, from coastal habitats to the shelf edge, but can occur to depths of 900 m. They aggregate by size and sex, and are migratory in regional seas, although very occasional transatlantic movements have been reported. Spiny Dogfish are long lived (ca. 50–60 years) and have slow growth rates. Females mature at a length of 75-85 cm, produce up to 21 pups and gestation lasts two years (ICES 2017). Published studies on S. acanthias from the North Pacific relate to Squalus suckleyi (see Ebert et al. 2010). 2. Distribution Spiny Dogfish is distributed in both northern and southern temperate and boreal waters, but the species is listed on the MOU for the northern hemisphere populations only.
    [Show full text]
  • Default Word Template
    SC-04-19 4th Meeting of the Southern Indian Ocean Fisheries Agreement (SIOFA) Scientific Committee 25–29 March 2019, Yokohama, Japan Draft manuscript for an ecological risk assessment for the effects of bottom fishing gears on deepwater chondrichthyans in high seas areas of the Southern Indian and South Pacific oceans Relates to agenda item: 7 Working paper Info paper Delegation of Australia Abstract This paper provides a draft manuscript for an ecological risk assessment for the effects of bottom fishing gears on deepwater chondrichthyans in high seas areas of the Southern Indian and South Pacific Oceans. 1 Recommendations It is recommended that the SC: • Note that this PSA and SAFE analysis has identified a number of species of deepwater chondrichthyans at high or extreme relative vulnerability to fishing using demersal trawl, midwater trawl, demersal longline and demersal gillnet gears; • Note that a number of these species assessed to be at the high or extreme vulnerability are taken in association with commercial deepwater shark fisheries; • Note there is limited catch, effort and biological information for many species of deepwater chondrichthyan; • Note that some species of deepwater chondrichthyans are highly vulnerable to overfishing due to their life history characteristics; and • Recommend to the Meeting of the Parties that stock assessment for species of deepwater chondrichthyans taken in association with commercial deepwater shark fisheries is urgently required to estimate sustainable yields and mitigate the potential for overexploitation that has been seen in similar fisheries globally. 2 Ecological risk assessment for the effects of bottom fishing gears on deepwater chondrichthyans in high seas areas of the Southern Indian and South Pacific oceans L.
    [Show full text]
  • APPENDIX M Common and Scientific Species Names
    Bay du Nord Development Project Environmental Impact Statement APPENDIX M Common and Scientific Species Names Bay du Nord Development Project Environmental Impact Statement Common and Species Names Common Name Scientific Name Fish Abyssal Skate Bathyraja abyssicola Acadian Redfish Sebastes fasciatus Albacore Tuna Thunnus alalunga Alewife (or Gaspereau) Alosa pseudoharengus Alfonsino Beryx decadactylus American Eel Anguilla rostrata American Plaice Hippoglossoides platessoides American Shad Alosa sapidissima Anchovy Engraulidae (F) Arctic Char (or Charr) Salvelinus alpinus Arctic Cod Boreogadus saida Atlantic Bluefin Tuna Thunnus thynnus Atlantic Cod Gadus morhua Atlantic Halibut Hippoglossus hippoglossus Atlantic Mackerel Scomber scombrus Atlantic Salmon (landlocked: Ouananiche) Salmo salar Atlantic Saury Scomberesox saurus Atlantic Silverside Menidia menidia Atlantic Sturgeon Acipenser oxyrhynchus oxyrhynchus Atlantic Wreckfish Polyprion americanus Barndoor Skate Dipturus laevis Basking Shark Cetorhinus maximus Bigeye Tuna Thunnus obesus Black Dogfish Centroscyllium fabricii Blue Hake Antimora rostrata Blue Marlin Makaira nigricans Blue Runner Caranx crysos Blue Shark Prionace glauca Blueback Herring Alosa aestivalis Boa Dragonfish Stomias boa ferox Brook Trout Salvelinus fontinalis Brown Bullhead Catfish Ameiurus nebulosus Burbot Lota lota Capelin Mallotus villosus Cardinal Fish Apogonidae (F) Chain Pickerel Esox niger Common Grenadier Nezumia bairdii Common Lumpfish Cyclopterus lumpus Common Thresher Shark Alopias vulpinus Crucian Carp
    [Show full text]
  • Table Tableau Tabla 2
    Table Tableau Tabla 2 Species codes of tunas, Codes des espèces de Códigos de especies de túnidos, tuna‐like species and thonidés, d’espèces de especies afines a los túnidos sharks apparentées et des requins y de tiburones Code / Scientific names / Common names Noms communs Nombres comunes Code / Noms sientifiques / (English) (Français) (Español) Código Nombres científicos Tunas ALB Thunnus alalunga Albacore Germon Atún blanco Thonidés BET Thunnus obesus Bigeye tuna Thon obèse(=Patudo) Patudo Túnidos BFT Thunnus thynnus Atlantic bluefin tuna Thon rouge de l’atlantique Atún rojo BUM Makaira nigricans Atlantic blue marlin Makaire bleu de l'Atlantique Aguja azul del Atlántico SAI Istiophorus albicans Atlantic sailfish Voilier de l'Atlantique Pez vela del Atlántico SKJ Katsuwonus pelamis Skipjack tuna Listao Listado SWO Xiphias gladius Swordfish Espadon Pez espada WHM Tetrapturus albidus Atlantic white marlin Makaire blanc de l'Atlantique Aguja blanca del Atlántico YFT Thunnus albacares Yellowfin tuna Albacore Rabil BLF Thunnus atlanticus Blackfin tuna Thon à nageoires noires Atún des aletas negras BLT Auxis rochei Bullet tuna Bonitou Melva(=Melvera) BON Sarda sarda Atlantic bonito Bonite à dos rayé Bonito del Atlántico BOP Orcynopsis unicolor Plain bonito Palomette Tasarte BRS Scomberomorus brasiliensis Serra Spanish mackerel Thazard serra Serra CER Scomberomorus regalis Cero Thazard franc Carite chinigua FRI Auxis thazard Frigate tuna Auxide Melva KGM Scomberomorus cavalla King mackerel Thazard barré Carite lucio KGX Scomberomorus spp
    [Show full text]
  • Identification Guide to the Deep-Sea Cartilaginous Fishes Of
    Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean FAO. 2015. Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean. FishFinder Programme, by Ebert, D.A. and Mostarda, E., Rome, Italy. Supervision: Merete Tandstad, Jessica Sanders (FAO, Rome) Technical editor: Edoardo Mostarda (FAO, Rome) Colour illustrations, cover and graphic design: Emanuela D’Antoni (FAO, Rome) This guide was prepared under the “FAO Deep–sea Fisheries Programme” thanks to a generous funding from the Government of Norway (Support to the implementation of the International Guidelines on the Management of Deep-Sea Fisheries in the High Seas project) for the purpose of assisting states, institutions, the fishing industry and RFMO/As in the implementation of FAO International Guidelines for the Management of Deep-sea Fisheries in the High Seas. It was developed in close collaboration with the FishFinder Programme of the Marine and Inland Fisheries Branch, Fisheries Department, Food and Agriculture Organization of the United Nations (FAO). The present guide covers the deep–sea Southeastern Atlantic Ocean and that portion of Southwestern Indian Ocean from 18°42’E to 30°00’E (FAO Fishing Area 47). It includes a selection of cartilaginous fish species of major, moderate and minor importance to fisheries as well as those of doubtful or potential use to fisheries. It also covers those little known species that may be of research, educational, and ecological importance. In this region, the deep–sea chondrichthyan fauna is currently represented by 50 shark, 20 batoid and 8 chimaera species. This guide includes full species accounts for 37 shark, 9 batoid and 4 chimaera species selected as being the more difficult to identify and/or commonly caught.
    [Show full text]