Randomness Extractors in Mobile Devices

Total Page:16

File Type:pdf, Size:1020Kb

Randomness Extractors in Mobile Devices MASARYK UNIVERSITY FACULTY}w¡¢£¤¥¦§¨ OF I !"#$%&'()+,-./012345<yA|NFORMATICS Randomness extractors in mobile devices MASTER’S THESIS Filip Jurneˇcka Brno, Spring 2010 Declaration Hereby I declare, that this paper is my original authorial work, which I have worked out by my own. All sources, references and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Brno, May 25, 2010 Filip Jurneˇcka Advisor: RNDr. Jan Bouda, Ph.D. ii Acknowledgement I would like to thank my mother for her unyielding support and belief in me. I would also like to thank all of those who helped me to get through my studies. iii Abstract Objective of this thesis is to give an overview of the problematics of ran- domness extractors with focus on searching an extractor suitable for gen- erating random numbers for cryptographic applications in mobile devices. Selected extractors based on their suitability for given application will be implemented in mobile device on a platform chosen by student. iv Keywords Evaluation hash, extractor, JavaME, mobile, pseudorandom, randomness, shift register hash, truly random, weak source. v Contents Chapter outline . 3 1 Introduction ............................... 5 1.1 Troubles with implementations of PRNGs ........... 6 1.2 Usage of randomness ....................... 7 1.2.1 Deterministic vs randomized algorithms . 7 1.2.2 Randomness in cryptography . 10 2 Sources of randomness ........................ 13 2.1 Definitions ............................. 13 2.2 Weak random sources ...................... 15 3 Randomness extractors ........................ 20 3.1 Preliminaries ............................ 20 3.2 Definitions ............................. 23 3.3 Tradeoffs .............................. 24 3.3.1 Simulating BPP . 24 3.3.2 Lower bounds . 25 3.4 Applications of extractors .................... 25 3.5 Overview of constructions .................... 26 3.6 Extractors using hash functions . 28 4 Randomness in mobile devices .................... 30 4.1 Smart cards ............................ 30 4.2 Mobile phones ........................... 31 4.2.1 Categorization of mobile phone random sources . 31 4.2.2 Analysis of available sources . 32 4.3 Analysis of underlying platforms . 34 4.3.1 Symbian platform . 36 4.3.2 Blackberry OS . 37 4.3.3 iPhone OS . 38 4.3.4 Windows Mobile . 39 4.3.5 Embedded Linux . 40 4.3.6 Android . 40 4.4 Argumentation for chosen source and platform . 41 5 Construction and implementation . 43 1 5.1 Device requirements ....................... 43 5.2 Processing data from camera . 44 5.3 Implementation of shift register hash based extractor . 47 5.4 Implementation of Evaluation Hash based extractor . 49 6 Conclusion ................................ 52 2 Chapter outline This thesis is dealing with the problem of acquiring close to uniformly dis- tributed random data especially in mobile phones. Since these devices gain in computational power and in range of usage, it is required to introduce such data for mainly cryptographic purposes in order to protect communi- cation and these devices in general. However, manufacturers of these devices provide little to no support for third-party developers. Therefore, we decided to generate close to uni- formly distributed random data in mobile devices using a randomness ex- tractor. Although some constructions were described in several papers, we were unable to find any implementations and perhaps perform some statis- tical comparison of them. Therefore, we decided to implement two extrac- tors based on the constructions described in [BMT+06] and [BKMS09]. In the first chapter called Introduction we will shortly elaborate on the history of randomness, explain initial motivation for randomness extrac- tors, their basic meaning and alternative approach to generating random data via randomness generators. We enrich the introduction by a few ex- amples of upstart flaws in pseudo-random number generators. We try to stress out importance of randomness in computation and its most common usage. We will provide an example of a problem and its solution using a deterministic algorithm and a randomized one and discuss their effective- ness. For that purpose we also briefly introduce complexity classes of ran- domized algorithms. Second chapter Sources of randomness will be dealing with sources of randomness and especially weak ones. Together with the third chapter, this part of the thesis extends survey done by Shaltiel [Sha02]. It gives a compre- hensive discussion on history of weak sources examined for deterministic randomness extraction and enlists main applications of extractors as well as achievements in constructions. Third chapter named Randomness extractors will be discussing mathe- matical background to randomness, its measurement and bring the formal definitions of extractor as well as some related terms. Then we will clarify what we want to achieve with an extractor and present an early construc- 3 tion of randomness extractors and achievements in the area as well as their usage in practice. In the fourth chapter Randomness in mobile devices we try to categorize nowadays mobile devices (smartphones) and discuss their options regard- ing sources of randomness. This chapter is mainly build on the dissertation thesis by Jan Krhovják [Krh09]. After that we will discuss the platforms on which these devices stand and their usability for implementation of ran- domness extractors together with random data acquisition. Chapter Construction and implementation will be critical for this thesis and it will describe the process of harvesting randomness from a camera of a mobile phone and an implementation of that. Then it will describe two of our implemented extractors in detail. These are based on previous papers by advisor of this thesis Jan Bouda and intended for further use in mobile devices, since there are no freely accessible implementations of those ex- tractors on the Internet. The last chapter Conclusion will present possible future work in the area of this thesis topic and mention some open problems regarding randomness extractors. 4 Chapter 1 Introduction Randomness, although appearing in all human’ history was at first de- scribed only in connection with gambling1. First mathematical conceptions were given by Blaise Pascal, Pierre de Fermat and Christiaan Huygens. The basic slightly inaccurate thought they came with is that outcomes of ran- dom processes are equally likely. Nowadays we define randomness as a type of circumstance or event that is described by a probability distribution Since then randomness as a scientific concept has taken place in many scientific fields, mainly in physics and mathematics. Now randomness plays a crucial part in quantum mechanics, modern evolutionary synthesis, com- puter communications, gambling industries etc. Random data are necessary for all of the above, which leads to the ques- tion how to obtain them. One already well elaborated concept stands on sources of randomness and their further processing e.g. via pseudo-random number generators (PRNG). Such sources might be anything you want, like coin flips, ball in a roulette or atmospheric noise (see chapter 2). When it is not simple to get an answer from the source, pseudo-random generators are used to produce additional randomness. They take output of a source and transform the need for measurement of a physical phenomenon into algorithmic computation. Since close to uniformly distributed random numbers are difficult to get, using (pseudo-)random number generators is quite common. Another approach is to gather somewhat random sequence and transform it into closer to uniformly distributed random data. That is where randomness extractors come in. A randomness extractor is a function that takes in an arbitrary distribution and gives out almost uniformly distributed bits. 1. Gerolamo Cardano wrote a book about games of chance, Liber de ludo aleae ("On Cast- ing the Die"). Written in the 1560s, but not published until 1663, it contains the first system- atic treatment of probability, as well as a section on effective cheating methods. 5 1. INTRODUCTION 1.1 Troubles with implementations of PRNGs It is important to stress that modern PRNGs are generally very satisfactory. However, improper solutions giving us very poor outcomes are still often used. • There is famous weakness on the side of Microsoft for their imple- mentation of pseudo-random number generator for the popular web programming language PHP. See the bitmap 1.1. A bitmap is an image represented by pixel. In this case, if the random generator returned 0, the pixel is black. As you can see, output of this generator is highly correlated. Figure 1.1: PHP rand() on Microsoft Windows • A significant mistake in the PRNG implementation for the OpenSSL Federal Information Processing Standards (FIPS) Object Module v1.1.1 has been reported by Geoff Lowe [Low07]. Due to a coding error in the FIPS self-test the auto-seeding never takes place. That means that the PRNG key and seed, which were used, correspond with the last self-test. The FIPS PRNG gets additional seed data only from date-time information, so the generated random data is far more pre- dictable than they should be, especially for the first few calls (see [Wea07]). • The X9.17 PRNG does not properly recover from state compromise. That is, an attacker who compromises the X9.17 triple-DES key, K, can compromise the whole internal state of the PRNG from then on 6 1. INTRODUCTION without much additional effort as examined in [KSW+88] by Kelsey et al. There are many more, like in an early version of Netscape SSL [GW96], Sun’s MIDP Reference Implementation of SSL [SMH05] or predictable ran- dom number generator in Debian’s OpenSSL package [Bel08], which caused guessability of cryptographic materials created on such systems. As you can see, they can have critical impact in common computer usage. 1.2 Usage of randomness Randomness was first examined in the context of gambling and keeps a lot of importance in gambling industry. Basically, every game a casino offers has at least slightly higher probability of winning on the casino’s side.
Recommended publications
  • Life with Augustine
    Life with Augustine ...a course in his spirit and guidance for daily living By Edmond A. Maher ii Life with Augustine © 2002 Augustinian Press Australia Sydney, Australia. Acknowledgements: The author wishes to acknowledge and thank the following people: ► the Augustinian Province of Our Mother of Good Counsel, Australia, for support- ing this project, with special mention of Pat Fahey osa, Kevin Burman osa, Pat Codd osa and Peter Jones osa ► Laurence Mooney osa for assistance in editing ► Michael Morahan osa for formatting this 2nd Edition ► John Coles, Peter Gagan, Dr. Frank McGrath fms (Brisbane CEO), Benet Fonck ofm, Peter Keogh sfo for sharing their vast experience in adult education ► John Rotelle osa, for granting us permission to use his English translation of Tarcisius van Bavel’s work Augustine (full bibliography within) and for his scholarly advice Megan Atkins for her formatting suggestions in the 1st Edition, that have carried over into this the 2nd ► those generous people who have completed the 1st Edition and suggested valuable improvements, especially Kath Neehouse and friends at Villanova College, Brisbane Foreword 1 Dear Participant Saint Augustine of Hippo is a figure in our history who has appealed to the curiosity and imagination of many generations. He is well known for being both sinner and saint, for being a bishop yet also a fellow pilgrim on the journey to God. One of the most popular and attractive persons across many centuries, his influence on the church has continued to our current day. He is also renowned for his influ- ence in philosophy and psychology and even (in an indirect way) art, music and architecture.
    [Show full text]
  • The Evolution of Technical Analysis Lo “A Movement Is Over When the News Is Out,” So Goes Photo: MIT the Evolution the Wall Street Maxim
    Hasanhodzic $29.95 USA / $35.95 CAN PRAISE FOR The Evolution of Technical Analysis Lo “A movement is over when the news is out,” so goes Photo: MIT Photo: The Evolution the Wall Street maxim. For thousands of years, tech- ANDREW W. LO is the Harris “Where there is a price, there is a market, then analysis, and ultimately a study of the analyses. You don’t nical analysis—marred with common misconcep- & Harris Group Professor of Finance want to enter this circle without a copy of this book to guide you through the bazaar and fl ash.” at MIT Sloan School of Management tions likening it to gambling or magic and dismissed —Dean LeBaron, founder and former chairman of Batterymarch Financial Management, Inc. and the director of MIT’s Laboratory by many as “voodoo fi nance”—has sought methods FINANCIAL PREDICTION of Technical Analysis for Financial Engineering. He has for spotting trends in what the market’s done and “The urge to fi nd order in the chaos of market prices is as old as civilization itself. This excellent volume published numerous papers in leading academic what it’s going to do. After all, if you don’t learn from traces the development of the tools and insights of technical analysis over the entire span of human history; FINANCIAL PREDICTION FROM BABYLONIAN history, how can you profi t from it? and practitioner journals, and his books include beginning with the commodity price and astronomical charts of Mesopotamia, through the Dow Theory The Econometrics of Financial Markets, A Non- of the early twentieth century—which forecast the Crash of 1929—to the analysis of the high-speed TABLETS TO BLOOMBERG TERMINALS Random Walk Down Wall Street, and Hedge Funds: electronic marketplace of today.
    [Show full text]
  • Leibniz on China and Christianity: the Reformation of Religion and European Ethics Through Converting China to Christianity
    Bard College Bard Digital Commons Senior Projects Spring 2016 Bard Undergraduate Senior Projects Spring 2016 Leibniz on China and Christianity: The Reformation of Religion and European Ethics through Converting China to Christianity Ela Megan Kaplan Bard College, [email protected] Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2016 Part of the European History Commons This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Kaplan, Ela Megan, "Leibniz on China and Christianity: The Reformation of Religion and European Ethics through Converting China to Christianity" (2016). Senior Projects Spring 2016. 279. https://digitalcommons.bard.edu/senproj_s2016/279 This Open Access work is protected by copyright and/or related rights. It has been provided to you by Bard College's Stevenson Library with permission from the rights-holder(s). You are free to use this work in any way that is permitted by the copyright and related rights. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. For more information, please contact [email protected]. Leibniz on China and Christianity: The Reformation of Religion and European Ethics through Converting China to Christianity Senior Project submitted to The Division of Social Studies Of Bard College by Ela Megan Kaplan Annandale-on-Hudson, New York May 2016 5 Acknowledgements I would like to thank my mother, father and omniscient advisor for tolerating me for the duration of my senior project.
    [Show full text]
  • The Metaphysical Foundations Underlying Augustine's Solution to the Problem of Evil
    Georgia State University ScholarWorks @ Georgia State University Philosophy Theses Department of Philosophy 11-30-2007 Between Being and Nothingness: The Metaphysical Foundations Underlying Augustine's Solution to the Problem of Evil Brian Keith Kooy Follow this and additional works at: https://scholarworks.gsu.edu/philosophy_theses Part of the Philosophy Commons Recommended Citation Kooy, Brian Keith, "Between Being and Nothingness: The Metaphysical Foundations Underlying Augustine's Solution to the Problem of Evil." Thesis, Georgia State University, 2007. https://scholarworks.gsu.edu/philosophy_theses/32 This Thesis is brought to you for free and open access by the Department of Philosophy at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Philosophy Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. BETWEEN BEING AND NOTHINGNESS: THE METAPHYSICAL FOUNDATIONS UNDERLYING AUGUSTINE’S SOLUTION TO THE PROBLEM OF EVIL by BRIAN KEITH KOOY Under the Direction of Dr. Timothy M. Renick ABSTRACT Several commentators make the claim that Augustine is not a systematic thinker. The purpose of this thesis is to refute that claim in one specific area of Augustine's thought, the metaphysical foundations underlying his solutions to the problem of evil. Through an exegetical examination of various works in which Augustine writes on evil, I show that his solutions for both natural and moral evil rely on a coherent metaphysical system,
    [Show full text]
  • Title : Random Number Generator: Testing and Whitening. Co
    Title : Random number generator: testing and whitening. Co-Encadrants : Andrei ROMASHCHENKO and Alexander SHEN (LIRMM) contact for more detail : [email protected], [email protected] Keywords : random number generators, statistical tests Prerequisites : The candidate should have programming skills and some knowledge in probability theory. Abstract : Generation of random bits is a classical problem known in the context of pseudo-random generators and also in connection with of truly ran- dom physical processes (there exist electronic devices that produce random bits using an unpredictable physical noise or intrinsically nondeterministic quantum phenomena). However, the quality of physical generators of random bits remains badly founded and poorly tested. The first objective of this pro- ject is an experimental study of the validity and quality of several physical random numbers generators. When we talk about the quality of random or pseudo-random genera- tors, we have to use randomness tests. The second objective of the project is an inventory and revision of statistical tests for random and pseudo-random generators. We suggest to improve the quality of statistical tests and de- velop new techniques of “whitening” that improves the quality of non-ideal sources of random bits. Another axis of the project is a conversion of various probabilistic proofs into unconventional randomness tests. Some more detail : Randomness (in a form of sequences of random bits, random numbers, and so on) is widely used in computer science in crypto- graphy, in randomized algorithms, in various simulations, etc. So the question arises : where can we obtain necessary random digits suitable for randomi- zed computations and communication protocols ? In some applications even a simple pseudo-random generator would cope with a task.
    [Show full text]
  • Gottfried Wilhelm Leibniz, the Humanist Agenda and the Scientific Method
    3237827: M.Sc. Dissertation Gottfried Wilhelm Leibniz, the humanist agenda and the scientific method Kundan Misra A dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science (Research), University of New South Wales School of Mathematics and Statistics Faculty of Science University of New South Wales Submitted August 2011 Changes completed September 2012 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Misra First name: Kundan Other name/s: n/a Abbreviation for degree as given in the University calendar: MSc School: Mathematics and Statistics Faculty: Science Title: Gottfried Wilhelm Leibniz, the humanist agenda and the scientific method Abstract 350 words maximum: Modernity began in Leibniz’s lifetime, arguably, and due to the efforts of a group of philosopher-scientists of which Leibniz was one of the most significant active contributors. Leibniz invented machines and developed the calculus. He was a force for peace, and industrial and cultural development through his work as a diplomat and correspondence with leaders across Europe, and in Russia and China. With Leibniz, science became a means for improving human living conditions. For Leibniz, science must begin with the “God’s eye view” and begin with an understanding of how the Creator would have designed the universe. Accordingly, Leibniz advocated the a priori method of scientific discovery, including the use of intellectual constructions or artifices. He defended the usefulness and success of these methods against detractors. While cognizant of Baconian empiricism, Leibniz found that an unbalanced emphasis on experiment left the investigator short of conclusions on efficient causes.
    [Show full text]
  • Measures of Maximal Entropy for Shifts of Finite Type
    Measures of maximal entropy for shifts of finite type Ben Sherman July 7, 2013 Contents Preface 2 1 Introduction 9 2 Dynamical systems 10 3 Topological entropy 13 4 Measure-preserving dynamical systems 20 5 Measure-theoretic entropy 22 6 Parry measure 27 7 Conclusion 30 Appendix: Deriving the Parry measure 30 1 Preface Before I get to the technical material, I thought I might provide a little non-technical background as to why randomness is so interesting, and why unpredictable dynamical systems (i.e., dynamical systems with positive entropy) provide an interesting explanation of randomness. What is randomness? \How dare we speak of the laws of chance? Is not chance the antithesis of all law?" |Joseph Bertrand, Calcul des probabilit´es, 1889 Throughout history, phenomena which could not be understood in a mundane sense have been ascribed to fate. After all, if something cannot be naturally understood, what else but a supernatural power can explain it? Concepts of chance and randomness thus have been closely associated with actions of deities. After all, for something to be random, it must, by definition, defy all explanation. Many ancient cultures were fascinated with games of chance, such as throwing dice or flipping coins, and interpreted their outcomes as prescriptions of fate. To play a game of chance was to probe the supernatural world. In ancient Rome, the goddess Fortuna was the deity who determined fortune and fate; the two concepts were naturally inseparable. Randomness, in many ways, is simply a lack of understanding. Democritus of an- cient Greece realized the subjectivity of randomness with an explanatory story (Wikipedia, 2012).
    [Show full text]
  • 115. Studies in the History of Statistics and Probability, Vol. 18
    Studies in the History of Statistics and Probability Vol. 18 Compiled by Oscar Sheynin Berlin 2020 Contents I am the author of all the contributions listed below Notation I. Prehistory of the theory of probability, 1974 II. Poisson and statistics, 2012 III. Simon Newcomb as a statistician, 2002 IV. Mathematical treatment of astronomical observations, 1973 V. Gauss and geodetic observations, 1994 VI. Gauss, Bessel and the adjustment of triangulation, 2001 VII. The theory of probability. Definition and relation with statistics, 1998 [email protected] 2 Notation Notation S, G, n refers to downloadable file n placed on my website www.sheynin.de which is being diligently copied by Google (Google, Oscar Sheynin, Home). I apply this notation in case of sources either rare or those in my translation into English. L, M, R = Leningrad, Moscow, in Russian 3 I On the Prehistory of the Theory of Probability Arch. Hist. Ex. Sci., vol. 12, N. 2, 1974, pp. 97 – 141 1. Introduction Evidently, none of the traditional sciences busies itself about the accidental, says ARISTOTLE1, continuing that this (the accidental) none of the recognized sciences considers, but only sophistic‚ and repeats himself m other places2. However, this opinion is wide of the mark since neither does the modern theory of probability busy itself with chance, but rather with the laws of chance, with the probable2a. And ARISTOTLE describes rhetoric as an art of persuasion based on probabilities (§ 3.2). Moreover, reasoning on the probable abound in various sciences in antiquity. The study of this aspect of various sciences before the origin of the theory of probability (i.
    [Show full text]
  • The Evolution of Technical Analysis Lo “A Movement Is Over When the News Is Out,” So Goes Photo: MIT the Evolution the Wall Street Maxim
    Hasanhodzic $29.95 USA / $35.95 CAN PRAISE FOR The Evolution of Technical Analysis Lo “A movement is over when the news is out,” so goes Photo: MIT Photo: The Evolution the Wall Street maxim. For thousands of years, tech- ANDREW W. LO is the Harris “Where there is a price, there is a market, then analysis, and ultimately a study of the analyses. You don’t nical analysis—marred with common misconcep- & Harris Group Professor of Finance want to enter this circle without a copy of this book to guide you through the bazaar and fl ash.” at MIT Sloan School of Management tions likening it to gambling or magic and dismissed —Dean LeBaron, founder and former chairman of Batterymarch Financial Management, Inc. and the director of MIT’s Laboratory by many as “voodoo fi nance”—has sought methods FINANCIAL PREDICTION of Technical Analysis for Financial Engineering. He has for spotting trends in what the market’s done and “The urge to fi nd order in the chaos of market prices is as old as civilization itself. This excellent volume published numerous papers in leading academic what it’s going to do. After all, if you don’t learn from traces the development of the tools and insights of technical analysis over the entire span of human history; FINANCIAL PREDICTION FROM BABYLONIAN history, how can you profi t from it? and practitioner journals, and his books include beginning with the commodity price and astronomical charts of Mesopotamia, through the Dow Theory The Econometrics of Financial Markets, A Non- of the early twentieth century—which forecast the Crash of 1929—to the analysis of the high-speed TABLETS TO BLOOMBERG TERMINALS Random Walk Down Wall Street, and Hedge Funds: electronic marketplace of today.
    [Show full text]
  • Russian Papers on the History of Probability and Statistics Translated by the Author Berlin 2004 (C) Oscar Sheynin
    Russian Papers on the History of Probability and Statistics Translated by the Author Berlin 2004 (C) Oscar Sheynin www.sheynin.de Contents Introduction 1. Review of Kendall, M.G., Doig, A.G. Bibliography of Statistical Literature Pre-1940 with Supplements to the Volumes for 1940 – 1949 and 1950 – 1958. Edinburgh, 1968. Novye Knigi za Rubezhom , ser. A, No. 10, 1969, 2. On the work of Adrain in the theory of errors. Istoriko-Matematicheskie Issledovania (IMI), vol. 16, 1965, pp. 325 – 336 3. On the history of the iterative methods of solving systems of linear algebraic equations. Trudy IX Nauchn Konf. Aspirantov i Mladsh. Nauchn. Sotrundn. Inst. Istorii Estestvoznania iTekhniki , Sektsia istorii fiz. i mat. nauk. Moscow, 1966, pp. 8 – 12 4. On selection and adjustment of direct observations. Izvestia Vuzov. Geodezia i Aerofotos’emka No. 2, 1966, pp. 107 – 112 5. On the history of the adjustment of indirect observations. Ibidem, No. 3, 1967, pp. 25 – 32 6. Some Issues in the History of the Theory of Errors. Abstract of dissertation. Moscow, 1967. Published as a manuscript. Inst. Istorii Estestvoznania i Tekhniki 7. On the work of Bayes in the theory of probability. Trudy XII Nauchn. Konf. Aspirantov i Mladsh. Nauchn. Sotrudn. Inst. Istorii Estestvoznania I Tekhniki , Sektsia istorii mat. i mekh. nauk. Moscow, 1969, pp. 40 – 57 8. On the history of the De Moivre – Laplace limit theorem. Istoria i Metodologia Estestven. Nauk , vol. 9, 1970, pp. 199 – 211 9. On the appearance of the Dirac delta-function in a memoir of Laplace. IMI, vol. 20, 1975, pp. 303 – 308 10.
    [Show full text]
  • On Randomness As a Principle of Structure and Computation in Neural Networks
    Research Collection Doctoral Thesis On randomness as a principle of structure and computation in neural networks Author(s): Weissenberger, Felix Publication Date: 2018 Permanent Link: https://doi.org/10.3929/ethz-b-000312548 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Felix Weissenberger On randomness as a principle of structure and com- putation in neural networks Diss. ETH No. 25298 2018 ONRANDOMNESSASAPRINCIPLEOFSTRUCTURE AND COMPUTATION IN NEURAL NETWORKS Diss. ETH No. 25298 On randomness as a principle of structure and computation in neural networks A thesis submitted to attain the degree of DOCTOROFSCIENCES of ETHZURICH (Dr. sc. ETH Zurich) presented by FELIXWEISSENBERGER MSc ETH in Theoretical Computer Science born on 04.08.1989 citizen of Germany accepted on the recommendation of Prof. Dr. Angelika Steger Prof. Dr. Jean-Pascal Pfister Dr. Johannes Lengler 2018 Contents Abstract iii Zusammenfassung v Thanks vii 1 Introduction 1 2 Emergence of synfire chains 19 3 Rate based learning with short stimuli 79 4 Mutual inhibition with few inhibitory cells 109 5 Lognormal synchrony in CA1 125 Bibliography 163 i Abstract This work examines the role of randomness in structure and informa- tion processing of biological neural networks and how it may improve our understanding of the nervous system. Our approach is motivated by the pragmatic observation that many components and processes in the brain are intrinsically stochastic. Therefore, probability theory and its methods are particularly well suited for its analysis and modeling.
    [Show full text]
  • A Mathematical Revolutionary
    COMMENT BOOKS & ARTS HISTORY Euler dominated almost all branches of mathematics, as well as physics, astronomy and engineering, during the Enlightenment era. Euler’s mathematics was often ahead of A mathematical his time: he foreshadowed the use of groups of symmetries, the topology of networks, decision theory and the theory of sets (he was, for instance, the first to draw Venn revolutionary diagrams). Nearly alone among his contem- poraries, he advocated for the beauty and importance of number theory. His work on Davide Castelvecchi reviews a hefty biography of the prime numbers, in particular, set the stage prolific Enlightenment luminary Leonhard Euler. for a golden age of mathematics that would follow decades later. However, Euler’s greatest legacy, in both pure and applied mathematics, was the field of analysis. Seventeenth-century mathema- ticians, culminating with Isaac Newton and RIGB/SPL his arch-enemy Gottfried Wilhelm Leibniz, had founded calculus — the study of the rates of change of quantities in time (dif- ferentials or derivatives) and the intimately related idea of areas between curves (inte- grals). Euler’s analysis turned calculus into a powerful science and endowed mathematics and physics with their modern language and appearance. The founders of calculus often grasped at concepts that they could not fully understand. The field relied on infinitesimals, which had a metaphysical aura so controversial that they were in part responsible for getting Galileo Galilei in hot water with the Catholic Church, according to historian of mathematics Amir Alexander (Infinitesimal (Oneworld, 2014); see Nature http://doi.org/9hz; 2014). In Euler’s time, that controversy was still far from resolved.
    [Show full text]