Measures of Maximal Entropy for Shifts of Finite Type

Total Page:16

File Type:pdf, Size:1020Kb

Measures of Maximal Entropy for Shifts of Finite Type Measures of maximal entropy for shifts of finite type Ben Sherman July 7, 2013 Contents Preface 2 1 Introduction 9 2 Dynamical systems 10 3 Topological entropy 13 4 Measure-preserving dynamical systems 20 5 Measure-theoretic entropy 22 6 Parry measure 27 7 Conclusion 30 Appendix: Deriving the Parry measure 30 1 Preface Before I get to the technical material, I thought I might provide a little non-technical background as to why randomness is so interesting, and why unpredictable dynamical systems (i.e., dynamical systems with positive entropy) provide an interesting explanation of randomness. What is randomness? \How dare we speak of the laws of chance? Is not chance the antithesis of all law?" |Joseph Bertrand, Calcul des probabilit´es, 1889 Throughout history, phenomena which could not be understood in a mundane sense have been ascribed to fate. After all, if something cannot be naturally understood, what else but a supernatural power can explain it? Concepts of chance and randomness thus have been closely associated with actions of deities. After all, for something to be random, it must, by definition, defy all explanation. Many ancient cultures were fascinated with games of chance, such as throwing dice or flipping coins, and interpreted their outcomes as prescriptions of fate. To play a game of chance was to probe the supernatural world. In ancient Rome, the goddess Fortuna was the deity who determined fortune and fate; the two concepts were naturally inseparable. Randomness, in many ways, is simply a lack of understanding. Democritus of an- cient Greece realized the subjectivity of randomness with an explanatory story (Wikipedia, 2012). Suppose two men arrange to send their servants to fetch water at the same time. When the servants meet while fetching water, they deem their encounter random, and ascribe it to actions of the Gods, while it is known by the men who sent them that their meeting was arranged by mortals. As Bertrand exclaims, it seems paradoxical to formulate laws that explain the unex- plainable. Perhaps this is why probability theory was so slow to develop. If each random event is determined by fate, it would be unreasonable to expect collections of random 2 events to follow definite, mundane patterns. It was not until 1565, when Gerolamo Car- dano published Liber de Lude Aleae, a gambler's manual that discusses the odds of winning games of chance, that it was realized that a collection of many outcomes of random events follows strong patterns. Cardano noted that as one observes more outcomes of games of chance, the frequencies of the outcomes come closer to certain numbers. Cardano called these special numbers probabilities, and the theory of probability was born. While the development of probability theory answered many questions about the aggre- gated outcomes of random events, it still leaves undecided how the outcome of an individual random event is determined. As a consequence, it also cannot provide an explanation for why the frequencies of outcomes of random events approach the probabilities of those events. Chance remains \the antithesis of all law." There are two directions we can turn to for answers. We can ascribe it to fate, as has been done since the dawn of history. Or, we could turn to the laws of physics. Newton's laws \God doesn't play dice with the world." |Albert Einstein, conversation with William Hermanns, 1943 The world is unpredictable. One could say that we have good fortune that this is true, as a predictable world would certainly not be very exciting. Given our current state, we'd know exactly what would happen in the future. It would be a world without choice and devoid of agency: simply a long, boring march through time. In fact, it would be much worse; in a predictable world, our infinite knowledge of the world's state in the past and future would preclude us from experiencing time, as we would not accumulate memory as time passed by. There would be no way to assert which direction of time would be \forward," and time would reduce to something akin to another spatial dimension. But this putative dull world is not so far-fetched, and in fact it is quite peculiar that our world is not that way. When physicist Isaac Newton devised what are now known 3 as the classical laws of physics (around the year 1700), he essentially claimed that our n world is that bleak predictable one described earlier. Let x 2 R be a vector of spatial coordinates of particles in an isolated system (such as the universe). For example, we could 6 have x 2 R for two particles in 3-dimensional space, with x1 and x4 the x-coordinates of particles 1 and 2, respectively, et. cetera. Let mi be the mass of the particle whose coordinate is described by xi. Newton claimed then that there was some time-independent energy potential U(x) that was a function only of the positions of the particles, such that for all i, 2 @U(x) d xi − = mi 2 : @xi dt Thus, Newton claimed that the trajectory of any system of particles was determined by a system of n ordinary differential equations which are described above. Suppose for a given time t0, we know the positions x0 and velocities x_ 0 of all coordinates. Then existence and uniqueness theorems for ordinary differential equations assure that there is a single unique solution x(t), the trajectory of all the particles through time. Therefore, Newton's laws uniquely determine the trajectory of a system. This means that Newton's laws are deterministic, and leave no room for anything such as randomness. We also observe that Newton's laws are time-symmetric; suppose we have a trajectory x(t) that satisfies Newton's laws. Then one can check that the time-reversed trajectory x~(t) defined by x~(t) = x(−t) also satisfies Newton's laws, and thus is an equally plausible trajectory. Newton's laws have received some adjustments in the 300 years since he first formulated them, but the two principles of determinism and time-symmetry still hold, with some revision. Now, in order to produce a plausible time-reversed trajectory, we also need to mirror charge and parity. But every trajectory still has a plausible time-reversed trajectory. The quantum physical revision states that unobservable information about particles still evolves deterministically, but leaves open to interpretation how these unobservables relate to measured observables of a system. 4 But both classical and quantum mechanics seem to imply that the world evolves de- terministically with time. But we are not consigned to the dull world that Newton's laws imply. We don't know the weather two weeks from now, or the winner of tonight's bas- ketball game. We can't even predict the start of an earthquake or volcanic eruption the second before one occurs! What gives? There is one physical \law" that is time-asymmetric and thus discriminates between directions of time (Baranger, 2000). It is the Second Law of Thermodynamics, which states that the entropy of the world does not decrease (and sometimes increases) as time moves \forward." This actually provides the only physical definition for what the \forward" direction of time even means! But what is this nebulous quantity entropy? In the study of thermodynamics, it was empirically discovered that energy, in the form of heat, tends to flow from objects of high temperature to those of low temperature as time advances. Physicist Rudolf Clausius coined the term entropy in 1868, drawing from the Greek word entropia, meaning \a turning toward," for a measure he defined that related to the lack of potential of low-temperature objects to transfer heat energy to high-temperature ones. But alas, temperature was in turn defined in terms of capability to transfer heat, and we are left with little insight. And none of this could be derived from Newton's laws. Physicist Ludwig Boltzmann was the first to rigorously define entropy. Boltzmann is known as the founder of statistical mechanics, a field that uses statistics to reconcile the behavior of microscopic particles with the properties of the bulk material they compose. His tombstone famously bears the equation that encapsulates this founding idea, S = k log W; where S is the entropy of a system, k is a constant (the now-eponymous Boltzmann con- stant), and W is the number of possible indistinguishable microstates that could equiva- lently describe the system's state. Therefore, the Second Law equivalently states that the value of W for the universe doesn't decrease as time moves forward. Boltzmann was also 5 able to define temperature of a bulk material in terms of the microscopic states of its con- stituent particles. Boltzmann's entropy managed to suitably explain irreversible processes like heat transfer from hot to cold objects, mixing of two different substances, and phase transitions of substances at given temperatures. Boltzmann's definition is simultaneously problematic and intriguing. First, it is prob- lematic, because calculating the entropy of a system depends very strongly on how a sys- tem's state (specifically \macrostate") is to be described. The more accurately we describe the system, the fewer indistinguishable microstates there would be that would count as describing the system, and thus the lower the entropy. So the thermodynamic fact that that Clausius concluded reduces to something that seems surprisingly subjective. Perhaps, as time goes by, physicists simply get lazier and less rigorously describe the macroscopic states of their systems! But it is also offers a very intriguing interpretation of the Second Law: as time goes by, we cannot ever become more capable of describing the world, and sometimes we become less capable.
Recommended publications
  • Life with Augustine
    Life with Augustine ...a course in his spirit and guidance for daily living By Edmond A. Maher ii Life with Augustine © 2002 Augustinian Press Australia Sydney, Australia. Acknowledgements: The author wishes to acknowledge and thank the following people: ► the Augustinian Province of Our Mother of Good Counsel, Australia, for support- ing this project, with special mention of Pat Fahey osa, Kevin Burman osa, Pat Codd osa and Peter Jones osa ► Laurence Mooney osa for assistance in editing ► Michael Morahan osa for formatting this 2nd Edition ► John Coles, Peter Gagan, Dr. Frank McGrath fms (Brisbane CEO), Benet Fonck ofm, Peter Keogh sfo for sharing their vast experience in adult education ► John Rotelle osa, for granting us permission to use his English translation of Tarcisius van Bavel’s work Augustine (full bibliography within) and for his scholarly advice Megan Atkins for her formatting suggestions in the 1st Edition, that have carried over into this the 2nd ► those generous people who have completed the 1st Edition and suggested valuable improvements, especially Kath Neehouse and friends at Villanova College, Brisbane Foreword 1 Dear Participant Saint Augustine of Hippo is a figure in our history who has appealed to the curiosity and imagination of many generations. He is well known for being both sinner and saint, for being a bishop yet also a fellow pilgrim on the journey to God. One of the most popular and attractive persons across many centuries, his influence on the church has continued to our current day. He is also renowned for his influ- ence in philosophy and psychology and even (in an indirect way) art, music and architecture.
    [Show full text]
  • The Evolution of Technical Analysis Lo “A Movement Is Over When the News Is Out,” So Goes Photo: MIT the Evolution the Wall Street Maxim
    Hasanhodzic $29.95 USA / $35.95 CAN PRAISE FOR The Evolution of Technical Analysis Lo “A movement is over when the news is out,” so goes Photo: MIT Photo: The Evolution the Wall Street maxim. For thousands of years, tech- ANDREW W. LO is the Harris “Where there is a price, there is a market, then analysis, and ultimately a study of the analyses. You don’t nical analysis—marred with common misconcep- & Harris Group Professor of Finance want to enter this circle without a copy of this book to guide you through the bazaar and fl ash.” at MIT Sloan School of Management tions likening it to gambling or magic and dismissed —Dean LeBaron, founder and former chairman of Batterymarch Financial Management, Inc. and the director of MIT’s Laboratory by many as “voodoo fi nance”—has sought methods FINANCIAL PREDICTION of Technical Analysis for Financial Engineering. He has for spotting trends in what the market’s done and “The urge to fi nd order in the chaos of market prices is as old as civilization itself. This excellent volume published numerous papers in leading academic what it’s going to do. After all, if you don’t learn from traces the development of the tools and insights of technical analysis over the entire span of human history; FINANCIAL PREDICTION FROM BABYLONIAN history, how can you profi t from it? and practitioner journals, and his books include beginning with the commodity price and astronomical charts of Mesopotamia, through the Dow Theory The Econometrics of Financial Markets, A Non- of the early twentieth century—which forecast the Crash of 1929—to the analysis of the high-speed TABLETS TO BLOOMBERG TERMINALS Random Walk Down Wall Street, and Hedge Funds: electronic marketplace of today.
    [Show full text]
  • Leibniz on China and Christianity: the Reformation of Religion and European Ethics Through Converting China to Christianity
    Bard College Bard Digital Commons Senior Projects Spring 2016 Bard Undergraduate Senior Projects Spring 2016 Leibniz on China and Christianity: The Reformation of Religion and European Ethics through Converting China to Christianity Ela Megan Kaplan Bard College, [email protected] Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2016 Part of the European History Commons This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Kaplan, Ela Megan, "Leibniz on China and Christianity: The Reformation of Religion and European Ethics through Converting China to Christianity" (2016). Senior Projects Spring 2016. 279. https://digitalcommons.bard.edu/senproj_s2016/279 This Open Access work is protected by copyright and/or related rights. It has been provided to you by Bard College's Stevenson Library with permission from the rights-holder(s). You are free to use this work in any way that is permitted by the copyright and related rights. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. For more information, please contact [email protected]. Leibniz on China and Christianity: The Reformation of Religion and European Ethics through Converting China to Christianity Senior Project submitted to The Division of Social Studies Of Bard College by Ela Megan Kaplan Annandale-on-Hudson, New York May 2016 5 Acknowledgements I would like to thank my mother, father and omniscient advisor for tolerating me for the duration of my senior project.
    [Show full text]
  • The Metaphysical Foundations Underlying Augustine's Solution to the Problem of Evil
    Georgia State University ScholarWorks @ Georgia State University Philosophy Theses Department of Philosophy 11-30-2007 Between Being and Nothingness: The Metaphysical Foundations Underlying Augustine's Solution to the Problem of Evil Brian Keith Kooy Follow this and additional works at: https://scholarworks.gsu.edu/philosophy_theses Part of the Philosophy Commons Recommended Citation Kooy, Brian Keith, "Between Being and Nothingness: The Metaphysical Foundations Underlying Augustine's Solution to the Problem of Evil." Thesis, Georgia State University, 2007. https://scholarworks.gsu.edu/philosophy_theses/32 This Thesis is brought to you for free and open access by the Department of Philosophy at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Philosophy Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. BETWEEN BEING AND NOTHINGNESS: THE METAPHYSICAL FOUNDATIONS UNDERLYING AUGUSTINE’S SOLUTION TO THE PROBLEM OF EVIL by BRIAN KEITH KOOY Under the Direction of Dr. Timothy M. Renick ABSTRACT Several commentators make the claim that Augustine is not a systematic thinker. The purpose of this thesis is to refute that claim in one specific area of Augustine's thought, the metaphysical foundations underlying his solutions to the problem of evil. Through an exegetical examination of various works in which Augustine writes on evil, I show that his solutions for both natural and moral evil rely on a coherent metaphysical system,
    [Show full text]
  • Title : Random Number Generator: Testing and Whitening. Co
    Title : Random number generator: testing and whitening. Co-Encadrants : Andrei ROMASHCHENKO and Alexander SHEN (LIRMM) contact for more detail : [email protected], [email protected] Keywords : random number generators, statistical tests Prerequisites : The candidate should have programming skills and some knowledge in probability theory. Abstract : Generation of random bits is a classical problem known in the context of pseudo-random generators and also in connection with of truly ran- dom physical processes (there exist electronic devices that produce random bits using an unpredictable physical noise or intrinsically nondeterministic quantum phenomena). However, the quality of physical generators of random bits remains badly founded and poorly tested. The first objective of this pro- ject is an experimental study of the validity and quality of several physical random numbers generators. When we talk about the quality of random or pseudo-random genera- tors, we have to use randomness tests. The second objective of the project is an inventory and revision of statistical tests for random and pseudo-random generators. We suggest to improve the quality of statistical tests and de- velop new techniques of “whitening” that improves the quality of non-ideal sources of random bits. Another axis of the project is a conversion of various probabilistic proofs into unconventional randomness tests. Some more detail : Randomness (in a form of sequences of random bits, random numbers, and so on) is widely used in computer science in crypto- graphy, in randomized algorithms, in various simulations, etc. So the question arises : where can we obtain necessary random digits suitable for randomi- zed computations and communication protocols ? In some applications even a simple pseudo-random generator would cope with a task.
    [Show full text]
  • Gottfried Wilhelm Leibniz, the Humanist Agenda and the Scientific Method
    3237827: M.Sc. Dissertation Gottfried Wilhelm Leibniz, the humanist agenda and the scientific method Kundan Misra A dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science (Research), University of New South Wales School of Mathematics and Statistics Faculty of Science University of New South Wales Submitted August 2011 Changes completed September 2012 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Misra First name: Kundan Other name/s: n/a Abbreviation for degree as given in the University calendar: MSc School: Mathematics and Statistics Faculty: Science Title: Gottfried Wilhelm Leibniz, the humanist agenda and the scientific method Abstract 350 words maximum: Modernity began in Leibniz’s lifetime, arguably, and due to the efforts of a group of philosopher-scientists of which Leibniz was one of the most significant active contributors. Leibniz invented machines and developed the calculus. He was a force for peace, and industrial and cultural development through his work as a diplomat and correspondence with leaders across Europe, and in Russia and China. With Leibniz, science became a means for improving human living conditions. For Leibniz, science must begin with the “God’s eye view” and begin with an understanding of how the Creator would have designed the universe. Accordingly, Leibniz advocated the a priori method of scientific discovery, including the use of intellectual constructions or artifices. He defended the usefulness and success of these methods against detractors. While cognizant of Baconian empiricism, Leibniz found that an unbalanced emphasis on experiment left the investigator short of conclusions on efficient causes.
    [Show full text]
  • 115. Studies in the History of Statistics and Probability, Vol. 18
    Studies in the History of Statistics and Probability Vol. 18 Compiled by Oscar Sheynin Berlin 2020 Contents I am the author of all the contributions listed below Notation I. Prehistory of the theory of probability, 1974 II. Poisson and statistics, 2012 III. Simon Newcomb as a statistician, 2002 IV. Mathematical treatment of astronomical observations, 1973 V. Gauss and geodetic observations, 1994 VI. Gauss, Bessel and the adjustment of triangulation, 2001 VII. The theory of probability. Definition and relation with statistics, 1998 [email protected] 2 Notation Notation S, G, n refers to downloadable file n placed on my website www.sheynin.de which is being diligently copied by Google (Google, Oscar Sheynin, Home). I apply this notation in case of sources either rare or those in my translation into English. L, M, R = Leningrad, Moscow, in Russian 3 I On the Prehistory of the Theory of Probability Arch. Hist. Ex. Sci., vol. 12, N. 2, 1974, pp. 97 – 141 1. Introduction Evidently, none of the traditional sciences busies itself about the accidental, says ARISTOTLE1, continuing that this (the accidental) none of the recognized sciences considers, but only sophistic‚ and repeats himself m other places2. However, this opinion is wide of the mark since neither does the modern theory of probability busy itself with chance, but rather with the laws of chance, with the probable2a. And ARISTOTLE describes rhetoric as an art of persuasion based on probabilities (§ 3.2). Moreover, reasoning on the probable abound in various sciences in antiquity. The study of this aspect of various sciences before the origin of the theory of probability (i.
    [Show full text]
  • The Evolution of Technical Analysis Lo “A Movement Is Over When the News Is Out,” So Goes Photo: MIT the Evolution the Wall Street Maxim
    Hasanhodzic $29.95 USA / $35.95 CAN PRAISE FOR The Evolution of Technical Analysis Lo “A movement is over when the news is out,” so goes Photo: MIT Photo: The Evolution the Wall Street maxim. For thousands of years, tech- ANDREW W. LO is the Harris “Where there is a price, there is a market, then analysis, and ultimately a study of the analyses. You don’t nical analysis—marred with common misconcep- & Harris Group Professor of Finance want to enter this circle without a copy of this book to guide you through the bazaar and fl ash.” at MIT Sloan School of Management tions likening it to gambling or magic and dismissed —Dean LeBaron, founder and former chairman of Batterymarch Financial Management, Inc. and the director of MIT’s Laboratory by many as “voodoo fi nance”—has sought methods FINANCIAL PREDICTION of Technical Analysis for Financial Engineering. He has for spotting trends in what the market’s done and “The urge to fi nd order in the chaos of market prices is as old as civilization itself. This excellent volume published numerous papers in leading academic what it’s going to do. After all, if you don’t learn from traces the development of the tools and insights of technical analysis over the entire span of human history; FINANCIAL PREDICTION FROM BABYLONIAN history, how can you profi t from it? and practitioner journals, and his books include beginning with the commodity price and astronomical charts of Mesopotamia, through the Dow Theory The Econometrics of Financial Markets, A Non- of the early twentieth century—which forecast the Crash of 1929—to the analysis of the high-speed TABLETS TO BLOOMBERG TERMINALS Random Walk Down Wall Street, and Hedge Funds: electronic marketplace of today.
    [Show full text]
  • Russian Papers on the History of Probability and Statistics Translated by the Author Berlin 2004 (C) Oscar Sheynin
    Russian Papers on the History of Probability and Statistics Translated by the Author Berlin 2004 (C) Oscar Sheynin www.sheynin.de Contents Introduction 1. Review of Kendall, M.G., Doig, A.G. Bibliography of Statistical Literature Pre-1940 with Supplements to the Volumes for 1940 – 1949 and 1950 – 1958. Edinburgh, 1968. Novye Knigi za Rubezhom , ser. A, No. 10, 1969, 2. On the work of Adrain in the theory of errors. Istoriko-Matematicheskie Issledovania (IMI), vol. 16, 1965, pp. 325 – 336 3. On the history of the iterative methods of solving systems of linear algebraic equations. Trudy IX Nauchn Konf. Aspirantov i Mladsh. Nauchn. Sotrundn. Inst. Istorii Estestvoznania iTekhniki , Sektsia istorii fiz. i mat. nauk. Moscow, 1966, pp. 8 – 12 4. On selection and adjustment of direct observations. Izvestia Vuzov. Geodezia i Aerofotos’emka No. 2, 1966, pp. 107 – 112 5. On the history of the adjustment of indirect observations. Ibidem, No. 3, 1967, pp. 25 – 32 6. Some Issues in the History of the Theory of Errors. Abstract of dissertation. Moscow, 1967. Published as a manuscript. Inst. Istorii Estestvoznania i Tekhniki 7. On the work of Bayes in the theory of probability. Trudy XII Nauchn. Konf. Aspirantov i Mladsh. Nauchn. Sotrudn. Inst. Istorii Estestvoznania I Tekhniki , Sektsia istorii mat. i mekh. nauk. Moscow, 1969, pp. 40 – 57 8. On the history of the De Moivre – Laplace limit theorem. Istoria i Metodologia Estestven. Nauk , vol. 9, 1970, pp. 199 – 211 9. On the appearance of the Dirac delta-function in a memoir of Laplace. IMI, vol. 20, 1975, pp. 303 – 308 10.
    [Show full text]
  • On Randomness As a Principle of Structure and Computation in Neural Networks
    Research Collection Doctoral Thesis On randomness as a principle of structure and computation in neural networks Author(s): Weissenberger, Felix Publication Date: 2018 Permanent Link: https://doi.org/10.3929/ethz-b-000312548 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Felix Weissenberger On randomness as a principle of structure and com- putation in neural networks Diss. ETH No. 25298 2018 ONRANDOMNESSASAPRINCIPLEOFSTRUCTURE AND COMPUTATION IN NEURAL NETWORKS Diss. ETH No. 25298 On randomness as a principle of structure and computation in neural networks A thesis submitted to attain the degree of DOCTOROFSCIENCES of ETHZURICH (Dr. sc. ETH Zurich) presented by FELIXWEISSENBERGER MSc ETH in Theoretical Computer Science born on 04.08.1989 citizen of Germany accepted on the recommendation of Prof. Dr. Angelika Steger Prof. Dr. Jean-Pascal Pfister Dr. Johannes Lengler 2018 Contents Abstract iii Zusammenfassung v Thanks vii 1 Introduction 1 2 Emergence of synfire chains 19 3 Rate based learning with short stimuli 79 4 Mutual inhibition with few inhibitory cells 109 5 Lognormal synchrony in CA1 125 Bibliography 163 i Abstract This work examines the role of randomness in structure and informa- tion processing of biological neural networks and how it may improve our understanding of the nervous system. Our approach is motivated by the pragmatic observation that many components and processes in the brain are intrinsically stochastic. Therefore, probability theory and its methods are particularly well suited for its analysis and modeling.
    [Show full text]
  • Randomness Extractors in Mobile Devices
    MASARYK UNIVERSITY FACULTY}w¡¢£¤¥¦§¨ OF I !"#$%&'()+,-./012345<yA|NFORMATICS Randomness extractors in mobile devices MASTER’S THESIS Filip Jurneˇcka Brno, Spring 2010 Declaration Hereby I declare, that this paper is my original authorial work, which I have worked out by my own. All sources, references and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Brno, May 25, 2010 Filip Jurneˇcka Advisor: RNDr. Jan Bouda, Ph.D. ii Acknowledgement I would like to thank my mother for her unyielding support and belief in me. I would also like to thank all of those who helped me to get through my studies. iii Abstract Objective of this thesis is to give an overview of the problematics of ran- domness extractors with focus on searching an extractor suitable for gen- erating random numbers for cryptographic applications in mobile devices. Selected extractors based on their suitability for given application will be implemented in mobile device on a platform chosen by student. iv Keywords Evaluation hash, extractor, JavaME, mobile, pseudorandom, randomness, shift register hash, truly random, weak source. v Contents Chapter outline . 3 1 Introduction ............................... 5 1.1 Troubles with implementations of PRNGs ........... 6 1.2 Usage of randomness ....................... 7 1.2.1 Deterministic vs randomized algorithms . 7 1.2.2 Randomness in cryptography . 10 2 Sources of randomness ........................ 13 2.1 Definitions ............................. 13 2.2 Weak random sources ...................... 15 3 Randomness extractors ........................ 20 3.1 Preliminaries ............................ 20 3.2 Definitions ............................. 23 3.3 Tradeoffs .............................. 24 3.3.1 Simulating BPP . 24 3.3.2 Lower bounds .
    [Show full text]
  • A Mathematical Revolutionary
    COMMENT BOOKS & ARTS HISTORY Euler dominated almost all branches of mathematics, as well as physics, astronomy and engineering, during the Enlightenment era. Euler’s mathematics was often ahead of A mathematical his time: he foreshadowed the use of groups of symmetries, the topology of networks, decision theory and the theory of sets (he was, for instance, the first to draw Venn revolutionary diagrams). Nearly alone among his contem- poraries, he advocated for the beauty and importance of number theory. His work on Davide Castelvecchi reviews a hefty biography of the prime numbers, in particular, set the stage prolific Enlightenment luminary Leonhard Euler. for a golden age of mathematics that would follow decades later. However, Euler’s greatest legacy, in both pure and applied mathematics, was the field of analysis. Seventeenth-century mathema- ticians, culminating with Isaac Newton and RIGB/SPL his arch-enemy Gottfried Wilhelm Leibniz, had founded calculus — the study of the rates of change of quantities in time (dif- ferentials or derivatives) and the intimately related idea of areas between curves (inte- grals). Euler’s analysis turned calculus into a powerful science and endowed mathematics and physics with their modern language and appearance. The founders of calculus often grasped at concepts that they could not fully understand. The field relied on infinitesimals, which had a metaphysical aura so controversial that they were in part responsible for getting Galileo Galilei in hot water with the Catholic Church, according to historian of mathematics Amir Alexander (Infinitesimal (Oneworld, 2014); see Nature http://doi.org/9hz; 2014). In Euler’s time, that controversy was still far from resolved.
    [Show full text]