Russian Papers on the History of Probability and Statistics Translated by the Author Berlin 2004 (C) Oscar Sheynin

Total Page:16

File Type:pdf, Size:1020Kb

Russian Papers on the History of Probability and Statistics Translated by the Author Berlin 2004 (C) Oscar Sheynin Russian Papers on the History of Probability and Statistics Translated by the Author Berlin 2004 (C) Oscar Sheynin www.sheynin.de Contents Introduction 1. Review of Kendall, M.G., Doig, A.G. Bibliography of Statistical Literature Pre-1940 with Supplements to the Volumes for 1940 – 1949 and 1950 – 1958. Edinburgh, 1968. Novye Knigi za Rubezhom , ser. A, No. 10, 1969, 2. On the work of Adrain in the theory of errors. Istoriko-Matematicheskie Issledovania (IMI), vol. 16, 1965, pp. 325 – 336 3. On the history of the iterative methods of solving systems of linear algebraic equations. Trudy IX Nauchn Konf. Aspirantov i Mladsh. Nauchn. Sotrundn. Inst. Istorii Estestvoznania iTekhniki , Sektsia istorii fiz. i mat. nauk. Moscow, 1966, pp. 8 – 12 4. On selection and adjustment of direct observations. Izvestia Vuzov. Geodezia i Aerofotos’emka No. 2, 1966, pp. 107 – 112 5. On the history of the adjustment of indirect observations. Ibidem, No. 3, 1967, pp. 25 – 32 6. Some Issues in the History of the Theory of Errors. Abstract of dissertation. Moscow, 1967. Published as a manuscript. Inst. Istorii Estestvoznania i Tekhniki 7. On the work of Bayes in the theory of probability. Trudy XII Nauchn. Konf. Aspirantov i Mladsh. Nauchn. Sotrudn. Inst. Istorii Estestvoznania I Tekhniki , Sektsia istorii mat. i mekh. nauk. Moscow, 1969, pp. 40 – 57 8. On the history of the De Moivre – Laplace limit theorem. Istoria i Metodologia Estestven. Nauk , vol. 9, 1970, pp. 199 – 211 9. On the appearance of the Dirac delta-function in a memoir of Laplace. IMI, vol. 20, 1975, pp. 303 – 308 10. History of the theory of probability. Based on Theory of probability before Chebyshev. IMI, vol. 25, 1978, pp. 284 – 306, and History of the Theory of Probability to the Beginning of the 20 th Century . Berlin, 2004 11. Liapunov’s letters to Andreev. IMI, vol. 31, 1989, pp. 306 – 313 . 12. On the history of the statistical method in natural sciences. IMI, vol. 32/33, 1990, pp. 384 – 408 13. Markov’s report on a paper by Galitzin. Ibidem, pp. 451 – 467 14. Markov’s papers in the newspaper Den , 1914 – 1915. IMI, vol. 34, 1993, pp. 194 – 206 15. Correspondence of Nekrasov and Andreev. IMI, vol. 35, 1994, pp. 124 – 147. Coauthor: M.V. Chirikov 16. The notion of randomness from Aristotle to Poincaré. IMI, vol. 1 (36), No. 1, 1995, pp. 85 – 105 17. Correspondence between P.A. Nekrasov and A.I. Chuprov. Ibidem, pp. 159 – 167 18. Markov and life insurance. IMI, vol. 2 (37), 1997, pp. 22 – 33 19. Slutsky: commemorating the 50 th anniversary of his death. IMI, vol. 3 (38), 1999, pp. 128 – 137 20. History of the theory of errors. IMI, vol. 5 (40), 2000, pp. 310 – 332 Introduction I am presenting translations of my papers originally published in Russian, mainly in Istoriko- Matematicheskie Issledovania (IMI) . Only a fraction of historians of mathematics read Russian and some are unwilling to study the contributions published beyond the usual set of periodicals so that my present work seems justified. In actual fact, I am putting out most of the items from a microfiche collection of the same title published by Hänsel-Hohenhausen in 1999 as Deutsche Hochschulschriften 2621 but hardly examined by more than a dozen readers; the copyright to ordinary publication was, and is mine. Some items below are translations of publications of materials kept at several Russian archives or newspaper articles and among the former is Markov’s critical review of a paper devoted to the treatment of observations. In translating my papers, I corrected a few mistakes and misprints (largely due, in the new series of the IMI, to the impossibility of reading the proofs), left out dated material, and referred not to Russian transla- tions of classical works but to their original editions. Abbreviations used throughout: AHES = Arch. Hist. Ex. Sci. ; DHS = Deutsche Hochschulschriften; IMI = Istoriko-Matematicheskie Isssledovania ; L. = Leningrad; M. = Moscow; MSb = Matematich. Sbornik ; 1 Psb = Petersburg; ( R ) = in Russian; ZhMNP = Zhurnal Ministerstva Narodn. Prosveshchenia. 1. Review of Kendall, M.G., Doig, A.G . (1968), Bibliography of Statistical Literature pre-1940 with Supplements to the Volumes for 1940 – 1949 and 1950 – 1958. Edinburgh. This is vol. 3 of the entire Bibliography covering the period until 1958; the first two volumes appeared in 1962 and 1965. No further volumes are planned since in 1959 the International Statistical Institute began publishing an abstracting journal now called Statistical Theory and Methods Abstracts. According to the authors’ aims and methodology as described in vol. 1, the Bibliography includes almost all the articles from 12 main periodicals and a number of papers from 42 other journals. In addition, the authors made use of the bibliographies appended to many papers and of the abstracting journals (although not of the Soviet Mate- matika ). They believe to have covered 95% of the existing articles on statistics and its applications. Each volume of the Bibliography is actually an author index (no subject indices are provided). The litera- ture published in Russian and in several other languages is described in English, French or German. In all, this vol. 3 lists about 10 thousand monographs and articles separated into two time intervals, – before 1900 and from 1900 to 1939 (2,360 and 7,630 items respectively) as well as 148 sources for 1940 – 1949 and about 1,170 for 1950 – 1958. All the books entered here had appeared before 1900. Neither the second part, nor the first two volumes include any books which is in line with the practice of the abovementioned quar- terly. This is an essential setback but the Bibliography is nevertheless very valuable. Vol. 3 is also useful for historians of mathematics since it lists classical works (of Laplace, Gauss et al) including writings of such authors for whom probability was a minor subject (Euler), forgotten writings of eminent mathematicians, commentaries and essays, translations of various works into any of the three main languages. There are some shortcomings. The selected literature, even of the 20 th century, was not checked in visu ; likely because of the general direction of the Bibliography there are hardly any references to collected works; of the 14 writings of Euler included in t. 7 of his Opera omnia , ser. 1 (1923) and pertaining to probability and statistics, the authors included only seven, and one of these called Wahrscheinlichkeitsrechnung either does not exist or wrongly named; the descriptions contain mistakes and inaccuracies (Süssmilch’s Göttliche Ord- nung first appeared in 1741, then in 1761 – 1762 but not in 1788; the second part of Daniel Bernoulli’s “Mensura sortis” (1771) is omitted); and cross-references are lacking. Finally, the spelling Ladislaus von Bortkiewicz as given in the second part does not coincide with that in the first part, Vladislav Bortkevich. Having emigrated from Russia to Germany in 1901 and being a nobleman, he changed his name accordingly but that fact is not explained. In 1962, the authors estimated that about a thousand articles on their subject were being published yearly. This means that already now it would be expedient to issue a bibliography of this literature for 1959 – 1970. Neither abstracting journals, nor their cumulative author indices are a substitute for bibliographies (to be compiled in the first place by scanning such sources). I also believe that a single bibliography for 1900 – 1970 with books being certainly included is also needed. 2 On the Work of Adrain in the Theory of Errors Istoriko-Matematicheskie Issledovania (IMI), vol. 16, 1965, pp. 325 – 336 In translating my paper I took into account its somewhat revised version appended to my unpublished the- sis of 1967 (Some Issues …, partly translated in this collection). Adrain’s articles are now reprinted (see Bibliography) and I have therefore omitted his original and hardly understandable derivations of the normal law (leaving however their modernized reconstruction [ 8 ] ). Their latest discussion is due to Hald [10, pp. 368 – 373] and Dutka [8a]. Also note that Adrain’s paper [2] apparently appeared in 1809 rather than in 1808 [13, p. 170]. * * * Robert Adrain is meritorious for his remarkable findings in the theory of errors. He published two deriva- tions of the normal law of error a year before [or at the same time as] Gauss did and applied it to establishing the principles of least squares and arithmetic mean as well as to determining the flattening of the earth’s ellipsoid of revolution. Adrain was born in Ireland and died in New Brunswick. He learned mathematics mainly by himself and began teaching it at an early age. Then, after participating in the Irish national movement and being wounded in the revolt of 1798, he fled to the United States. Adrain resumed there his teaching activities becoming, in 1809, Professor of mathematics at Queen’s College (now, Rutgers College) in New Brunswick. From 1813 to 1826 he was Professor at Columbia University, and, from 1827 to 1836, at Pennsylvania (vice-rector from 1828 to 1836). Adrain delivered lectures in various disciplines. Thus, in 1829 he taught elementary mathematics, geodesy, cartography, mathematical analysis, mechanics and astronomy. He and Nathaniel Bowditch (1773 – 1838) 1 were among the first American mathematicians. In 1812 Adrain was elected to the American Philosophical Society, and, in 1813, to the Academy of Sciences and Arts. He actively contributed to the first American mathematical periodicals. Coolidge [8] provided a general description of Adrain’s work, but his account of the latter’s findings in the theory of errors was not comprehensive. In the 19 th century several geodesists and astronomers discussed these in more detail (e.g., [1; 9; 26] from among those which I do not mention below) but still not sufficiently.
Recommended publications
  • Life with Augustine
    Life with Augustine ...a course in his spirit and guidance for daily living By Edmond A. Maher ii Life with Augustine © 2002 Augustinian Press Australia Sydney, Australia. Acknowledgements: The author wishes to acknowledge and thank the following people: ► the Augustinian Province of Our Mother of Good Counsel, Australia, for support- ing this project, with special mention of Pat Fahey osa, Kevin Burman osa, Pat Codd osa and Peter Jones osa ► Laurence Mooney osa for assistance in editing ► Michael Morahan osa for formatting this 2nd Edition ► John Coles, Peter Gagan, Dr. Frank McGrath fms (Brisbane CEO), Benet Fonck ofm, Peter Keogh sfo for sharing their vast experience in adult education ► John Rotelle osa, for granting us permission to use his English translation of Tarcisius van Bavel’s work Augustine (full bibliography within) and for his scholarly advice Megan Atkins for her formatting suggestions in the 1st Edition, that have carried over into this the 2nd ► those generous people who have completed the 1st Edition and suggested valuable improvements, especially Kath Neehouse and friends at Villanova College, Brisbane Foreword 1 Dear Participant Saint Augustine of Hippo is a figure in our history who has appealed to the curiosity and imagination of many generations. He is well known for being both sinner and saint, for being a bishop yet also a fellow pilgrim on the journey to God. One of the most popular and attractive persons across many centuries, his influence on the church has continued to our current day. He is also renowned for his influ- ence in philosophy and psychology and even (in an indirect way) art, music and architecture.
    [Show full text]
  • The Evolution of Technical Analysis Lo “A Movement Is Over When the News Is Out,” So Goes Photo: MIT the Evolution the Wall Street Maxim
    Hasanhodzic $29.95 USA / $35.95 CAN PRAISE FOR The Evolution of Technical Analysis Lo “A movement is over when the news is out,” so goes Photo: MIT Photo: The Evolution the Wall Street maxim. For thousands of years, tech- ANDREW W. LO is the Harris “Where there is a price, there is a market, then analysis, and ultimately a study of the analyses. You don’t nical analysis—marred with common misconcep- & Harris Group Professor of Finance want to enter this circle without a copy of this book to guide you through the bazaar and fl ash.” at MIT Sloan School of Management tions likening it to gambling or magic and dismissed —Dean LeBaron, founder and former chairman of Batterymarch Financial Management, Inc. and the director of MIT’s Laboratory by many as “voodoo fi nance”—has sought methods FINANCIAL PREDICTION of Technical Analysis for Financial Engineering. He has for spotting trends in what the market’s done and “The urge to fi nd order in the chaos of market prices is as old as civilization itself. This excellent volume published numerous papers in leading academic what it’s going to do. After all, if you don’t learn from traces the development of the tools and insights of technical analysis over the entire span of human history; FINANCIAL PREDICTION FROM BABYLONIAN history, how can you profi t from it? and practitioner journals, and his books include beginning with the commodity price and astronomical charts of Mesopotamia, through the Dow Theory The Econometrics of Financial Markets, A Non- of the early twentieth century—which forecast the Crash of 1929—to the analysis of the high-speed TABLETS TO BLOOMBERG TERMINALS Random Walk Down Wall Street, and Hedge Funds: electronic marketplace of today.
    [Show full text]
  • Leibniz on China and Christianity: the Reformation of Religion and European Ethics Through Converting China to Christianity
    Bard College Bard Digital Commons Senior Projects Spring 2016 Bard Undergraduate Senior Projects Spring 2016 Leibniz on China and Christianity: The Reformation of Religion and European Ethics through Converting China to Christianity Ela Megan Kaplan Bard College, [email protected] Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2016 Part of the European History Commons This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Kaplan, Ela Megan, "Leibniz on China and Christianity: The Reformation of Religion and European Ethics through Converting China to Christianity" (2016). Senior Projects Spring 2016. 279. https://digitalcommons.bard.edu/senproj_s2016/279 This Open Access work is protected by copyright and/or related rights. It has been provided to you by Bard College's Stevenson Library with permission from the rights-holder(s). You are free to use this work in any way that is permitted by the copyright and related rights. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. For more information, please contact [email protected]. Leibniz on China and Christianity: The Reformation of Religion and European Ethics through Converting China to Christianity Senior Project submitted to The Division of Social Studies Of Bard College by Ela Megan Kaplan Annandale-on-Hudson, New York May 2016 5 Acknowledgements I would like to thank my mother, father and omniscient advisor for tolerating me for the duration of my senior project.
    [Show full text]
  • The Metaphysical Foundations Underlying Augustine's Solution to the Problem of Evil
    Georgia State University ScholarWorks @ Georgia State University Philosophy Theses Department of Philosophy 11-30-2007 Between Being and Nothingness: The Metaphysical Foundations Underlying Augustine's Solution to the Problem of Evil Brian Keith Kooy Follow this and additional works at: https://scholarworks.gsu.edu/philosophy_theses Part of the Philosophy Commons Recommended Citation Kooy, Brian Keith, "Between Being and Nothingness: The Metaphysical Foundations Underlying Augustine's Solution to the Problem of Evil." Thesis, Georgia State University, 2007. https://scholarworks.gsu.edu/philosophy_theses/32 This Thesis is brought to you for free and open access by the Department of Philosophy at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Philosophy Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. BETWEEN BEING AND NOTHINGNESS: THE METAPHYSICAL FOUNDATIONS UNDERLYING AUGUSTINE’S SOLUTION TO THE PROBLEM OF EVIL by BRIAN KEITH KOOY Under the Direction of Dr. Timothy M. Renick ABSTRACT Several commentators make the claim that Augustine is not a systematic thinker. The purpose of this thesis is to refute that claim in one specific area of Augustine's thought, the metaphysical foundations underlying his solutions to the problem of evil. Through an exegetical examination of various works in which Augustine writes on evil, I show that his solutions for both natural and moral evil rely on a coherent metaphysical system,
    [Show full text]
  • Title : Random Number Generator: Testing and Whitening. Co
    Title : Random number generator: testing and whitening. Co-Encadrants : Andrei ROMASHCHENKO and Alexander SHEN (LIRMM) contact for more detail : [email protected], [email protected] Keywords : random number generators, statistical tests Prerequisites : The candidate should have programming skills and some knowledge in probability theory. Abstract : Generation of random bits is a classical problem known in the context of pseudo-random generators and also in connection with of truly ran- dom physical processes (there exist electronic devices that produce random bits using an unpredictable physical noise or intrinsically nondeterministic quantum phenomena). However, the quality of physical generators of random bits remains badly founded and poorly tested. The first objective of this pro- ject is an experimental study of the validity and quality of several physical random numbers generators. When we talk about the quality of random or pseudo-random genera- tors, we have to use randomness tests. The second objective of the project is an inventory and revision of statistical tests for random and pseudo-random generators. We suggest to improve the quality of statistical tests and de- velop new techniques of “whitening” that improves the quality of non-ideal sources of random bits. Another axis of the project is a conversion of various probabilistic proofs into unconventional randomness tests. Some more detail : Randomness (in a form of sequences of random bits, random numbers, and so on) is widely used in computer science in crypto- graphy, in randomized algorithms, in various simulations, etc. So the question arises : where can we obtain necessary random digits suitable for randomi- zed computations and communication protocols ? In some applications even a simple pseudo-random generator would cope with a task.
    [Show full text]
  • Gottfried Wilhelm Leibniz, the Humanist Agenda and the Scientific Method
    3237827: M.Sc. Dissertation Gottfried Wilhelm Leibniz, the humanist agenda and the scientific method Kundan Misra A dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science (Research), University of New South Wales School of Mathematics and Statistics Faculty of Science University of New South Wales Submitted August 2011 Changes completed September 2012 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Misra First name: Kundan Other name/s: n/a Abbreviation for degree as given in the University calendar: MSc School: Mathematics and Statistics Faculty: Science Title: Gottfried Wilhelm Leibniz, the humanist agenda and the scientific method Abstract 350 words maximum: Modernity began in Leibniz’s lifetime, arguably, and due to the efforts of a group of philosopher-scientists of which Leibniz was one of the most significant active contributors. Leibniz invented machines and developed the calculus. He was a force for peace, and industrial and cultural development through his work as a diplomat and correspondence with leaders across Europe, and in Russia and China. With Leibniz, science became a means for improving human living conditions. For Leibniz, science must begin with the “God’s eye view” and begin with an understanding of how the Creator would have designed the universe. Accordingly, Leibniz advocated the a priori method of scientific discovery, including the use of intellectual constructions or artifices. He defended the usefulness and success of these methods against detractors. While cognizant of Baconian empiricism, Leibniz found that an unbalanced emphasis on experiment left the investigator short of conclusions on efficient causes.
    [Show full text]
  • Measures of Maximal Entropy for Shifts of Finite Type
    Measures of maximal entropy for shifts of finite type Ben Sherman July 7, 2013 Contents Preface 2 1 Introduction 9 2 Dynamical systems 10 3 Topological entropy 13 4 Measure-preserving dynamical systems 20 5 Measure-theoretic entropy 22 6 Parry measure 27 7 Conclusion 30 Appendix: Deriving the Parry measure 30 1 Preface Before I get to the technical material, I thought I might provide a little non-technical background as to why randomness is so interesting, and why unpredictable dynamical systems (i.e., dynamical systems with positive entropy) provide an interesting explanation of randomness. What is randomness? \How dare we speak of the laws of chance? Is not chance the antithesis of all law?" |Joseph Bertrand, Calcul des probabilit´es, 1889 Throughout history, phenomena which could not be understood in a mundane sense have been ascribed to fate. After all, if something cannot be naturally understood, what else but a supernatural power can explain it? Concepts of chance and randomness thus have been closely associated with actions of deities. After all, for something to be random, it must, by definition, defy all explanation. Many ancient cultures were fascinated with games of chance, such as throwing dice or flipping coins, and interpreted their outcomes as prescriptions of fate. To play a game of chance was to probe the supernatural world. In ancient Rome, the goddess Fortuna was the deity who determined fortune and fate; the two concepts were naturally inseparable. Randomness, in many ways, is simply a lack of understanding. Democritus of an- cient Greece realized the subjectivity of randomness with an explanatory story (Wikipedia, 2012).
    [Show full text]
  • 115. Studies in the History of Statistics and Probability, Vol. 18
    Studies in the History of Statistics and Probability Vol. 18 Compiled by Oscar Sheynin Berlin 2020 Contents I am the author of all the contributions listed below Notation I. Prehistory of the theory of probability, 1974 II. Poisson and statistics, 2012 III. Simon Newcomb as a statistician, 2002 IV. Mathematical treatment of astronomical observations, 1973 V. Gauss and geodetic observations, 1994 VI. Gauss, Bessel and the adjustment of triangulation, 2001 VII. The theory of probability. Definition and relation with statistics, 1998 [email protected] 2 Notation Notation S, G, n refers to downloadable file n placed on my website www.sheynin.de which is being diligently copied by Google (Google, Oscar Sheynin, Home). I apply this notation in case of sources either rare or those in my translation into English. L, M, R = Leningrad, Moscow, in Russian 3 I On the Prehistory of the Theory of Probability Arch. Hist. Ex. Sci., vol. 12, N. 2, 1974, pp. 97 – 141 1. Introduction Evidently, none of the traditional sciences busies itself about the accidental, says ARISTOTLE1, continuing that this (the accidental) none of the recognized sciences considers, but only sophistic‚ and repeats himself m other places2. However, this opinion is wide of the mark since neither does the modern theory of probability busy itself with chance, but rather with the laws of chance, with the probable2a. And ARISTOTLE describes rhetoric as an art of persuasion based on probabilities (§ 3.2). Moreover, reasoning on the probable abound in various sciences in antiquity. The study of this aspect of various sciences before the origin of the theory of probability (i.
    [Show full text]
  • The Evolution of Technical Analysis Lo “A Movement Is Over When the News Is Out,” So Goes Photo: MIT the Evolution the Wall Street Maxim
    Hasanhodzic $29.95 USA / $35.95 CAN PRAISE FOR The Evolution of Technical Analysis Lo “A movement is over when the news is out,” so goes Photo: MIT Photo: The Evolution the Wall Street maxim. For thousands of years, tech- ANDREW W. LO is the Harris “Where there is a price, there is a market, then analysis, and ultimately a study of the analyses. You don’t nical analysis—marred with common misconcep- & Harris Group Professor of Finance want to enter this circle without a copy of this book to guide you through the bazaar and fl ash.” at MIT Sloan School of Management tions likening it to gambling or magic and dismissed —Dean LeBaron, founder and former chairman of Batterymarch Financial Management, Inc. and the director of MIT’s Laboratory by many as “voodoo fi nance”—has sought methods FINANCIAL PREDICTION of Technical Analysis for Financial Engineering. He has for spotting trends in what the market’s done and “The urge to fi nd order in the chaos of market prices is as old as civilization itself. This excellent volume published numerous papers in leading academic what it’s going to do. After all, if you don’t learn from traces the development of the tools and insights of technical analysis over the entire span of human history; FINANCIAL PREDICTION FROM BABYLONIAN history, how can you profi t from it? and practitioner journals, and his books include beginning with the commodity price and astronomical charts of Mesopotamia, through the Dow Theory The Econometrics of Financial Markets, A Non- of the early twentieth century—which forecast the Crash of 1929—to the analysis of the high-speed TABLETS TO BLOOMBERG TERMINALS Random Walk Down Wall Street, and Hedge Funds: electronic marketplace of today.
    [Show full text]
  • On Randomness As a Principle of Structure and Computation in Neural Networks
    Research Collection Doctoral Thesis On randomness as a principle of structure and computation in neural networks Author(s): Weissenberger, Felix Publication Date: 2018 Permanent Link: https://doi.org/10.3929/ethz-b-000312548 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Felix Weissenberger On randomness as a principle of structure and com- putation in neural networks Diss. ETH No. 25298 2018 ONRANDOMNESSASAPRINCIPLEOFSTRUCTURE AND COMPUTATION IN NEURAL NETWORKS Diss. ETH No. 25298 On randomness as a principle of structure and computation in neural networks A thesis submitted to attain the degree of DOCTOROFSCIENCES of ETHZURICH (Dr. sc. ETH Zurich) presented by FELIXWEISSENBERGER MSc ETH in Theoretical Computer Science born on 04.08.1989 citizen of Germany accepted on the recommendation of Prof. Dr. Angelika Steger Prof. Dr. Jean-Pascal Pfister Dr. Johannes Lengler 2018 Contents Abstract iii Zusammenfassung v Thanks vii 1 Introduction 1 2 Emergence of synfire chains 19 3 Rate based learning with short stimuli 79 4 Mutual inhibition with few inhibitory cells 109 5 Lognormal synchrony in CA1 125 Bibliography 163 i Abstract This work examines the role of randomness in structure and informa- tion processing of biological neural networks and how it may improve our understanding of the nervous system. Our approach is motivated by the pragmatic observation that many components and processes in the brain are intrinsically stochastic. Therefore, probability theory and its methods are particularly well suited for its analysis and modeling.
    [Show full text]
  • Randomness Extractors in Mobile Devices
    MASARYK UNIVERSITY FACULTY}w¡¢£¤¥¦§¨ OF I !"#$%&'()+,-./012345<yA|NFORMATICS Randomness extractors in mobile devices MASTER’S THESIS Filip Jurneˇcka Brno, Spring 2010 Declaration Hereby I declare, that this paper is my original authorial work, which I have worked out by my own. All sources, references and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Brno, May 25, 2010 Filip Jurneˇcka Advisor: RNDr. Jan Bouda, Ph.D. ii Acknowledgement I would like to thank my mother for her unyielding support and belief in me. I would also like to thank all of those who helped me to get through my studies. iii Abstract Objective of this thesis is to give an overview of the problematics of ran- domness extractors with focus on searching an extractor suitable for gen- erating random numbers for cryptographic applications in mobile devices. Selected extractors based on their suitability for given application will be implemented in mobile device on a platform chosen by student. iv Keywords Evaluation hash, extractor, JavaME, mobile, pseudorandom, randomness, shift register hash, truly random, weak source. v Contents Chapter outline . 3 1 Introduction ............................... 5 1.1 Troubles with implementations of PRNGs ........... 6 1.2 Usage of randomness ....................... 7 1.2.1 Deterministic vs randomized algorithms . 7 1.2.2 Randomness in cryptography . 10 2 Sources of randomness ........................ 13 2.1 Definitions ............................. 13 2.2 Weak random sources ...................... 15 3 Randomness extractors ........................ 20 3.1 Preliminaries ............................ 20 3.2 Definitions ............................. 23 3.3 Tradeoffs .............................. 24 3.3.1 Simulating BPP . 24 3.3.2 Lower bounds .
    [Show full text]
  • A Mathematical Revolutionary
    COMMENT BOOKS & ARTS HISTORY Euler dominated almost all branches of mathematics, as well as physics, astronomy and engineering, during the Enlightenment era. Euler’s mathematics was often ahead of A mathematical his time: he foreshadowed the use of groups of symmetries, the topology of networks, decision theory and the theory of sets (he was, for instance, the first to draw Venn revolutionary diagrams). Nearly alone among his contem- poraries, he advocated for the beauty and importance of number theory. His work on Davide Castelvecchi reviews a hefty biography of the prime numbers, in particular, set the stage prolific Enlightenment luminary Leonhard Euler. for a golden age of mathematics that would follow decades later. However, Euler’s greatest legacy, in both pure and applied mathematics, was the field of analysis. Seventeenth-century mathema- ticians, culminating with Isaac Newton and RIGB/SPL his arch-enemy Gottfried Wilhelm Leibniz, had founded calculus — the study of the rates of change of quantities in time (dif- ferentials or derivatives) and the intimately related idea of areas between curves (inte- grals). Euler’s analysis turned calculus into a powerful science and endowed mathematics and physics with their modern language and appearance. The founders of calculus often grasped at concepts that they could not fully understand. The field relied on infinitesimals, which had a metaphysical aura so controversial that they were in part responsible for getting Galileo Galilei in hot water with the Catholic Church, according to historian of mathematics Amir Alexander (Infinitesimal (Oneworld, 2014); see Nature http://doi.org/9hz; 2014). In Euler’s time, that controversy was still far from resolved.
    [Show full text]